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Abstract

Background: Fluorescence microscopy is an important technique in many areas of biological research. Two factors that
limit the usefulness and performance of fluorescence microscopy are photobleaching of fluorescent probes during imaging
and, when imaging live cells, phototoxicity caused by light exposure. Recently developed methods in machine learning are
able to greatly improve the signal-to-noise ratio of acquired images. This allows researchers to record images with much
shorter exposure times, which in turn minimizes photobleaching and phototoxicity by reducing the dose of light reaching
the sample. Findings: To use deep learning methods, a large amount of data is needed to train the underlying convolutional
neural network. One way to do this involves use of pairs of fluorescence microscopy images acquired with long and short
exposure times. We provide high-quality datasets that can be used to train and evaluate deep learning methods under
development. Conclusion: The availability of high-quality data is vital for training convolutional neural networks that are
used in current machine learning approaches.
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Data description
Context

Fluorescence microscopy is an important technique in many ar-
eas of biomedical research, but its use can be limited by photo-
bleaching of fluorescent probe molecules caused by the excita-
tion light that is used. In addition, reactive oxygen species that
are generated by exposing samples to light can cause cell dam-
age and even cell death, limiting imaging of live cells [1, 2]. Many
strategies have been devised to overcome this problem includ-
ing the use of specialized culture media [3, 4], pulsed excitation
[5], or more elaborate methods such as controlled light exposure
microscopy [6, 7].

Another approach involves recording of fluorescence mi-
croscopy images with short exposure times, low-excitation light
intensity, or both. This results in images with low signal-to-noise
ratios (SNRs), which can then be improved using a variety of im-
age restoration approaches [8–12]. Noise in low-light images of
this type typically follows a Poisson-Gaussian distribution. This
condition makes solving the inverse problem that arises in im-
age restoration methods difficult and has led to a number of ap-
proximate methods [13].

Recently, deep learning methods in artificial intelligence [14]
have been applied to many problems in image analysis, includ-
ing those in optical microscopy [15–18] and in image denois-
ing [19–21]. Deep learning approaches typically require a large
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Table 1: Overview of the datasets

Dataset 1 (60× Noise level 1) 2 (60× Noise level 2) 3 (20×) 4 (Confocal) 5 (Nucleus) 6 (Membrane)

Microscope Widefield Widefield Widefield Confocal Widefield Widefield
Objective 60 ×/1.35 NA 60 ×/1.35 NA 20 ×/0.75 NA 63 ×/1.4 NA 100×/1.40 NA 100×/1.40 NA

Pixel size, nm 108 108 325 96 65 65
Exposure times (Actin) high exp

400 ms
(Actin) high exp

1,000 ms
(Actin) high exp

500 ms
laser 10%,

det. gain 535 V
high exp
1,500 ms

high exp
450 ms

(Actin) low exp
20 ms

(Actin) low exp
15 ms

(Actin) low exp
20 ms

laser 50%
det. gain 619 V

low exp
40 ms

low exp 25 ms

(Mito) high exp 400 ms (Mito) high exp
600 ms

(Mito) high exp
400 ms

laser 20%
det. gain 800 V

(Mito) low exp
20 ms

(Mito) low exp
10 ms

(Mito) low exp
15 ms

laser 66%
det. gain 772 V

Image size, pixels 2,048 × 2,048 2,048 × 2,048 2,048 × 2,048 1,024 × 1,024 512 × 512 2,048 × 2,048
No. of images 100 100 100 79 104 84

amount of data to train the underlying convolutional neural net-
work [22]; however, such datasets are not always available. Here
we provide fluorescence microscopy datasets that can be used
to train and evaluate neural networks for the purpose of image
denoising. The dataset consists of pairs of images acquired with
different exposure times (or in the case of confocal microscopy,
different laser power and detector gain settings). After training,
the network can subsequently be used to enhance the SNR of
newly acquired images.

One advantage of deep learning methods is that they can
learn a task such as denoising from the data themselves, thus
providing a sample-specific method that does not depend on
a physical model. Once a network has been trained, subse-
quent image denoising using a convolutional neural network is
fast compared to traditional methods, which are typically much
slower.

Few datasets exist for evaluating fluorescence microscopy
denoising. The dataset of Zhang et al. [23] contains 12,000 im-
ages captured with either a confocal, 2-photon, or wide-field mi-
croscope of various samples such as cells, zebrafish, and mouse
brain tissues. They provide 50 low-SNR samples of each field of
view (FOV), so that the high-SNR target can be recovered by aver-
aging. However, they only provide 8-bit images and the quality
of the images is limited. Similarly, Zhou et al. [24] provide 400
low-SNR samples of the same FOV over 120 different FOVs. Their
data only provide wide-field images of human cells. Weigert et
al. [17] evaluated denoising using a collection of image stacks in-
cluding planaria, tribolium, flywing, Drosophila, retina, and liver
samples. One drawback of this dataset is that each training split
contains image patches, not whole images, which limits flexi-
bility in the training set-up. Our dataset addresses the gaps in
these previous datasets by providing whole images under both
low-SNR and high-SNR exposure settings. Our dataset covers a
wide range of sample types and imaging modalities, including
wide-field images of cells in which actin, mitochondria, mem-
brane, or nuclei are labeled, and confocal microscopy images of
actin and mitochondria.

In addition to providing the datasets, we evaluated the per-
formance of a recently proposed neural network for content-
aware image restoration (CARE) of fluorescence microscopy im-
ages [17]. To do this we used CSBDeep [25], a toolbox for imple-
mentation of the CARE network. This network uses a series of
convolutional layers from input to output in a U-Net architec-
ture [26] and uses the mean squared error (MSE) loss function
during training.

We also evaluated a self-supervised learning approach called
Noise2Void (N2V) [27]. This method learns denoising using only
the noisy data. It also uses a U-Net architecture and MSE loss
function but masks out random pixels during training to force
the network to learn to predict the denoised value of each
masked pixel based on the neighborhood of that pixel in the
noisy input. We used the reference implementation provided by
the authors.

Methods
Fluorescence microscopy

We acquired datasets 1, 2, 3, 5, and 6 using an IX83 micro-
scope equipped with UplanSApo 100×/1.40 numerical aperture
(NA) oil immersion, 60×/1.35 NA oil immersion, and 20×/0.75
NA air objectives (Olympus, Tokyo, Japan), Zyla 4.2-plus sCMOS
camera (Andor, Belfast, UK), and SpectraX light source (Lumen-
cor, Beaverton, OR, USA). Focusing was achieved using a piezo-
Z stage (Applied Scientific Instrumentation, Eugene, OR, USA).
The system was controlled by IQ3 software (Andor). We used
fluorescence filter set 59022 (Chroma, Bellows Falls, VT, USA).
Dataset 4 was acquired with an SP5 laser scanning confocal mi-
croscope (Leica, Mannheim, Germany) using 488- and 543-nm
lasers and an HCX PL APO CS 63×/1.4 NA oil immersion objective
(Leica).

The sample in datasets 1–5 was a FluoCells No. 1 prepared
slide (Molecular Probes, Eugene, OR, USA). This slide contains
bovine pulmonary artery endothelial cells stained with Mito-
Tracker Red CMXRos (labels mitochondria) and AlexaFluor 488
phalloidin (labels actin). The sample in dataset 6 was a HepG2
cell line that was grown on cover slips under standard con-
ditions and labeled with the membrane probe DiI (Molecular
Probes).

Data analysis

In each dataset, the last 10% of images were used for testing and
the remaining were used for training.

To train the CARE network, we used the following configura-
tion. We used the ADAM optimizer [28], the training batch size
was 16 images, the number of training epochs was 200, the initial
learning rate was 0.0004, and the iterations per epoch (training
steps) was 400. In sampling the training images, 800 patches per
image of size 128 × 128 pixels were used to train the CARE net-
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Figure 1: Example images from each of the 6 datasets.

work. In all experiments, 10% of the patches were withheld for
validation during training, and the model with best validation
error observed during training was saved and used for testing.

Following the standard implementation of the CARE net-
work, we used the MSE loss function

MSE = 1
mn

∑m−1

i = 0

∑n−1

j = 0
[I (i, j) − K (i, j)]2

, (1)

where I is a high-SNR image, K is the corresponding low-SNR
image after restoration, and m and n are the image height
and width, respectively. This quantity is computed for each
image in the batch and averaged to compute the loss. To
train the N2V network, we used the same configuration as the
CARE network but used the N2V training procedure. For com-
parison we used a standard denoising method, block match-
ing and 3D filtering (BM3D) [29]. Following the procedure of
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Figure 2: Results of denoising methods. Shown are selected images from dataset 1 (60× noise level 1).

Zhang et al. [23], on each image we estimated the noise level
using the method of Foi et al. [30] and applied a variance-
stabilizing transformation [31] before denoising the image with
BM3D.

Results

We acquired 6 datasets under different conditions. Table 1 pro-
vides an overview of the 6 datasets. In the wide-field data, we
adjusted the camera exposure time such that the desired SNR
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Table 2: Mean PSNR and SSIM results .

Dataset
PSNR, dB SSIM

Raw (low) CARE N2V BM3D Original CARE N2V BM3D

Actin 20× 24.10 32.12 29.26 30.35 0.37 0.90 0.74 0.87
Actin 60× (noise 1) 27.95 38.86 35.74 36.29 0.60 0.95 0.92 0.93
Actin 60× (noise 2) 18.34 28.89 22.77 25.16 0.09 0.81 0.32 0.53
Mito 20× 24.41 32.48 28.75 29.44 0.33 0.91 0.68 0.82
Mito 60× (noise 1) 27.91 39.30 33.80 36.70 0.55 0.97 0.87 0.94
Mito 60× (noise 2) 19.95 27.56 22.50 24.58 0.13 0.82 0.24 0.42
Actin Confocal 24.65 29.44 26.99 27.08 0.67 0.83 0.77 0.78
Mito Confocal 22.07 27.55 25.63 26.85 0.52 0.76 0.68 0.75
Nucleus 24.67 35.79 26.06 35.58 0.41 0.91 0.81 0.90
Membrane 29.40 35.35 29.52 35.09 0.64 0.93 0.83 0.93

Table 3: Training and processing times

Method Training time (h)
Processing time for 1

image (s)

CARE ∼3.5 0.90
Noise2Void ∼3 0.39
BM3D 50

levels were achieved. For confocal microscopy, we recorded im-
ages with 2 different (high or low) detector gains and laser pow-
ers.

Figure 1 shows examples images from each of the 6 datasets.
After data acquisition, we tested 3 different methods for im-

age denoising. Figure 2 shows the original low-exposure image
(raw), the matching high-exposure image (ground truth), and the
results of the CARE method, the N2V method, and a standard
denoising method (BM3D). For this comparison we selected an
image pair from dataset 1 (60× noise level 1).

Table 2 provides mean metrics for the denoising performance
for each method on each dataset. We used 2 metrics: peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM). Be-
fore computing the metrics we scaled and shifted both images
to minimize the MSE between them [17].

Finally, the PSNR metric was calculated as

PSNR = 10log10

(
1

MSE

)
.

The SSIM metric [32] is an image quality metric designed to
approximate human perception of similarity to a reference im-
age. Unlike PSNR, the metric takes into account structural infor-
mation in the image. The SSIM metric ranges from 0 to 1, with a
greater number indicating higher quality.

As shown in Table 2, the unsupervised N2V method is the
weakest performer on both metrics. BM3D is better on both
metrics but surpassed by the supervised CARE method on all
datasets. All methods exhibit a ∼10 dB drop in PSNR or greater
on the noisier datasets (Noise 2) in comparison to Noise 1. Each
method also performed ∼6–7 dB worse on 20× magnification
data in comparison to the 60× magnification data.

Visual inspection of the restored images (example shown in
Fig. 2) shows that, despite having high SSIM scores, the BM3D
tends to blur the images more than the other methods. The re-
sults of the N2V method are noticeably noisier than the results
of the other methods.

Table 3 presents a comparison of the methods in terms of
computation time. Using a single Nvidia V100 GPU, the CARE
network took ∼3.5 hours to train on a single dataset while the
Noise2Void network took ∼3 hours. The CARE network took ∼1
second to process a single image while the Noise2Void network
took approximately half that. The BM3D method does not re-
quire training but took 50 seconds to process a single image in
MATLAB on a 2.6 GHz Intel Core i3-7100U processor.

Reuse potential

The provided data can be used to implement new methods
in machine learning or to test modifications of existing ap-
proaches. The data can be used to evaluate methods for denois-
ing, super-resolution, or generative modeling, as well as new im-
age quality metrics, for example. The data could also be used to
evaluate the generalizability of methods trained onone type of
data and tested on another. High-quality, publicly available data
of this type have been lacking.

Data Availability

All raw and analyzed data underlying this article are available on
GigaDB [33]. All files and data are distributed under the Creative
Commons CC0 waiver, with a request for attribution.
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