
RESEARCH Open Access

Implications for health and disease in the genetic
signature of the Ashkenazi Jewish population
Saurav Guha1, Jeffrey A Rosenfeld1, Anil K Malhotra1,2,3,4,5, Annette T Lee6, Peter K Gregersen5,6, John M Kane1,2,3,4,5

, Itsik Pe’er7, Ariel Darvasi8 and Todd Lencz1,2,3,4,5*

Abstract

Background: Relatively small, reproductively isolated populations with reduced genetic diversity may have
advantages for genomewide association mapping in disease genetics. The Ashkenazi Jewish population represents
a unique population for study based on its recent (< 1,000 year) history of a limited number of founders,
population bottlenecks and tradition of marriage within the community. We genotyped more than 1,300 Ashkenazi
Jewish healthy volunteers from the Hebrew University Genetic Resource with the Illumina HumanOmni1-Quad
platform. Comparison of the genotyping data with that of neighboring European and Asian populations enabled
the Ashkenazi Jewish-specific component of the variance to be characterized with respect to disease-relevant
alleles and pathways.

Results: Using clustering, principal components, and pairwise genetic distance as converging approaches, we
identified an Ashkenazi Jewish-specific genetic signature that differentiated these subjects from both European and
Middle Eastern samples. Most notably, gene ontology analysis of the Ashkenazi Jewish genetic signature revealed
an enrichment of genes functioning in transepithelial chloride transport, such as CFTR, and in equilibrioception,
potentially shedding light on cystic fibrosis, Usher syndrome and other diseases over-represented in the Ashkenazi
Jewish population. Results also impact risk profiles for autoimmune and metabolic disorders in this population.
Finally, residual intra-Ashkenazi population structure was minimal, primarily determined by class 1 MHC alleles, and
not related to host country of origin.

Conclusions: The Ashkenazi Jewish population is of potential utility in disease-mapping studies due to its relative
homogeneity and distinct genomic signature. Results suggest that Ashkenazi-associated disease genes may be
components of population-specific genomic differences in key functional pathways.

Background
Since the advent of genomewide SNP microarrays for
disease mapping, considerable attention has been paid
to the potentially confounding role of population strati-
fication [1,2]. In addition to variation introduced by
major continental ancestry, substantial intra-continental
clines have been reliably demonstrated, typically map-
ping onto geographic patterns of historic migration
[3-5]. By contrast, population isolates and relatively
small founder populations demonstrate less background
diversity, which may provide increased power to detect

disease-related alleles [6,7]. Nevertheless, even these
populations tend to reveal very subtle patterns of
genetic structure that reflect demographic history and
may affect interpretation of disease association studies
[8-10].
The Ashkenazi Jewish (AJ) population is one such

founder cohort, composed of Jewish individuals whose
ancestors are thought to have advanced from the Rhine
valley to populate Eastern Europe and beyond, begin-
ning approximately 1,000 years ago [11]. The AJ popula-
tion has been associated with very specific genetically
derived predispositions to disease, primarily monogenic
recessive disorders [12], but more recent studies also
demonstrate increased frequency of certain alleles asso-
ciated with complex diseases [13-15]. Despite the inter-
est in the AJ population for disease mapping, however,
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population genetic studies in AJ cohorts to date have
not focused on the relevance of genetic results to the
study of complex disease.
Classic population genetic studies of Jewish cohorts,

based on uniparental markers, have provided strong evi-
dence of founder effects for the AJ population in both
the mitochondrial and Y-chromosome lineage [16,17].
Such studies typically have shown reduced variability
within AJ samples, and a greater degree of resemblance
to other Levantine-derived populations (including Arabs
and non-Ashkenazi Jews) than to the host European
populations; moreover, these studies have concluded
that genetic drift has played a primary role in the heigh-
tened frequency of certain parental lineages that are rare
or virtually absent in other populations [18,19]. More
recent studies have also demonstrated the ability of SNP
microarrays to differentiate AJ samples embedded within
larger non-AJ European-American cohorts [20-22]; these
studies placed AJ samples along a dimension intermedi-
ate to European and Middle Eastern populations. Most
recently, three genomewide studies of autosomal mar-
kers in Jewish samples of varying origins have yielded
results indicating: 1) considerable similarity between AJ
and (most) non-Ashkenazi Jewish cohorts; and 2) Jewish
populations (except those from India and Ethiopia) can
be viewed as a mixture of European and Middle Eastern
genetic ancestry [23-25]. However, two of these studies
[23,24] were limited to relatively small sample sizes of
AJ individuals, which may have restricted their ability to
detect AJ-specific patterns of genetic variation. More-
over, these studies did not specifically test for geo-
graphic or other structure within the AJ population, and
no attempt was made to characterize AJ-related varia-
tion with respect to disease susceptibility.
The present study was designed to examine these

issues using genomewide SNP markers in a very large (n
= 1,394) cohort of unselected AJ individuals from Israel.
First, we sought to identify an AJ-specific allelic pattern
from autosomal markers, using both clustering and prin-
cipal components approaches as applied to AJ samples
and non-Jewish samples derived from European, Middle
Eastern, and Central/South Asian origins. Next, we tested
whether genetic distance measures placed AJ in an inter-
mediate position relative to European and Middle East-
ern populations. Additionally, we examined whether the
AJ population demonstrated internal structure, and
whether any such structure would correlate with geogra-
phical region of origin. Next, we used genome wide asso-
ciation study (GWAS) methods to examine the
relationship of AJ-specific variation to the biology of
health and disease. Finally, we provide an optimized and
cross-validated list of AJ-related ancestry informative
markers (AIMs) for future disease-mapping studies.

Results
Ancestry estimation
First, we utilized a clustering approach based on maxi-
mum likelihood estimation (ADMIXTURE software,
details in Materials and methods) to detect underlying
ancestral populations in AJ samples compared with
members of three neighboring population groups
derived from the human genome diversity panel
(HGDP): European (EU; n = 159), Middle Eastern (ME;
n = 163), and Central/South Asian (CSA; n = 177,
excluding Kalash as per [23]). We initially selected n =
175 AJ subjects of varying national origins at random, in
order to maintain roughly equal sample size with each
of the other three groups. Approximately 95,600
unlinked SNPs were included in the analysis. Figure 1
demonstrates ADMIXTURE results for K = 2 to 8. By K
= 5, AJ (pea green) are clearly differentiated from the
other three major groups.
Ten-fold cross-validation was performed with ten ran-

dom AJ subsamples of n = 175, making use of our
entire cohort, and the ADMIXTURE model fit was com-
pared for K = 2 through K = 10. Figure 2 demonstrates
that for each of the runs, the optimum cross-validation
score was reached at K = 7; results for each of the ten
AJ subsamples were nearly identical. Across the ten
runs, the mean cross-validation score for the K = 7 solu-
tion (mean = 0.612113, standard deviation (SD) =
0.000135) was significantly smaller than the next lowest
values (for K = 6 and K = 8: mean ± SD = 0.612265 ±
0.000135 and 0.612283 ± 0.000135, respectively; com-
pared to K = 7 mean: t = 2.52, df = 18, P = 0.0215 and t
= 2.82, df = 18, P = 0.0114, respectively).
As shown in Figure 1, for K = 7, pea green remains

the dominant AJ color, accounting for as much as 87.5%
of the ancestry of AJ individuals. Across all AJ samples,
the median degree of contribution of this component
was 64.6%; the mean (57.9 ± 19.1%) was somewhat
lower than the median due to the presence of a number
of subjects in the cohort with virtually no AJ contribu-
tion. Amongst non-AJ samples, sharing of this ancestry
component was quite limited, with the greatest amount
of overlap (approximately 10%) seen for Palestinians,
Adygei (from the northern Caucasus), and Italians/Tus-
cans/Sardinians, respectively. At the same time, most of
the AJ samples demonstrated little overlap with other
specific ancestry components, with the exception of a
subset of approximately 16% of the sample that had sig-
nificant contributions from the European ancestry com-
ponent (red). These admixed individuals will be
examined in greater detail below.
Results did not change when we re-ran these ADMIX-

TURE analyses with larger subsamples of the Ashkenazi
cohort (n = 350, n = 700, and n = 1,050 AJ individuals);
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Figure 1 ADMIXTURE analysis (K = 2 to 8) for ancestry estimation of the Ashkenazi Jewish (AJ) and three neighboring populations.
Three neighboring populations - Europeans (EU), Middle Easterners (ME), and Central/South Asians (CSA) - were derived from the HGDP. Each
individual is represented by a thin vertical line, which is partitioned into K colored segments that represent the individual’s estimated
membership fractions in K clusters. Black lines separate major population groups based on geography. Geographical population groups and their
respective N’s are labeled below the figure. Specific ethnic subgroups are labeled above the figure: Europeans (B = Basque; F = French; S =
Sardinian, T = Tuscan, I = Italian, O = Orcadian, A = Adygei, R = Russian); Middle Easterners (M = Mozabite, D = Druze, P = Palestinian, BD =
Bedouin); and Central/South Asians (U = Uygur, BL = Balochi, BR = Brahui, BU = Burusho, H = Hazara, MK = Makrani, PT = Pathan, SI = Sindhi).
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for each of these analyses, K = 7 provided the optimal
solution. Results changed slightly when the full Ashkenazi
cohort was compared to the neighboring HGDP popula-
tions; as depicted in Additional file 1, the K = 8 solution
was marginally (but not significantly) better than the K =
7 solution, which was also indistinguishable from the K =
9 solution. Compared to the K = 7 results, however,
neither of these solutions introduced substantive changes
into the AJ population ancestry component.
Additional file 3 further demonstrates similar results

when all HGDP samples are included in the ADMIX-
TURE analysis. Cross-validation analysis (ten runs) indi-
cated that model fit is optimized at K = 11, with
second-best fit obtained at K = 8, which coincides with
the emergence of the AJ-specific ancestry component
(colored brown in Additional file 3). Moreover, at K =
11, there is virtually no evidence of this AJ component
in any of the other populations.

Principal components analysis
Next, we performed principal components analysis
(PCA) on the full sample of AJ individuals and the
neighboring HGDP populations (EU, ME, and CSA).
Seven significant (eigenvalue > 1) principal components
emerged, with the first two principal components (Addi-
tional file 4) centering the AJ population at the vertex of
two diagonals defined by EU and ME populations, con-
sistent with prior reports [23,24]. However, the third
principal component (PC3; eigenvalue = 3.14741) differ-
entiated the AJ population from all others (Figure 3).
Note that AJ are not intermediate to EU and ME on
this factor; rather, AJ are located on a dimension

orthogonal to the primary component (PC1) defining
these other two populations. Comparison with ADMIX-
TURE results demonstrated that PC3 was capturing the
same variance detected by maximum likelihood meth-
ods. Across AJ and all neighboring HGDP populations,
the score derived from ADMIXTURE cluster 3 (that is,
amount of pea green per individual in Figure 1) was
strongly correlated (r = 0.81) with PC3 score. Within AJ
alone, correlation was nearly perfect (r = 0.99), indicat-
ing a strong convergence across these two methods.
While the large majority of AJ subjects cluster tightly
together, it is apparent in Figure 3 that a subset of self-
described AJ individuals approach or overlap the EU
and ME cluster, similar to what was observed in the
ADMIXTURE analysis (Figure 1). Examination of a fre-
quency histogram for ADMIXTURE cluster 3 (C3)
scores (essentially identical to PC3 scores for AJ sub-
jects) demonstrates that 75% of AJ subjects met a strict
cutoff for C3 score > 0.6 (Figure 4). More broadly, 83%
fall between 0.475 and 0.875, centering on the peak
observed on the histogram at C3 ≈ 0.675. Notably, as
shown in Figure 5, all subjects with C3 < 0.475 fall
within three peaks on C2, which is the ADMIXTURE
cluster score representing the EU ancestral population
(red in Figure 1). These presumably represent indivi-
duals with one, two, or three non-Ashkenazi (European
or Middle Eastern) grandparents, notwithstanding their
self-report of four Ashkenazi grandparents.

Genetic distances between populations
The analyses described above demonstrate a dimension
of allelic variation that is specific to the AJ cohort.

Figure 2 Ten-fold cross-validation of K = 2 through K = 10 clusters from ADMIXTURE analysis with 10 randomly selected subsets of n
= 175 individuals from the Ashkenazi Jewish (AJ) cohort, combined with HGDP subjects as indicated in Figure 1. The x-axis represents
the number of clusters (K) in the model and the y-axis represents cross-validation score (lower scores represent better fit of the model to the
data). Ten different colors represent different runs.
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Nevertheless, the second principal component (PC2) of
the PCA places AJ subjects intermediate to EU and ME
populations; therefore, we further tested the position of
the AJ population relative to these neighboring popula-
tions using standard tests of genetic distance (FST). Con-
sistent with prior literature [23,24], pairwise genetic
distances were somewhat smaller between AJ and EU
populations than between AJ and ME populations,
although all pairwise differences were statistically signifi-
cant for AJ (Table 1). Surprisingly, however, AJ-EU dis-
tances were slightly larger than distances between
Palestinian and EU samples, for each EU cohort (except
Russian). For example, while both AJ and Palestinian
cohorts showed the smallest FST value in comparison
with the Tuscan group, the Palestinian-Tuscan differ-
ence was not statistically significant (FST = 0.0079),
whereas the AJ-Tuscan distance was nearly twice as
large (FST = 0.013).

Residual intra-population structure
We next sought to examine whether residual structure
could be detected in the subgroup of AJ subjects with-
out clear evidence of European admixture. We tested

the subsamples defined by both the strict (C3 > 0.6) and
broad (C3 ≥0.475) cutoffs described above. As shown in
Figure 6, the strict cutoff results in a PCA with no evi-
dence of significant structure. All eigenvalues are sub-
stantially < 1 (each of the top two PCs had eigenvalues
of approximately 0.8), and the plot of PC1 versus PC2 is
roughly circular and demonstrates no relationship to
country of origin for AJ subjects. Using the broader cut-
off, a modest but non-negligible degree of structure
becomes apparent (Additional file 5). As can be seen in
Additional file 5, however, there is still no apparent geo-
graphic correlate to the first two PCs.

Implications for health and disease
Next, we sought to identify which genetic variants were
contributing to the AJ-specific ancestry factor identified
in Figure 1. Allelic contributions to the ADMIXTURE-
based cluster 3 (C3) scores were examined using quanti-
tative GWAS (additive model comparing C3 against
approximately 739 K high-quality SNPs) in all (n =
1,312 after all quality control procedures) AJ samples. A
total of approximately 13,841 SNPs were strongly (P <
10-6) associated with C3 (Additional file 6).

Figure 3 Principal components analysis (PC1 versus PC3) of 1,312 Ashkenazi Jewish (AJ) subjects combined with Europeans (EU),
Middle Easterners (ME), and Central/South Asians (CSA). The x-axis represents the eigenvalue (EV) for principal component 1 (PC1) and the
y-axis represents the eigenvalue for principal component 3 (PC3). Blue represents AJ, green represents EU, orange represents ME and black
represents CSA.
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Biological pathway analysis using the ALIGATOR pro-
gram (details in Materials and methods) indicated that
our GWAS of C3 scores yielded genes that were signifi-
cantly over-represented (P < 0.001) in ten Gene Ontol-
ogy (GO) categories (Table 2). Only approximately three
such categories would be expected in a random study
with similar parameters, yielding a study-wide significant
P-value (P = 0.0248); this empirically determined P-
value (based on permutation of 10,000 simulated studies
of equal gene set length) indicates that results are signif-
icantly greater than would be obtained by chance.
Intriguingly, several of the statistically significant GO

process categories in Table 2 include autosomal reces-
sive disease-causing genes marked by relatively high-fre-
quency Ashkenazi-specific mutations. For example, five
of the six genes involved in transepithelial chloride
transport (GO:0030321) are significantly associated with
C3 scores; these include CFTR, a gene that harbors
characteristic mutations that cause the increased preva-
lence of cystic fibrosis in the Ashkenazi population [26].
Similarly, six out of eight genes involved in

equilibrioception (GO:0050597) are on the C3 GWAS
list, including PCDH15 and CLRN1. Specific founder
mutations in these two genes are responsible for
increased prevalence of Usher syndrome (types I and
III) in the Ashkenazi population [27,28]. Notably, both
of these GO categories also were significant in a com-
plementary gene-set enrichment analysis using GSA-
SNP (details in Materials and methods). In the GSA-
SNP analysis, the equilibrioception category demon-
strated enrichment at nearly four standard deviations
beyond the mean of all GO categories (Z = 3.99, P =
3.37E-05, false discovery rate (FDR) = 0.002); transe-
pithelial chloride transport was also enriched more than
3 standard deviations beyond the mean (Z = 3.09; P =
9.98E-04; FDR = 0.029). However, the other categories
listed in Table 2 did not achieve corrected significance
levels (FDR > 0.05, P > 0.002) on the GSA-SNP enrich-
ment list.
Of the SNPs crossing the threshold boundary (P <

10-6) for association to C3 scores, 417 were located in
the coding region of more than 300 genes. Table 3

Figure 4 Histogram distribution of cluster 3 (C3) scores of Ashkenazi Jewish (AJ) individuals derived from ADMIXTURE analysis. The x-
axis represents C3 scores and the y-axis represents the frequency.
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Figure 5 Histogram distribution of cluster 2 (C2) scores of Ashkenazi Jewish (AJ) individuals derived from ADMIXTURE analysis. The
histogram distribution includes only those AJ subjects with low scores (< 0.475) on the Ashkenazi-specific cluster score (C3). The x-axis
represents C2 scores and the y-axis represents the frequency.

Table 1 Pairwise genetic distances (Fst) between Ashkenazi Jewish, European and Middle Eastern populations

Europe Middle East

Population Ashkenazi Basque French Sardinian Tuscan Italian Orcadian Adygei Russian Mozabite Druze Palestinian Bedouin

Ashkenazi

Basque 0.0216

French 0.0147 0.0069

Sardinian 0.0206 0.0127 0.0087

Tuscan 0.013 0.0097 0.0024 0.0072

Italian 0.0136 0.0079 0.0012 0.0064 0.0014

Orcadian 0.0197 0.0114 0.0041 0.0154 0.008 0.0074

Adygei 0.0146 0.0176 0.009 0.0181 0.0078 0.0086 0.0137

Russian 0.0172 0.0134 0.0054 0.019 0.0094 0.0086 0.0072 0.0119

Mozabite 0.029 0.037 0.0307 0.0318 0.0258 0.0272 0.0376 0.0316 0.0368

Druze 0.0173 0.0206 0.0136 0.0166 0.009 0.0108 0.02 0.0121 0.0205 0.0277

Palestinian 0.0155 0.0202 0.0134 0.0157 0.0079 0.0099 0.0193 0.0113 0.0195 0.0209 0.0092

Bedouin 0.0189 0.0253 0.0185 0.0204 0.012 0.0147 0.0247 0.0161 0.0252 0.0208 0.0123 0.0077

Bold indicates significance, P < 0.05, Fisher’s exact test, 10,000 permutations.

Guha et al. Genome Biology 2012, 13:R2
http://genomebiology.com/2012/13/1/R2

Page 7 of 16



lists 15 of these that have been functionally character-
ized by research cited in PubMed (the full list is avail-
able in Additional file 2). Minor allele frequency in the
AJ cohort is listed for each of these SNPs; for compari-
son, minor allele frequencies for the three ‘Caucasian’
non-Hispanic HapMap populations (representing
northern Europe (CEU), southern Europe (TSI), and
India (GIH)), are also presented in Table 3. For exam-
ple, it can be seen that the A allele at rs213950, coding

for the Met variant at position 470 in CFTR, is signifi-
cantly under-represented in the AJ population com-
pared to the other three (and all other HapMap
populations, as well). Given that most mutations caus-
ing cystic fibrosis are found on M470 haplotypes
[29,30], this could represent the effects of purifying
selection. Two additional coding variants in genes
associated with recessive AJ diseases (HEXA and IKB-
KAP) are also detected in this analysis.

Figure 6 Intra-population principal components analysis of 1,312 Ashkenazi Jewish (AJ) individuals with cluster 3 (C3) scores > 0.6
derived from ADMIXTURE analysis. The x-axis represents the eigenvalue (EV) for principal component 1 (PC1) and the y-axis represents the
eigenvalue for principal component 2 (PC2). Different colors represent different geographical origins of AJ individuals.

Table 2 Gene Ontology categories significantly over-represented (P < 0.001) in ALIGATOR analysis

GO
category

GO
type

Genes in
category

Genes on
list

Expected on
list

P-
value

Expected hits per
study

Function

GO: 0031667 Process 89 22 9.69 0 0.06 Response to nutrient levels

GO: 0007584 Process 55 18 6.04 0 0.06 Response to nutrient

GO: 0005829 Cellular 856 135 98.43 0.00002 0.1 Cytosol

GO: 0051059 Function 22 10 2.37 0.00004 0.15 NF-kappaB binding

GO: 0009991 Process 100 23 10.42 0.00006 0.19 Response to extracellular
stimulus

GO: 0030321 Process 6 5 0.94 0.00028 0.7 Transepithelial chloride transport

GO: 0006414 Process 83 10 2.91 0.00036 0.88 Translational elongation

GO: 0050957 Process 8 6 2.71 0.0007 1.69 Equilibrioception

GO: 0030127 Cellular 7 4 0.55 0.00086 2.07 COPII vesicle coat

GO: 0012507 Cellular 7 4 0.55 0.00086 2.07 ER to Golgi vesicle membrane
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Table 3 Fifteen coding variants with functionally characterized SNPs crossing the threshold (P < 10-6) for association with C3 scores

Gene Marker Chromosome Chromosome
position

Amino acid
position

Amino acid
change

Correlation/
trend P

Correlation/
trend R

Minor
allele

AJ
frequency

CEU
frequency

TSI
frequency

GIH
frequency

CFTR rs213950 7 116986769 1408 V | M 2.29E-08 -0.155 A 0.287 0.487 0.347 0.489

ABCB1 rs1045642 7 86976581 3435 4.95E-11 -0.183 A 0.367 0.571 0.466 0.597

GSTP1 rs1138272 11 67110155 341 A | V 4.74E-08 -0.152 T 0.046 0.097 0.062 0.091

MTHFR rs1801133 1 11778965 665 A | V 6.70E-10 0.172 A 0.435 0.31 0.46 0.17

PPARG rs1801282 3 12368125 34 P | A 3.21E-09 -0.165 G 0.058 0.097 0.074 0.091

MC1R rs1805005 16 88513345 178 V | L 4.80E-16 0.227 T 0.266 0.006 0.159 0.006

PLAU rs2227564 10 75343107 422 L | P 4.82E-08 -0.152 T 0.107 0.239 0.188 0.369

PER1 rs2253820 17 7988894 2361 1.22E-11 0.188 T 0.378 0.185 0.165 0.222

ALF1 rs2269475 6 31691910 43 R | W 2.70E-08 -0.155 T 0.039 0.159 0.091 0.097

HLA-DRA rs3135391 6 32518965 402 8.47E-10 -0.171 A 0.034 0.19 0.08 0.017

SH2B3 rs3184504 12 110368991 784 W | R 1.36E-10 -0.179 C 0.365 0.555 0.472 0.869

DKK3 rs3206824 11 11942637 1003 R | G 1.44E-08 -0.158 T 0.128 0.243 0.165 0.148

LCT rs3754689 2 136307216 655 V | I 1.05E-09 0.17 T 0.466 0.102 0.402 0.29

PPARGC1A rs3755863 4 23424620 1584 4.99E-08 0.052 T 0.473 0.412 0.511 0.398

NOD2 rs2067085 16 49291359 639 9.54E-08 0.151 G 0.536 0.381 0.455 0.207

AJ, Ashkenazi Jew; CEU, Northern Europe; GIH, Gujarat India; TSI, Southern Europe Tuscan.
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The relative over-representation of the minor allele at
rs1801133 (also known as MTHFR C677T) in AJ popu-
lations has been previously noted [31]; homozygosity at
this allele is associated with hyperhomocysteinemia. Sev-
eral novel findings are also apparent from Table 3, with
potential impact on disease risk within the AJ popula-
tion. For example, SH2B3 regulates cytokine activity,
and rs3184504 within this gene has been replicably asso-
ciated with risk for type 1 diabetes and celiac disease
[32,33]. The AJ population has a lower frequency of the
protective C allele (that is, a higher frequency of the dis-
ease-associated T allele) than any other HapMap popu-
lation. Similarly, the AJ cohort has a reduced frequency
of the Ala12 variant (G allele at rs1801282) in the
PPARG gene; the Ala12 variant, while rare in all popula-
tions, reduces risk for type 2 diabetes by a factor of 0.86
[34]. The V60L variant at MC1R, also quite common in
the AJ cohort, has been associated with melanoma in
some, but not all, populations [35]. By contrast, the AJ
population has a reduced frequency of the T allele at
rs2227564, which has been associated with Alzheimer’s
disease [36]. Similarly, the AJ population has a reduced
frequency of the R15W variant of the AIF1 gene, which
has been strongly (odds ratio > 2) associated with rheu-
matoid arthritis [37].
We also performed a GWAS on scores derived from

PC1 of the intra-population PCA depicted in Additional
file 5. As shown in Additional file 7, this source of
population variance was strictly accounted for by allelic
differences in the major histocompatibility complex
(MHC). Notably, the MHC alleles associated with intra-
AJ population structure are completely different from
the MHC component associated with the inter-popula-
tion analysis (Additional file 6). For example, the AJ
population is differentiated from neighboring non-AJ
populations by a reduced frequency of the A allele at
rs3135391 (Table 3), which tags the HLA-DRB*1501
allele. This allele has been associated with susceptibility
to multiple sclerosis and other autoimmune diseases
[38]. By contrast, the intra-population principal compo-
nent (PC1) is most strongly correlated with alleles in the
class I region of the MHC - for example, rs9260952 in
the region of HLA-A (P = 2.46 × 10-106) and rs3828875
(P = 4.76 × 10-106), which has been correlated with
HLA-B *6701 and *3802 alleles [39].

Ancestry informative markers
Finally, we sought to validate a set of AIMs, derived
from our AJ-specific ADMIXTURE component (C3), in
an independent dataset. We selected a publicly available
dataset in which previous work has been published on
identification of AJ-specific allelic variation [21]. Of the
13,841 SNPs that strongly (P < 10-6) correlated with C3
in our GWAS analysis, 1,357 were available in the Need

et al. dataset [21]. PCA of these 1,357 SNPs revealed a
first principal component that strongly differentiated AJ
from non-AJ subjects; this result closely paralleled
results of the PCA reported by Need et al. [21] using
more than 120 K SNPs (Additional file 8 of this study
versus Figure 2 in Need et al. [21]). As shown in Table
4, classification of subjects based on the PCA of only
1,357 SNPs derived from our ADMIXTURE analysis
(Table 4) was essentially no different in classification
concordance to self-reported ancestry from the original
values reported by Need et al. [21] (Table 5).
Selecting only the 103 SNPs that strongly (P < 10-6)
loaded onto the first principal component from this ana-
lysis yielded results that were virtually indistinguishable
(Table 6). As a final validation, we then applied these
103 AIMs to compare the original (n = 1,312) AJ indivi-
duals used in this study to the HGDP European cohort
in order to evaluate the power to identify AJ individuals
with putative European admixture (that is, one or more
non-AJ grandparents). Of the 103 AIMS, 89 were avail-
able in the HGDP European individuals’ dataset. The
PCA result clearly illustrates the separation of full AJ
individuals (C3 admixture score > 0.475) from non-full
AJ individuals (C3 admixture score < 0.475) overlapping
with European individuals (Additional file 9). The iden-
tified non-full AJ individuals account for 16.9% of the
total original AJ individuals, which is in high concor-
dance with our previous finding using ADMIXTURE
analysis. This list of 103 SNPs (Additional file 2), the
smallest such set for the AJ population to date, therefore
provides a robust set of AIMs for identifying sub-
cohorts with AJ heritage within the context of disease-
mapping studies examining European or European-
American populations. For studies in which cost of
additional SNPs is not a factor, please see the full list of
PCA-derived SNPs in Additional file 2.

Discussion
While there have been several population genetics stu-
dies of Jewish cohorts published in the past two years
[21-25], the findings of the present study are novel in
several ways. First, prior studies have emphasized com-
monalities amongst Jewish sub-populations, as well as
relative proximity to European and Levantine

Table 4 Classification of AJ individuals derived from PCA
clustering using 1,357 SNPs obtained from ADMIXTURE
analysis

Ashkenazi Jewish grandparents (self-report)

0 1 2 3 4 Total

Predicted AJ? N 501 5 3 0 0 509

Y 6 3 34 4 55 102

Total 507 8 37 4 55 611
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populations. By contrast, the present study took the
complementary approach of defining the spectrum of
autosomal variation that is AJ-specific. Moreover, using
novel pathway analyses, the present study related popu-
lation genetic variation to patterns of disease propensity
in the Ashkenazi population. Second, the present study
examined intra-Ashkenazi variation. Finally, we provide
a robust yet compact list of AIMs for the Ashkenazi
population.
The primary result of the present study is the specifi-

cation of the allelic content of an autosomal genetic sig-
nature that can distinguish the Ashkenazi Jewish
population from both its host populations in Europe
and other populations that originate in the same geo-
graphic area of the Levant. To our knowledge, ours is
the first study of the Ashkenazi population to utilize
cross-validation metrics to identify the optimal solution
to the assignment of population ancestry scores. Pre-
vious studies using similar approaches have demon-
strated the ability of genomic information to
differentiate Ashkenazi samples from those drawn from
other populations [1,20-25]. However, each of these stu-
dies has suggested that AJ samples represent an inter-
mediate position or admixture between European and
Levantine populations. Although one recent paper sug-
gested 30 to 60% European admixture in Ashkenazi and
other Jewish samples [24], the present study found rela-
tively little (≤10%) overlap of AJ genetic ancestry com-
ponents in non-AJ Levantine populations. In the
statistically optimal ADMIXTURE result in our study,
European admixture followed a pattern indicative of sec-
ond-generation admixture rather than deeper mingling
with the host populations. Moreover, pairwise genetic
distances were not consistent with an intermediate

positioning of the AJ population relative to the Eur-
opean and Levantine populations.
It should be emphasized that these results do not sug-

gest an independent (for example, Khazar or non-Levan-
tine) lineage for the AJ population, a hypothesis that has
generally been ruled out by prior literature [16,17,24].
Rather, Table 1 demonstrates relative proximity amongst
several populations with Mediterranean heritage, includ-
ing the AJ, Palestinians, and Italians, suggestive of an
ancient common deme. Additionally, the FST data indi-
cate approximately equal genetic distances between the
AJ and western (French), eastern (Adygei), and Middle
Eastern (Palestinian) cohorts, consistent with the sugges-
tion that founder effects and subsequent drift account
for the data more strongly than substantial local in-mix-
ture with the European host populations in the last
1,000 years.
Moreover, the present study is the first to examine

residual intra-population variance in AJ samples in com-
parison to host European populations. Results of our
intra-AJ principal components analysis indicated that
residual structure was minimal, was not related to geo-
graphic origin within Europe, and did not map onto dif-
ferences in host population. Taken together, these data
most likely reflect the unique contributions of the AJ
founder population to the genetic make-up of present-
day Ashkenazim. At the same time, it is acknowledged
that our autosomal data may not capture certain com-
ponents of ancestry that are accessible to mitochondrial
DNA and Y-chromosome studies, such as sex differ-
ences in origin and number of founders [16-18].
Having identified this AJ-specific signature, we then

sought to characterize its primary allelic content in
order to determine potential relevance to future disease
mapping studies. We developed a robust yet compact
set of AIMs that can be applied to refine studies of Eur-
opean or European-American cohorts, which are still
the most commonly used in disease mapping GWASs.
These AIMs will also be useful in future GWASs of AJ
cohorts, insofar as they can identify individuals with
varying degrees of recent European admixture, thereby
reducing residual intra-population structure (Figure 6).
The lack of significant intra-population structure sug-
gests that the AJ population may be useful for disease-
mapping studies, with the possibility of enhanced signal-
to-noise for the detection of (at least a subset) of dis-
ease-related alleles [15].
Alleles within the MHC were the most substantial

contributors to both inter-population and intra-popula-
tion variance. MHC markers comprised approximately
6% of all approximately 13,841 SNPs that were corre-
lated with the AJ-specific signature, including poly-
morphisms in both class I and class II genes. Prior
research has consistently demonstrated the MHC to be

Table 6 Classification of AJ individuals derived from PCA
clustering using AIM 103 SNPs obtained from
ADMIXTURE analysis

Ashkenazi Jewish grandparents (self-report)

0 1 2 3 4 Total

Predicted AJ? N 499 5 6 0 0 510

Y 8 3 31 4 55 101

Total 507 8 37 4 55 611

Table 5 Classification of AJ individuals derived from PCA
clustering using 121,834 SNPs in Need et al. [21]

Ashkenazi Jewish grandparents (self-report)

0 1 2 3 4 Total

Predicted AJ? N 496 7 2 0 0 507

Y 11 1 35 4 55 104

Total 507 8 37 4 55 611
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most sensitive to population differences [40], typically
due to geographic differences in exposure history [41].
These population differences have implications for sus-
ceptibility to autoimmune diseases [42], and may
account for the increased rate of pemphigus vulgaris in
AJ individuals [43]. Recent studies associating SNPs in
the MHC with serious drug-induced side effects [44],
viral load in HIV [45] and psychiatric illness [46] also
indicate the clinical relevance of more extensive elabora-
tion of population differences in MHC alleles.
Characterization of the AJ-specific component also

resulted in the identification of several coding variants
known to be associated with disease, and was able to
detect markers in CFTR and NOD2 that are relevant to
increased prevalence of cystic fibrosis and Crohn’s disease
in the Ashkenazi population [47,48]. Perhaps the most
surprising result from the present study, however, was the
over-representation of GO categories containing disease-
bearing genes commonly associated with the AJ popula-
tion. For example, the AJ cohort did not merely differ
from other populations in CFTR allele frequencies, but
also in allelic frequencies in most other genes associated
with transepithelial chloride transport. However, it should
be noted that these data do not provide specific evidence
of causality between the existence of AJ-prevalent disease-
causing mutations in these pathways and the over-repre-
sentation of certain common alleles in related genes. Spec-
ulatively, these results suggest the possibility that
deleterious recessive alleles may persist at relatively high
frequencies in the AJ population due to epistatic effects
with other genes in the same biological pathway, which
also display altered allelic frequencies in the AJ population.

Conclusions
The present study characterized statistically significant
components of autosomal variation specific to the AJ
population. By focusing on common variants available
on a dense GWAS platform, results add to prior litera-
ture on rare, disease-causing mutations that are over-
represented in the Ashkenazi population. GO analysis
points to significant allele frequency differences in mul-
tiple genes in pathways implicated by AJ-associated dis-
eases such as cystic fibrosis and Usher’s syndrome.
However, it will be important for future research to
determine which elements of this genetic signature are
shared with non-AJ populations, and may therefore be
reflective of ancient founder effects, as opposed to more
recent founder effects specific to the introduction and
expansion of the Jewish people into Europe.

Materials and methods
Samples
The AJ cohort consisted of 1,394 volunteers (986 male,
408 female) recruited from the Israeli blood bank. Each

subject self-reported that all four grandparents were of
AJ origin, and all subjects provided written, informed
consent. Subsequent to genomic DNA extraction from
blood samples through use of the Nucleon kit (Pharma-
cia, Piscataway, NJ, USA), all samples were fully anon-
ymized prior to genotyping and analysis, under
protocols approved by the National Genetic Committee
of the Ministry of Health (Israel) and the Institutional
Review Board of the North Shore-LIJ Health System.
The HGDP genome-wide genotype data containing

1,043 individuals from 51 worldwide population groups
were obtained from the HGDP database [49]. The sam-
ple sizes for many individual groups were very small
and grouped together based on their geographical distri-
bution and ethnicity for comparison analysis as sug-
gested [50].
Additional genotype data on 611 Caucasian subjects

recruited at Duke University, including 94 individuals
who self-reported having one or more AJ grandparents,
were from Need at al. [21].

Genotyping and quality control
Genotyping of AJ samples was performed using Illumina
HumanOmni1-Quad arrays according to the manufac-
turer’s specifications. The samples were subjected for
genotyping quality control filters, for example, samples
call rate > 97%, SNP call rate > 98%, Hardy-Weinberg
exact test P < 0.000001. The resulting individuals were
tested for gender mismatch based on X chromosome
genotype using Sex check estimation at PLINK (v1.07)
[51]. Cryptic identity and first-degree relatedness within
individuals were examined using pairwise IBD estima-
tion in PLINK performed on 128 K LD (linkage disequi-
librium) pruned (r2 > 0.2) genomewide SNPs; one
individual in each pair was randomly excluded. The
final dataset contains 1,312 individuals with 739,409
SNPs with 99.86% average call rates.
The HGDP samples were genotyped on the Illumina

HumanHap 650 k bedchip as previously described and fil-
tered based on a sample call rate > 98.5%, resulting in
1,043 individuals with 660,918 SNPs. This dataset was
again filtered based on a SNP call rate > 95%. The filtered
AJ dataset was merged with the HGDP dataset and the
resulting merged dataset contained 281,232 SNPs com-
mon to the two cohorts with an average call rate of 99.5%.
To perform inter-population comparison analysis (for

example, ancestry estimation and PCA) the AJ and
HGDP merged dataset was pruned using a LD threshold
of r2 > 0.2 at PLINK (v1.07). The resulting dataset con-
tained 95,600 unlinked genomewide SNPs shared by the
AJ and HGDP samples with an average call rate of
99.7%.
Genotyping of the Duke samples was performed on

Illumina Infinium HumanHap550 version 1, version 3
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and 610-quad chips. The dataset contains information
on 121,834 LD-pruned (r2 > 0.3) SNPs and was used to
validate an AIM panel specific to AJ ancestry.

Ancestry estimation
The population structure analysis was performed using
the maximum likelihood based ADMIXTURE program
[52]. The maximum likelihood approaches are as accu-
rate as Bayesian-based estimations while being computa-
tionally tractable with genomewide markers within a
reasonable time. This algorithm is also considered to be
more accurate and faster than the expectation-maximi-
zation-based program FRAPPE [53].
To detect underlying ancestral population clustering,

AJ samples were compared with members of three
neighboring population groups derived from the
HGDP: EU (n = 159), ME (n = 163), and CAS (n =
177, excluding Kalash as per Behar et al. [23]). We
performed ancestry estimation by randomly selecting n
= 175 AJ subjects of varying national origins, in order
to maintain a roughly equal sample size with each of
the other three HGDP groups. Briefly, the ADMIX-
TURE algorithm models the genomic data from each
subject as a combination of K ancestral populations,
where K can be any number ≥2. ADMIXTURE output
results were systematically plotted using the Distruct
program [54], which permits visual determination of
similarities and differences in ancestral make-up of
each population. More formally, ten-fold cross-valida-
tion ‘C’ scores were computed for each K separately to
determine the best fit model for ancestry estimation.
We then re-performed ADMIXTURE and cross-valida-
tion analyses ten times to develop statistical confidence
intervals around fit scores for each of the ancestry esti-
mates. In order to test the effect of varying sample
sizes on the analyses, and to exploit the full sample
size of AJ individuals available, these analyses were
repeated using n = 350, n = 700, n = 1,050, and all n =
1,312 AJ samples. The ancestry estimation was also
performed with all HGDP groups using both randomly
selected n = 175 AJ and all n = 1,312 AJ individuals.
This analysis was carried out with 95,600 LD-pruned
unlinked SNPs for K = 2 to 20, where K is the prior
assumption of theoretical ancestral population.

Principal component analysis
PCA was performed to examine the inter- and intra-
population distribution using EIGENSTRAT [55] as
implemented in SNP & Variation Suite v7.3 (Golden
Helix, Bozeman, MT, USA). The previously described
95,600 LD-pruned unlinked SNPs were used to perform
inter-population PCA with a randomly selected subset
of n = 175 AJ samples with members of the three neigh-
boring population groups used in the ADMIXTURE

analysis. Intra-population PCA was performed for all AJ
individuals who clustered strongly with the AJ cohort
(based on admixture analysis), using all 739,409 high
quality SNPs.

Calculation of distances between populations
Pairwise FST values for all pairs of populations were esti-
mated using GENEPOP v4.1 [56] by a weighted analysis
of variance [57]. For each locus, an unbiased estimate of
the P-value was also computed using Fisher’s exact
probability test, and the significance of each pairwise
distance was empirically tested using a permutation
algorithm (n = 5,000 runs) as previously described [58].

Quantitative genome-wide association study
To identify which genetic variants were contributing to
the AJ-specific ancestry dimension, a quantitative
GWAS was performed based on ADMIXTURE-derived
AJ-specific cluster scores for all AJ samples (n = 1,312)
with 739,409 high quality SNPs. A quantitative GWAS
was also performed on scores derived from PC1 of the
intra-population PCA to identify the source of this
genetic variation.

Gene Ontology enrichment analysis
To determine whether any biologically relevant path-
ways were over-represented amongst this list of asso-
ciated SNPs, we utilized Association LIst Go
AnnoTatOR (ALIGATOR) [59]. Like the Database for
Annotation, Visualization, and Integrated Discovery
(DAVID) [60], ALIGATOR characterizes lists of genes
with respect to their relative inclusion of the various
GO categories. However, ALIGATOR is specifically
designed for analysis of SNP data (as opposed to gene
expression data), controlling for the size of each gene
and the number of SNPs present on the array.
After assigning each SNP to the closest gene, and cal-

culating the number of genes in each GO category
appearing above a specified threshold (for example, P <
10-6) in the quantitative GWAS analysis, the degree of
over-representation of specific GO categories is then
tested using two sets of permutations. First, the SNPs
appearing above and below the GWAS cutoff are per-
muted (50,000 times), to determine the likelihood that a
given GO category is over-represented in the list of sig-
nificant SNPs. Thus, each GO category is assigned an
empirically determined P-value. Second, simulated stu-
dies are permuted (10,000 times) in order to determine
whether the number of categories designated as ‘over-
represented’ (that is, category-specific P-values < 0.05, <
0.01, and < 0.001) is statistically unlikely given the num-
ber of genes on the list. Note that the initial threshold
boundary (P < 10-6) is not, strictly speaking, a statistical
threshold for significance. Rather, it is selected based on
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the assumption, intrinsic to the polygenic model
approach, that true associations exist below the thresh-
old of strict genomewide significance [61,62]. Thus, the
purpose of the ontology enrichment analysis is to iden-
tify biologically relevant signals emerging from the pat-
tern of observed associations, irrespective of strict
statistical significance, and even if no SNPs achieved
strict genomewide significance [63]. Following the sug-
gestions of the software developer, the algorithm tends
to be most robust when approximately 10% of all genes
appear on the list (P Holmans, personal communica-
tion); consequently, we selected a threshold that resulted
in 12.4% (2,349 out of 19,011 genes with GO annota-
tions and a minimum set size of 2) of all genes sub-
mitted to ALIGATOR.
While ALIGATOR was the primary method of path-

way analysis, due to its unique two-stage approach to
control for study-wide significance, it is acknowledged
that there are many ways to evaluate aggregation of
the associated SNPs within biological pathways [60].
Consequently, we sought to validate results using the
recently developed GSA-SNP program [61], which uti-
lizes a fundamentally different approach. The essential
difference between ALIGATOR and GSA-SNP is that
the first method uses overrepresentation based analy-
sis, whereas the second uses gene-set enrichment-
based analysis. Overrepresentation based analysis
defines significant SNPs by a pre-specified P-value
threshold, then counts significant genes in each path-
way, whereas gene-set enrichment analysis considers
all the SNPs in the analysis and then ranks the gene
sets in order of significance [64]. Moreover, ALIGA-
TOR bases its analysis on the single most strongly
associated SNP in each gene, whereas GSA-SNP per-
mits the use of the kth (k = 1, 2, 3, 4 or 5) best P-
value to represent each gene. We utilized the authors’
recommended default of the second best P-value
within each gene, which removes singleton false-posi-
tive signals and provides a more symmetric distribu-
tion to the gene scores [65]. Significant gene set
enrichment was determined by the z-statistic, with
FDR < 0.05 based on Benjamini-Hochberg correction.

Ancestry informative markers
A potential set of AIMs specific to AJ was selected
based on the quantitative GWAS of the AJ-specific com-
ponent derived from ADMIXTURE analysis. This set of
candidate AIMs was reduced and validated using a pub-
licly available dataset previously used for identification
of AJ-specific allelic variation [21]. After identification of
overlapping markers, PCA was performed on the Need
et al. dataset [21] using the candidate AIMs, and results
were compared to self-reported AJ ancestry.

Additional material

Additional file 1: K = 1 to 15 with corresponding cross validation
(CV) score and standard error for 1,312 AJ individuals and HGDP
individuals. Europeans (n = 159), Middle Easterners (n = 163), and
Central/South Asians (n = 177).

Additional file 2: List and annotation of 13,841 significant (P < 10-6)
SNPs on Ashkenazi-specific principal component, 1,357 SNPs that
were used in the initial ancestry informative marker (AIM) analysis,
103 AJ specific AIMs, 417 coding variants from 13,841 SNPs,
Genetic Association Database (GAD) annotation.

Additional file 3: ADMIXTURE analysis for ancestry estimation of
Ashkenazi Jewish (AJ) population with seven global population
groups derived from the HGDP at K = 2 through K = 14. Each
individual is represented by a thin vertical line, which is partitioned into
K colored segments that represent the individual’s estimated
membership fractions in K clusters. Black lines separate individuals of
different population groups based on geography and ethnicity.
Geographical population groups are labeled below the figure.

Additional file 4: Principal component analysis (PC1 versus PC2) of
1,312 Ashkenazi Jewish (AJ) subjects combined with Europeans
(EU), Middle Easterners (ME), and Central/South Asians (CSA). The x-
axis represents the eigenvalue for principal component 1 (PC1) and the
y-axis represents the eigenvalue for principal component 2 (PC2). Blue
represents AJ, green represents EU, orange represents ME and black
represents CSA.

Additional file 5: Intra-population principal component analysis of
Ashkenazi Jewish (AJ) individuals with cluster 3 (C3) scores > 0.475
derived from ADMIXTURE analysis. The x-axis represents the
eigenvalue for principal component 1 (PC1) and the y-axis represents the
eigenvalue for principal component 2 (PC2). Different colors represent
different geographical origin of Ashkenazi Jewish (AJ) individuals.

Additional file 6: Manhattan plot for quantitative genome wide
association for Ashkenazi Jewish (AJ) individuals based on cluster 3
(C3) scores derived from ADMIXTURE analysis. The x-axis represents
the chromosomes and the y-axis represents -log10 P-values of
significance.

Additional file 7: Manhattan plot for quantitative genome wide
association for Ashkenazi Jewish (AJ) individuals based on principal
component 1 (PC1) of intra-population principal component
analysis with cluster 3 (C3) scores > 0.475 derived from
ADMIXTURE analysis. The x-axis represents the chromosomes and the
y-axis represents -log10 P-values of significance.

Additional file 8: Principal component analysis of Need et al. [21]
cohort with designed Ashkenazi Jewish (AJ) specific ancestry
informative markers. The numbers and the corresponding colors
represent the degree of self-reported Ashkenazi admixture.

Additional file 9: Principal component analysis of all 1,312 AJ
individuals with European HGDP individuals for 89 ancestry
informative markers. Red indicates AJ individuals with C3 admixture
score > 0.475, blue indicates AJ individuals with C3 admixture score <
0.475 and green indicates HGDP European individuals.
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AIM: ancestry informative marker; AJ: Ashkenazi Jewish; ALIGATOR:
Association LIst Go AnnoTatOR; CSA: Central-South Asian; EU: European; FDR:
false discovery rate; GO: Gene Ontology; GWAS: genome-wide association
study; HGDP: human genome diversity panel; LD: linkage disequilibrium; ME:
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