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Effects of urban functional 
fragmentation on nitrogen 
dioxide  (NO2) variation 
with anthropogenic‑emission 
restriction in China
Yuan Meng1, Man Sing Wong1,2*, Hanfa Xing3,4, Rui Zhu1, Kai Qin5, Mei‑Po Kwan6,7, 
Kwon Ho Lee8, Coco Yin Tung Kwok1 & Hon Li1

Urban functional fragmentation plays an important role in assessing Nitrogen Dioxide  (NO2) emissions 
and variations. While the mediated impact of anthropogenic‑emission restriction has not been 
comprehensively discussed, the lockdown response to the novel coronavirus disease 2019 (COVID‑
19) provides an unprecedented opportunity to meet this goal. This study proposes a new idea to 
explore the effects of urban functional fragmentation on  NO2 variation with anthropogenic‑emission 
restriction in China. First,  NO2 variations are quantified by an Autoregressive Integrated Moving 
Average with external variables‑Dynamic Time Warping (SARIMAX‑DTW)‑based model. Then, urban 
functional fragmentation indices including industrial/public Edge Density (ED) and Landscape Shape 
Index (LSI), urban functional Aggregation Index (AI) and Number of Patches (NP) are developed. 
Finally, the mediated impacts of anthropogenic‑emission restriction are assessed by evaluating the 
fragmentation‑NO2 variation association before and during the lockdown during COVID‑19. The 
findings reveal negative effects of industrial ED, public LSI, urban functional AI and NP and positive 
effects of public ED and industrial LSI on  NO2 variation based on the restricted anthropogenic 
emissions. By comparing the association analysis before and during lockdown, the mediated impact 
of anthropogenic‑emission restriction is revealed to partially increase the effect of industrial ED, 
industrial LSI, public LSI, urban functional AI and NP and decrease the effect of public ED on  NO2 
variation. This study provides scientific findings for redesigning the urban environment in related to 
the urban functional configuration to mitigating the air pollution, ultimately developing sustainable 
societies.

Abbreviations
NO2  Nitrogen Dioxide
AQI  Air Quality Index
PM2.5  Fine particulate matter with a diameter less than 2.5 μm
PM10  Particulate matter with a diameter of less than 10 μm  (PM10),
O3  Ozone
SO2  Sulfur Dioxide
CO  Carbon Monoxide
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COVID-19  Novel coronavirus disease 2019
SARIMAX-DTW  Autoregressive Integrated Moving Average with external variables-Dynamic Time 

Warping
ED  Edge Density
LSI  Landscape Shape Index
AI  Aggregation Index
NP  Number of Patches
PLADJ  Percentage of Like Adjacencies
NP  Number of Patches
COHESION  Patch Cohesion Index
UFB  Urban functional Fragmentation characteristics Before lockdowns
UFD  Urban functional Fragmentation characteristics During lockdowns
UFCB  Urban functional Fragmentation characteristics and Controlling variables Before 

lockdowns
UFCD  Urban functional Fragmentation characteristics and Controlling variables During 

lockdowns
GAMs  Generalized Additive Models
VIF  Variance Inflation Factor
CI  Confidence-Interval
CNEMC  China National Environmental Monitoring Center
CMA  China National Meteorological Science Data Center
AIC  Akaike Information Criterion

Urban functional fragmentation refers to the breaking up of urban functional areas, such as residential and 
industrial lands, into more isolated  segments1,2. It encourages diverse human activities such as vehicular mobility 
and large quantities of manufactures, result in the diversity and vulnerable fractions of urban function areas and 
cause a series of anthropogenic pollution such as noise and air  pollutants3,4. Nitrogen Dioxide  (NO2) has been 
considered as one of the major anthropogenic  emissions5,6, which is associated with several social environmental 
issues, such as cardiopulmonary  mortality7, lung  cancer8 and severe air  pollution9. The anthropogenic emissions 
of  NO2 are mainly attributed by fossil fuel uses from various urban functions such as traffic, industrial and public 
 uses10. Evaluating the impact of urban functional fragmentation is essential to estimate  NO2 emissions.

The rapid emergence of the novel coronavirus disease 2019 (COVID-19) has significantly changed the 
business-as-usual circumstance of the anthropogenic  NO2  emissions11. Due to the policies of lockdowns and 
restricted social distancing proposed by the governments, the regular socioeconomic activities are drastically 
 reduced12, leading to the variation of anthropogenic-generated  emissions13–15. These changes have brought oppor-
tunities to estimate the impact of urban functional fragmentation under different circumstances of  NO2 emis-
sions, i.e. the differences between  NO2 emissions before and after  lockdowns16,17. For instance, the lockdowns 
have significantly reduced the traffic flows, which tend to exceed the road capability before lockdowns, and thus 
change the influence of roads with heavy traffics on  NO2  emissions18–20.

Current studies on the association analysis between urban functional fragmentation and  NO2 concentration 
can be reviewed based on three main aspects, including the air pollution metrics, fragmentation metrics and 
the methods for association analysis. For quantifying  NO2 emissions, existing approaches can be divided into 
two aspects, including the total column-based and difference-based quantification. The total column-based 
 NO2 quantification, involving hourly, daily, monthly and annual concentration, has been utilized to depict the 
temporal variation of  NO2

21–23. For instance, Li, et al.23 proposed multiple dimensions including hourly average 
values, daily average values and the standard deviation of the peak hours to depict the variation of NO2 con-
centrations. However, such approach only quantifies the  NO2 changes within the research period and cannot 
evaluate the historical  NO2 trends that may be drastically different from the research-period trends caused by 
unprecedent events, i.e. COVID-19. To fill this gap, difference-based quantification has been utilized to depict 
such historical-research period changes of COVID-19. For instance, Venter, et al.16 defined the  NO2 differential 
as the difference between the  NO2 concentration in the research period and the average values of the historical 
three-year baseline.

For the fragmentation metrics for depicting urban functions, both specific metric and urban functions that are 
highly associated with anthropogenic air pollutant emissions are concerned. In particular, basic quantifications 
of urban functional areas, including edge length, patch areas, and their synthetical characteristics of fragmenta-
tion such as landscape shape index (LSI) and Aggregation Index (AI), Percentage of Like Adjacencies (PLADJ), 
Number of Patches (NP), Patch Cohesion Index (COHESION), impervious area-weighted mean shape index 
and contiguity index, have been utilized to estimate the variations of air  pollutants22,24–27. Moreover, research has 
indicated that industrial and public functions, as well as the mixture of urban functions, which are highly related 
to the use of energy resources such as fuels, minerals and electric power, show a higher impact on anthropogenic 
air pollution  emissions28–30. He, et al.31 have indicated the positive trends between the industrial functional frag-
mentation and  NO2 concentrations. Research has also revealed that the distribution of public urban functions 
including greenery and parks show the potential to influence  NO2  variations32,33.

For association analysis, regression models such as ordinary least squares, spatial autoregressive model and 
panel data model have been considered.  Lee34 adopted ordinary least squares and two-level regression models to 
control geographic and metropolitan-level socioeconomic factors for urban form estimation, and further indi-
cated that high-level urban function mixing shows the potential to reduce air pollutant emissions. Li and  Zhou35 
involved the spatial correlation of urban fragmentation characteristics and applied the spatial autoregressive 
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model, suggesting that scattered polycentric cities in China are associated with better air quality. Panel data 
analysis has also been utilized to quantify the link between urban forms and air pollution, revealing negative 
association between urban fragmentation and air  quality36.

Despite of the above discussed approaches in existing studies, limitations still exist faced with the emergence 
of COVID-1937–40. First, although extracting the average value in the difference-based quantification concerns 
the historical  NO2 variation, the changes of the historical  NO2 concentration is ignored. For instance, the three-
year average  NO2 values cannot depict the potential changes among these years. Thus, effective approaches of 
quantifying the overall temporal trends of  NO2 concentration is required. In addition, the lag effect should 
be considered in the difference-based quantification to avoid the biases caused by the point-to-point (such as 
day-to-day measurement) differential calculation. Second, considering that most human activities including 
business and leisure have been significantly changed by the COVID-19, the fragmentation depiction should 
focus on the industrial and public related urban functions. The synthetical urban functional characteristics also 
need be concerned to implement the overall urban functional fragmentation quantification. Third, despite that 
multi-perspective covariates such as meteorological and spatial factors have been concerned in previous research, 
different scenarios of anthropogenic emissions during COVID-19 caused by the lockdown policies are not fully 
considered in evaluating the impact of urban functional fragmentation.

Meanwhile, among the countries and regions for analysis, China has experienced drastic industrialization 
and  urbanization41,42, leading to increasing urban population and gross domestic production among  cities43,44. 
During this process, urban landscapes and configurations in China have changed dramatically to improve urbani-
zation  process45,46. Existing studies have found that this rapid transformation of urban forms in China is highly 
associated with air pollution  emissions47. Recently, due to the COVID-19, the coronavirus quarantine proposed 
in China has led to economic  slowdown48, causing drastic decline of anthropogenic emissions and the variation 
of  NO2 than ever  before49,50. The urbanization process and  NO2 changes in the lockdown period in China have 
provided opportunities to explore the impact of urban functional fragmentation on  NO2 variations based on 
different scenarios of anthropogenic emissions.

To fill with these gaps, this paper investigates the impact of urban functional fragmentation on  NO2 variation 
mediated by the changes of anthropogenic air pollutant emissions in China during COVID-19. The objective 
of this study is (1) to quantify the differential of temporal  NO2 during COVID-19 compared with  NO2 in nor-
mal days based on the historical  NO2 trends and the potential lag effects; (2) to depict both single-functional 
and synthetical-functional fragmentation characteristics driven by the changes of human activities; and (3) to 
investigate the association between urban functional fragmentation and  NO2 variation based on the different 
scenarios of anthropogenic emissions during COVID-19.

To achieve the objectives, a new research framework is proposed as follows (Fig. 1). First, an Autoregressive 
Integrated Moving Average with external variables-Dynamic Time Warping (SARIMAX-DTW)-based model is 
proposed to quantify  NO2 variations. Then, human activity-driven metrics are considered, including industrial/
public Edge Density (ED) and LSI and urban functional AI and NP, to depict fragmentation characteristics of 
urban functions. Finally, to different scenarios of  NO2 emissions, four models including Urban functional Frag-
mentation characteristics Before lockdowns (UFB)-based model, Urban functional Fragmentation characteristics 
During lockdowns (UFD)-based model, Urban functional Fragmentation characteristics and Controlling vari-
ables Before lockdowns (UFCB)-based model and Urban functional Fragmentation characteristics and Control-
ling variables During lockdowns (UFCD)-based model are proposed based on the Generalized Additive Models 
(GAMs). This study will gain a better understanding of functional fragmentation-NO2 variation relationship 
when considering different scenarios of anthropogenic emissions and will help government provide effective 
guidelines in policy-making to develop sustainable societies.

Results
NO2 variation during COVID‑19 epidemic. Figure 2 reveals the mean observed-predicted error of  NO2 
prediction in 145 air stations among three time periods, (1) from Jan. 1st, 2015 to Nov. 1st, 2019, (2) from Jan. 
1st, 2015 to Dec. 1st, 2019 and (3) from Jan. 1st, 2015 to Jan. 1st, 2020. Despite of the differential in time periods, 
similar distributions mean observed-predicted error are observed within 20–40%. It indicates that no significant 
impacts of time period division are shown on the  NO2 prediction. As we intend to predict  NO2 concentrations 
during COVID-19 (from Jan. 2020),  NO2 from Jan. 1st, 2015 to Jan. 1st, 2020 were chosen for SARIMAX model-
ling and those from Jan. 1st, 2020 to May. 1st, 2020 were utilized for prediction.

On this basis, temporal  NO2 concentrations in 145 air stations during Jan. 1st, 2020 to May 1st, 2020 were 
utilized as testing data in SARIMAX models. The prediction of  NO2 concentration of 145 air stations is shown 
in Fig. S1. In particular, Fig. 3 displays two selected air stations to illustrate the predicted  NO2 patterns. Red lines 
and blue lines represent the overall temporal trends of observed and predicted  NO2 concentrations, respectively. 
In particular, the predicted  NO2 trends are consistent with the periodical patterns of historical  NO2 before Jan. 
1st, 2020. Lower  NO2 concentrations are shown on the observed  NO2 trends compared with the predicted ones, 
which proves the assumption that current lockdown policies show significant impact on transportation restric-
tion, further reduce vehicle emissions and daily  NO2 concentrations to some extent. These observed-predicted 
 NO2 differences are considered as baselines to quantify the overall  NO2 variation in each air station.

Figure 4 shows the time-series  NO2 variations values before and during lockdowns in China. The  NO2 varia-
tions during lockdowns are within the range of 205 to 3228, which are much higher than those before lockdowns 
with variation from 46 to 587. This reveals that emissions caused by urban mobility show less impact during 
lockdowns, leading to greater  NO2 variations compared with the period before lockdown. From the perspective of 
spatial variation, before lockdowns are proposed, most of the air stations with higher  NO2 variations are located 
in the eastern and northeastern China, whereas air stations in the southwestern China represent lower differences 
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Figure 1.  The overview framework. Three components are involved, SARIMAX-DTW-based model for  NO2 
variation estimation, human-activity-driven urban functional fragmentation quantification and UFB, UFD, 
UFCB and UFCD Models for association analysis.

Figure 2.  Mean daily observed-predicted  NO2 errors based on training data from three time periods, including 
Jan. 1st, 2015 to Nov. 1st, 2019, from Jan. 1st, 2015 to Dec. 1st, 2019 and from Jan. 1st, 2015 to Jan. 1st, 2020, to 
determine the time period of training data for SARIMAX modelling.
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between observed and predicted  NO2 concentrations (Fig. 4a). During the lockdowns, the spatial distribution of 
 NO2 variations has changed significantly. Specifically, air stations with higher  NO2 variations mainly distribute 
in the central east of China, while  NO2 variation values of the air stations in the north, south and west of China 
are much lower (Fig. 4b). The detailed quantification of time-series  NO2 variation is shown in Table S1.

Urban functional fragmentation. Based on the extracted 3 km-radium areas among 145 air stations, the 
spatial variations of the proposed six urban functional fragmentation characteristics were shown in Fig. 5. The 
edge densities of industrial function among air stations vary from 0.16 to 61.75. Most of the air stations with 
higher ED values are located in the southern, eastern and central-north China, while air stations with the lowest 
ED values distribute in the central-south China (Fig. 5a). The spatial distributions of public-functional ED are 
much different, with higher values observed in the north and southeast coastal areas of China and lower values 

Figure 3.  Predicted  NO2 concentrations of selected air stations using SARIMAX during Jan. 1st, 2020 to May 
1st, 2020. Two air stations #1 and #2 were selected. Red lines indicate the observed  NO2 concentrations, blue 
lines indicate the predicted  NO2 concentrations, and green lines represent the cut-off date of  NO2 estimation. 
The blue and grey areas indicate the one and two standard deviation(s) of  NO2 predictions. The map is 
performed using ArcGIS Pro software (version 2.7, https:// www. esri. com/ en- us/ arcgis/ produ cts/ arcgis- pro/ 
overv iew).

Figure 4.  Time-series  NO2 variations between observed and predicted  NO2 of 145 air stations before and 
during lockdown calculated using DTW. (a)  NO2 variations before lockdown; (b)  NO2 variations during 
lockdown. High values of  NO2 variations represent greater changes among observed and predicted  NO2. The 
maps are performed using ArcGIS Pro software (version 2.7, https:// www. esri. com/ en- us/ arcgis/ produ cts/ 
arcgis- pro/ overv iew).

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
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in western and central regions (Fig. 5b). For the depicted industrial LSI, air stations denoting significant higher 
values are located in the southeastern China, while high-industrial LSI-stations distribute in central and north-
west China (Fig. 5c). The spatial pattern of public-functional LSI is similar to the public ED characteristic, with 
higher degree of complexities distributing in eastern and southwestern China (Fig. 5d). Quantified AI of overall 
urban functions vary from 95.35 to 99.99, with higher values observed in most of the air stations (Fig. 5e). Spa-
tial patterns of urban functional NP are much different compared with urban functional AI, with solely several 

Figure 5.  Urban functional fragmentation of each air station. (a) Industrial ED; (b) Public ED; (c) Industrial 
LSI; (d) Public LSI; (e) Urban functional AI; (f) Urban functional NP. The maps are performed using ArcGIS 
Pro software (version 2.7, https:// www. esri. com/ en- us/ arcgis/ produ cts/ arcgis- pro/ overv iew).

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
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stations with higher NP values locating sparsely across China (Fig. 5f). The detailed quantification of urban 
functional fragmentation of 145 air stations is shown in Table S2.

Effect analysis. Before the regression models were proposed, the multicollinearity among variables should 
be tested. In particular, the Variance Inflation Factor (VIF) was utilized to estimate the multicollinearity of urban 
functional fragmentation variables. The results of VIF values are all lower than 10, indicating that multicollinear-
ity is not high among the variables in the proposed models. On this basis, four regression models were proposed 
to analyze the effect of urban functional fragmentation on  NO2 variation, including UFB Model without con-
trolling variables before lockdowns, UFD Model without controlling variables during lockdowns, UFCB Model 
with controlling variables before lockdowns and UFCD Model with controlling variables during lockdowns. The 
quantification of  NO2 variation, urban functional fragmentation and the controlling variables for association 
analysis is shown in Table S1, S2 and S3, respectively. The results of model evaluation are displayed in Table 1, 
indicating that involving controlling variables, including population, Air Quality Index (AQI), fine particulate 
matter with a diameter less than 2.5 μm  (PM2.5), particulate matter with a diameter of less than 10 μm  (PM10), 
ozone  (O3), sulfur dioxide  (SO2), carbon monoxide (CO), temperature, humidity and wind speed, is effective to 
depict  NO2 variation influenced by urban functional fragmentation with higher accuracies. Moreover, accura-
cies of UFCD Model during lockdowns are higher than UFCB Model before lockdowns, with 0.565 and 0.72 
respectively, indicating that more significant impacts of urban functional fragmentation are shown on  NO2 
variations with restricted anthropogenic emissions compared with the impacts with no emission restrictions. 
In addition, due to the lower accuracies of UFB Model and UFD model, with 0.0807 and 0.107, the influence of 
lockdown based on models without controlling variables is insignificant.

The impact of urban functional fragmentation was quantified by the 95%-Confidence-Interval (CI) coefficient 
changes of the UFB, UFD, UFCB and UFCD models, as shown Fig. 6. Due to the higher accuracy of UFCD, the 
association between urban functional fragmentation and  NO2 variations was analyzed with controlling vari-
ables and lockdown restrictions. Specifically, the decreasing  NO2 variations, representing the lower-level  NO2 
differential between COVID-19 lockdowns and normal days, are associated with the increasing industrial ED, 
public LSI, urban functional AI and NP. The lower-level  NO2 differential indicates the anthropogenic emissions 
in fragmented industrial and public lands after lockdown. The synthetical urban functional fragmentations also 
contribute to the  NO2 emissions despite of the lockdown and social-distancing restriction. The  NO2 emission 
during the lockdown can be explained by the energy uses of the factories in industrial land and essential human 
activities in public land high-mixing urban functions. On the other hand, increasing  NO2 variations, representing 
higher-level  NO2 differential between COVID-19 lockdowns and normal days, are associated with higher values 
of public ED and industrial LSI. Based on the declining trends of  NO2 concentrations in COVID-19 lockdowns 
which are both found in the previous  research16 and represented in Fig. 3, the  NO2 differential indicates that the 
 NO2 concentrations in lockdowns are much larger than that in normal days. The  NO2 variation-fragmentation 
association may due to the reason that higher of public ED and industrial LSI are usually related to large occupa-
tion of the green land and small manufacturers with lower energy use.

One should be noted that compared with the major influence of air pollutants and meteorological conditions, 
only partial impacts of the urban functional fragmentation are revealed. It has been proved by the findings that 
the accuracies of UFCB and UFCD models are 0.484 and 0.613 higher than UFB and UFD models, respectively. 
In addition, among all urban functional fragmentation metrics, the highest absolute values of coefficients are 
attributed by the urban functional AI metric, approximately from 0 to 0.4, while the lowest absolute values of 
coefficients are revealed in the urban functional NP, approximately from 5e-04 to 1e-03. The discrepancy of the 
coefficient ranges may be influenced by the different scale among urban functional fragmentation metrics, in 
which urban functional AI and NP range from 95.35 to 99.99 and from 1–1067, respectively. Despite of the over-
all lower coefficients and the diverse coefficients among fragmentation metrics, this study retrieved the partial 
effect of urban functional fragmentation characteristics by controlling the dominant impact of air pollutants 
and meteorological factors. Findings could provide suggestions for the government to assess the current urban 
function planning in  NO2 controlling.

Table 1.  Model evaluation. R2 values of 0.0807, 0.107, 0.565 and 0.72 and deviance explained percentages 
of 11.9%, 14.4%, 64.3% and 77.4% of UFB, UFD, UFCB and UFCD Models are revealed. Values of R2 and 
deviance explained percentages of UFCB and UFCD Models are much higher than those of UFB and UFD 
Models.

R
2 Deviance explained

UFB Model 0.0807 11.9%

UFD Model 0.107 14.4%

UFCB Model 0.565 64.3%

UFCD Model 0.72 77.4%



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:11908  | https://doi.org/10.1038/s41598-021-91236-w

www.nature.com/scientificreports/

Discussion
Based on the coefficient comparison between UFCB Model and UFCD Model (Fig. 6), this section discusses 
the mediated impacts of anthropogenic air pollutant emissions on the urban functional fragmentation-NO2 
concentration association. As the R2 values of UFCB and UFCD models with controlling variables are 0.484 and 
0.613 higher than UFB and UFD without controlling variables, only UFCB and UFCD models are considered to 
discuss these mediated impacts. Specifically, the absolute values of coefficients in industrial ED, industrial LSI, 

Figure 6.  Coefficient changes and 95% CI of urban functional fragmentation characteristics on  NO2 
variations based on four models. (a) Industrial ED; (b) Public ED; (c) Industrial LSI; (d) Public LSI; (e) Urban 
functional AI; (f) Urban functional NP. One unit of industrial ED is associated with − 0.0046 (95% CI − 0.0109 
to 0.0017), − 0.0090 (95% CI − 0.0158 to − 0.0023), − 0.0105 (95% CI − 0.0157 to − 0.0053) and − 0.0168 (95% 
CI − 0.0213 to − 0.0122)  NO2 variations of UFB, UFD, UFCB and UFCD models, respectively. Per unit of 
public ED is linked with 0.0048 (95% CI − 0.0052 to 0.0148), 0.0024 (95% CI − 0.0083 to 0.0131), 0.0249 (95% 
CI 0.0166 to 0.0332) and 0.0232 (95% CI 0.0162 to 0.0303)  NO2 variations for four models.  NO2 variations of 
0.0103 (95% CI − 0.0218 to 0.0424), − 0.0024 (95% CI − 0.0370 to 0.0321), 0.0360 (95% CI 0.0105 to 0.0616) and 
0.0680 (95% CI 0.0454 to 0.0907) of four models are influenced by per unit of industrial LSI. For the public LSI 
characteristic, one unit of this is associated with 0.0405 (95% CI 0.0026 to 0.0784), − 0.0035 (95% CI − 0.0443 
to 0.0373), − 0.0594 (95% CI − 0.0902 to − 0.0287) and − 0.0825 (95% CI − 0.1092 to − 0.0558)  NO2 variations of 
four models. Per unit of urban functional AI is associated with − 0.1047 (95% CI − 0.2110 to 0.0016), − 0.3165 
(95% CI − 0.4308 to − 0.2022), − 0.1253 (95% CI − 0.2167 to − 0.0338) and − 0.1712 (95% CI − 0.2524 to − 0.0899) 
 NO2 variations of four models. One unit of urban functional NP is associated with − 0.0009 (95% CI − 0.0012 
to − 0.0006), − 0.0011 (95% CI − 0.0014 to − 0.0008), − 0.0004 (95% CI − 0.0006 to − 0.0002) and − 0.0008 (95% 
CI − 0.0010 to − 0.0006)  NO2 variation of four models.
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public LSI, urban functional AI and urban functional NP are higher than those in the UFCB Model. The higher 
absolute values of coefficients in the UFCD Model indicate that greater associations are revealed between urban 
functional fragmentation and  NO2 variation under the circumstance of anthropogenic-emission restriction. 
On the other hand, the absolute values of coefficients in public ED in the UFCD Model are lower than those 
of UFCB Model, which indicates lower association between public ED and  NO2 variations with the effect of 
anthropogenic-emission restriction. However, the differences of coefficients between UFCB Model and UFCD 
Model are all lower than 0.1, which indicates the relative limited impact of anthropogenic-emission restriction. 
Since the changes of  NO2 concentration are significantly influenced by the air pollutant and the meteorological 
factors and solely partially affected by the urban functional fragmentation, the coefficient changes lower than 
0.1 are acceptable to evaluate the mediated impact of anthropogenic-emission restriction.

The findings indicate that based on the anthropogenic-emission restriction, greater impacts of industrial, 
public and synthetical urban functional fragmentation are shown on the  NO2 variations between COVID-19 
and normal days. The greater  NO2 variations during the anthropogenic-emission restrictions can be explained 
that emissions from the transportation and commercial functions have been significantly reduced due to the 
lockdown and social-distancing restriction. In addition, the directions (namely positive or negative trends) 
of urban functional fragmentation-NO2 variation association are not changed by the mediated impact of the 
anthropogenic-emission restriction.

This study provides an insight into evaluating urban functional fragmentation patterns that are associated 
with  NO2 emissions under the circumstance of COVID-19 lockdowns, which could support managers and 
policymakers to allocate urban resources and public facilities. Specifically, assessing the spatial distribution of 
industrial and public functions in terms of the degree of fragmentation can be useful for implementing a sustain-
able environment development strategy. While the influence of transportation on air quality has been restricted 
during COVID-19 lockdowns, energy uses associated with the heterogenous expanding of industrial and public 
lands should be concerned. This study has also provided suggestions for the governments which specific frag-
mentation characteristics can be concerned in a higher priority. For instance, we have found that fragmentation 
patterns of public LSI show the higher potential to contribute to  NO2 emissions compared with the public ED.

The government should also be sensitive to the synthetic influence of urban functions and the corresponding 
fragmentation patterns. The increasing number and aggregation degree of urban function patches may contribute 
to the demands of accessibility to different public facilities, rendering the potential factors to increase anthro-
pogenic air pollution emissions. Despite that the complexity urban structures and functions can improve urban 
vitality and socioeconomic development, the negative effect on air quality should be concerned to mitigate public 
health risk. Accordingly, the governments should keep the balance between urban vitality and air quality caused 
by urban functional fragmentations to develop sustainable societies.

Conclusion
This study explored the impact of urban functional fragmentation on  NO2 variations with anthropogenic-
emission restriction in China. Counterfactual  NO2 concentrations during COVID-19 were predicted based on 
historical  NO2 patterns using SARIMAX and were further utilized to quantify the variations comparing with 
the  NO2 in normal days using DTW. Then, characteristics including industrial/public ED and LSI and urban 
functional AI and NP were utilized to depict urban functional fragmentation. Four models, including UFB, UFD, 
UFCB and UFCD Models based on GAMs are further proposed to investigate the impact of urban functional 
fragmentations on  NO2 variations before and during COVID-19 lockdowns.

The results reveal that under the circumstance of anthropogenic-emission restriction, industrial ED, public 
LSI, urban functional AI and NP are negatively associated with  NO2 variations, while public ED and industrial 
LSI are positively related to  NO2 variations. Compared with the fragmentation-NO2 variation association before 
lockdown, the mediated impact of anthropogenic-emission restriction partially increases the effect of indus-
trial ED, industrial LSI, public LSI, urban functional AI and urban functional NP while decreases the effect of 
public ED on  NO2 variation, with the absolute values of coefficients ranging within 0.1. However, the impact of 
restricted anthropogenic emissions does not change the positive or negative directions of fragmentation-NO2 
variation association.

Although the proposed research has explored the urban functional fragmentation patterns associated with 
 NO2 variation, limitations still exist and are required to be solved in future studies. In quantifying  NO2 variation, 
the variations between observed and predicted  NO2 concentrations are measured. Although the performance 
of SARIXAM has been evaluated by comparing forecasting results in different time periods, the prediction 
errors during COVID-19 lockdown cannot be eliminated. As a result, the coefficients of  NO2 variations could 
be influenced by these errors. To avoid this issue, regression model will be modified by concerning forecasting 
biases as controlling variables in further research. Moreover, as only fragmentation characteristics are involved in 
depicting urban functional morphologies, the spatial heterogeneity and also its dynamics of different functions 
should also be involved in future studies. In addition, only the potential impact of urban functional fragmentation 
on  NO2 variation has been investigated. How to integrate the fragmentation factors with human activities based 
on the restricted anthropogenic emissions to predict the on-going  NO2 variation remain an issue to be solved.

Methods
Data sources. Daily surface  NO2 observations from the China National Environmental Monitoring Center 
(CNEMC) (available at http:// 106. 37. 208. 233: 20035/) were adopted. Considering of the temporal changes of 
long-term  NO2, daily surface  NO2 from Jan. 1st, 2015 to May 1st, 2020 were  collected51. Specifically, a total 
number of 145 sites were involved, occupying 27 provinces throughout mainland China. In addition, control-
ling variables, including population, AQI,  PM2.5,  PM10,  O3,  SO2, CO, temperature, humidity and wind speed, are 

http://106.37.208.233:20035/
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also collected. In particular, AQI,  PM2.5,  PM10,  O3,  SO2, and CO are collected from CNEMC, while temperature, 
humidity and wind speed are collected in the weather stations from the China National Meteorological Science 
Data Center (CMA) (available at https:// data. cma. cn). It should be noted that as  NO2 sites and weather stations 
usually are not located in the same location, weather stations which are nearest to the  NO2 sites are chosen to 
quantify the corresponding meteorological data.

For the data source utilized to depict urban functional fragmentation, urban function classification is adopted 
from urban land use category mapping proposed by Gong, et al.52. In particular, level-1 land use classification 
scheme was utilized, including residential, commercial, industrial, transportation and public management and 
service, to represent corresponding urban functions.

Estimation of  NO2 variation. NO2 varies drastically during the lockdowns in COVID-19 because of the 
restricted urban mobility. In particular, the variation of  NO2 concentrations can be quantified based on the dif-
ferences of  NO2 in lockdowns and  NO2 in normal days. While  NO2 concentrations in lockdowns are observed 
through air stations,  NO2 concentrations in normal days can be predicted according to the periodical patterns of 
historical  NO2 concentrations. A SARIMAX-DTW-based model is proposed to quantify  NO2 variations in this 
study. Specifically, counterfactual  NO2 concentrations during COVID-19 (from Jan. 1st, 2020 to May 1st, 2020) 
are predicted based on historical  NO2 using SARIMAX model, with exogenous variables including air tempera-
ture, relative humidity and wind speed. The basic SARIMAX model can be presented as follows:

in which p, d, q demote the autoregressive order, difference order and moving average order, while P,D,Q indi-
cates the seasonal autoregressive order, difference order and moving average order, respectively. To determine 
those parameters, the Augmented Dickey-Fuller test and Osborn, Chui, Smith, and Birchenhall test and Canova-
Hansen test. In addition, the Ljung–Box test and the Jarque–Bera test are applied to examine the randomness 
and normality of the time series. The performances of SARIMAX with different parameters are evaluated by 
Akaike Information Criterion (AIC).

As this study aims on predicting the temporal patterns of  NO2 during COVID-19 using SARIMAX, under 
the assumption that no lockdown policies are proposed, historical  NO2 concentrations are required for model 
training. In particular,  NO2 from three different time periods before COVID-19 epidemic are utilized as training 
data, including  NO2 (1) from Jan. 1st, 2015 to Nov. 1st, 2019, (2) from Jan. 1st, 2015 to Dec. 1st, 2019 and (3) from 
Jan. 1st, 2015 to Jan. 1st, 2020. And the corresponding data for  NO2 prediction in normal days includes  NO2 (1) 
from Nov. 1st, 2019 to May 1st, 2020, (2) from Dec. 1st, 2019 to May 1st, 2020, and from (3) Jan. 1st, 2020 to May 
1st, 2020. Because of the time inconsistence of COVID-19 outbreaks in different regions in China, the model 
accuracies are evaluated based on different time period division. Furthermore, to evaluate the proposed SARI-
MAX models with different time periods, mean observed-predicted  NO2 errors for each air station are calculated:

where MOPEi refers to the mean daily observed-predicted  NO2 error of the ith air station. NO2obs,k and NO2pre,k 
represent the observed  NO2 concentrations and the predicted  NO2 concentrations of the kth day, respectively. n 
is the total number of days during time periods. Specifically, time period with lower values of MOPEi is selected 
for SARIMAX modelling.

To investigate the effects of restricted urban mobility during COVID-19, variations between the actual and 
counterfactual  NO2 concentrations are required to be quantified. Moreover,  NO2 variation should be matched 
with optional alignment instead of day-to-day matching to reduce prediction errors of SARIMAX model. Thus, 
the DTW model is utilized to fit the non-linear patterns of  NO2 concentrations.  NO2 variation between the actual 
and counterfactual time periods are calculated as follows:

where Tact and Tcon refer to the actual and counterfactual temporal  NO2 concentrations during COVID-19 epi-
demic. W represents the warping path aligned by Tact and Tcon . Higher DTW(Tact ,Tcou) values denote higher 
degree of  NO2 variation.

Urban functional fragmentation metrics. This study measures urban functional fragmentation from 
two perspectives, including single-urban functional fragmentation and overall urban functional fragmenta-
tion, as shown in Table 2. For the single-urban functional fragmentation, industrial and public functions are 
considered as they are highly associated with anthropogenic air pollutant  emissions33,34. In particular, as the 
urbanization process may change the monotonous patterns to heterogenous distribution such as the emerg-
ing of small areas of parks and hospitals, the complexities of industrial and public function patches can effec-
tively exhibit varying trends of anthropogenic energy uses (such as the increasing transportation). Research has 

(1)SARIMAX
(

p, d, q
)

(P,D,Q)t

(2)MOPEi =

n
∑

k=1

∣
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∣

∣

NO2obs,k
/n · 100
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W=w1...wk ...wK

√

√
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revealed the potential relationship between impervious LSI and the edge characteristics of public spaces and 
 NO2  distribution22,53. This study adopts metrics including industrial/public ED and LSI to depict the fragmenta-
tion characteristics in terms of patch complexity.

For the overall urban functional fragmentation, the changes of the regular patterns of human activities (such 
as the synthetic influence of manufacturing, residential and transportation) that lead to the anthropogenic-
emission variation are considered. To depict these specific fragmentation characteristics, the possible increased 
number of urban function patches and their connections are utilized. Liang, et al.54 have discussed the effect of 
AI landscape characteristics of urban forms on  NO2 concentrations, while characteristics of patch number and 
density in metropolitan regions have been evaluated with the influence on air  quality55. Thus, this study adopts 
AI and NP metrics for quantifying synthetic urban functional patterns.

To depict urban functional fragmentation characteristics based on the proposed metrics, continuous areas 
around air station are extracted as station-sensed regions. In particular, the buffer of each air station within 3 km 
is chosen, as previous studies have revealed that radius of air stations within approximately 2.5 km are highly 
correlated with  NO2  concentrations56,57. On this basis, 3 km-radium areas of 145 air stations were extracted. 
Among the 145 air stations, 27 air stations were randomly chosen for displaying the urban function distributions. 
As shown in Fig. 7, the proportions of urban functional occupation vary among different cities.

Statistical analysis. The effects of urban functional fragmentation on  NO2 variation before and during 
lockdowns (lockdown date is selected as Jan. 24, 2020) during COVID-19 are analyzed using GAMs. Specifically, 
the proposed GAMs are implemented based on Gaussian distribution.  NO2 variation are utilized as dependent 
variable while six urban functional fragmentation characteristics, including industrial ED, public ED, industrial 
LSI, public LSI, urban functional AI and urban functional NP, are considered as independent variables. In addi-
tion, possible confounding effects, including population, AQI,  PM2.5,  PM10,  O3,  SO2, CO, temperature, humidity 
and wind speed, are involved as controlling variables. The average daily values of AQI,  PM2.5,  PM10,  O3,  SO2, CO, 
temperature, humidity and wind speed are adopted while the total population within the 3-km buffers around 
the air stations is utilized. Then, four comparative models are designed, concerning additional environmen-
tal factor for model controlling and different scenarios, namely before and during COVID-19  lockdown16,58 
(Table 3): (1) UFB Model, including urban functional fragmentation characteristics before lockdowns; (2) UFD 
Model, including urban functional fragmentation characteristics during lockdowns; (3) UFCB Model, including 
both urban functional fragmentation characteristics and controlling variables before lockdowns; and (4) UFCD 
Model, including urban functional fragmentation characteristics and controlling variables during lockdowns. 
The proposal GAMs in UFB Model and UFD Model are defined as Eq.  (4) and GAMs in UFCB Model and 
UFCD Model are defined as Eq. (5), respectively:

(4)logE(Yi) = α + β1IndEDi + β2PubEDi + β3IndLSIi + β4PubLSIi + β5UFAIi + β6UFNPi

Table 2.  Indicators for depicting urban functional fragmentation.

Indicator Equation Definition Fragmentation application

Single-urban functional fragmen-
tation depiction

Industrial/Public Edge Density 
(ED) ED =

∑m
k=1

eik
A

eik indicates the total length of edge 
of a certain patch k belonging to 
the ith class. m indicates the total 
number of patches of the ith class. 
A refers to the total areas belonging 
to the ith urban functional class

As most of the anthropogenic 
emissions are generated from 
industrial and public lands, the 
shape complexities depicted by 
ED and LSI of industrial and 
public urban functional patches 
are considered. Higher values of 
ED and LSI indicate higher degree 
of edge density and complexity, 
respectively

Industrial/Public Landscape Shape 
Index (LSI) LSI =

0.25
∑m

k=1
eik

√
A

Synthetical urban functional 
fragmentation depiction

Urban functional Aggregation 
Index (AI) AI =

[

m
∑

i=1

(

gii
max (gii)

)

Pi

]

· (100)
gii represent the number of like 
adjacencies between pixels of the 
patches of the ith class. max

(

gii
)

 
refers to the maximum number 
of gii . Pi denotes the percentage 
of the ith urban functional class 
within each 3 km-radium area. 
N refers to the total number of 
urban functional patches within 
individual buffers

For all-type urban functions, 
higher values of NP represent large 
total number of urban functional 
patches and higher fragmentation 
degree within individual buffers. 
The AI values increase as the urban 
functional patches within buffers 
are increasingly aggregated

Urban functional Number of 
Patches (NP) NP = N
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where E(Yi) is the expected  NO2 differences of the ith air station during COVID-19. α and β are the intercept 
and regression coefficient, respectively. IndEDi , PubEDi , IndLSIi , PubLSIi , UFAIi and UFNPi are the fragmentation 
characteristics depicting urban functions including industrial ED, public ED, industrial LSI, public LSI, urban 
functional AI and urban functional NP of the ith air station. Popi , AQIi , PM25i , PM10i , O3i , SO2i , COi , Temi , Humi 
and Windi represent the controlling variables including population, AQI,  PM2.5,  PM10,  O3,  SO2, CO, tempera-
ture, humidity and wind speed of the ith air station, respectively. s(variable) refers to the smoother function of 
a specific variable based on the penalized smoothing spline, with the degree of freedom evaluated by Akaike 
Information Criterion (AIC).

(5)

logE(Yi) = α + β1IndEDi + β2PubEDi + β3IndLSIi + β4PubLSIi

+ β5UFAIi + β6UFNPi + s
(

Popi
)

+ s(AQIi)+ s
(

PM25i

)

+ s
(

PM10i

)

+ s(O3i)+ s(COi)+ s(SO2i)

+ s(Temi)+ s(Humi)+ s(Windi)

Figure 7.  Distribution of urban functions within buffers of selected air stations. 27 sites of 145 air stations with 
3 km buffers were displayed. Urban functions including residential, commercial, industrial, transportation and 
public functions are involved to depict fragmentation characteristics. The maps are performed using ArcGIS Pro 
software (version 2.7, https:// www. esri. com/ en- us/ arcgis/ produ cts/ arcgis- pro/ overv iew).

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
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