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Abstract: Electrochemical biosensors using carbon-based electrodes are being widely developed
for the detection of a range of different diseases. Since their sensitivity depends on the surface
coverage of bioreceptor moieties, it necessarily depends on the surface coverage of amine precursors.
Electrochemical techniques, using ferrocene carboxylic acid as a rapid and cheap assay, were used
to assess the surface coverage of amino-phenyl groups attached to the carbon electrode. While the
number of electrons transferred in the first step of diazotisation indicated a surface coverage of
8.02 ± 0.2 × l0−10 (mol/cm2), and those transferred in the second step, a reduction of nitrophenyl
to amino-phenyl, indicated an amine surface coverage of 4–5 × l0−10 (mol/cm2), the number of
electrons transferred during attachment of the amine coupling assay compound, ferrocene carboxylic
acid, indicated a much lower available amine coverage of only 2.2 × l0−11 (mol/cm2). Furthermore,
the available amine coverage was critically dependent upon the number of cyclic voltammetry
cycles used in the reduction, and thus the procedures used in this step influenced the sensitivity
of any subsequent sensor. Amine coupling of a carboxyl terminated anti-beta amyloid antibody
specific to Aβ(1-42) peptide, a potential marker for Alzheimer’s disease, followed the same pattern
of coverage as that observed with ferrocene carboxylic acid, and at optimum amine coverage, the
sensitivity of the differential pulse voltammetry sensor was in the range 0–200 ng/mL with the slope
of 5.07 µA/ng·mL−1 and R2 = 0.98.

Keywords: 4-nitrobenzene diazonium; functionalisation; electrochemical; surface coverage; amyloid-
β peptide

1. Introduction

There are several studies that highlight the need for rapid, sensitive techniques and
emphasise that biosensor performance is highly dependent on substrate material [1,2].
Carbon-based electrochemical sensor platforms remain a high priority in the biosensor mar-
ket owing to their low-cost, high sensitivity and simple surface chemistry. This gives great
flexibility in designing carbon-based sensors for a wide range of analytes for early disease
diagnostics. Various immobilisation strategies have been developed to attach biomolecules
to the carbon sensor platform. Here, the selection of the functionalisation process plays a
key role in determining the overall sensor performance. Diazonium grafting is one of the
most promising methods as it provides a simple technique to immobilise functional groups
via covalent attachment [3,4] onto a variety of substrates [5,6]. Diazotisation of carbon
electrodes via reducing nitro group to amino group was first reported by M. Delamer et al.
in the early 1990′s [7]. Diazonium surface modification and the chemical structure of the
modification are shown in Scheme 1.
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Scheme 1. Electrografting of 4-nitrobenzenediazonium tetrafluoroborate salt. 
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surface, which may be used in fields, such as chemical [9,12,13] or biological sensing [14–
19], molecular electronics [20–22], microbial fuel cells [11] and energy conversion applica-
tions [23,24]. Additionally, diazonium salts have been used for the attachment of metal 
(aluminium, gold, etc.) nanoparticles [25–27], oxide nanoparticles [28–30] and nanotex-
tured anti-icing surfaces [31]. 

Quantifying the efficiency of surface modification is critical to achieving the best sen-
sor performance. A wide range of tools has been reported to determine the efficiency of 
the diazonium grafting process and quantify the surface coverage of nitrophenyl groups 
produced. For example, in 1995, Y. C. Liu et al. used high sensitivity surface Raman spec-
troscopy to obtain spectra from the monolayers of nitrophenyl groups covalently bonded 
to glassy carbon (GC) and highly ordered pyrolytic graphite (HOPG). They demonstrated 
that the electrochemical reduction of 4-nitrophenyl diazonium ions in acetonitrile resulted 
in the formation of 4-nitrophenyl radicals, which, in turn, covalently bonded to the glassy 
carbon surface. In their work, cyclic voltammetry, X-ray photoelectron spectroscopy (XPS) 
and Raman spectroscopy data were used to estimate the surface coverage of 4-nitrophenyl 
as 6.5 × l0−10 mol/cm2 and 1.6 × l0−10 mol/cm2 on glassy carbon and HOPG, respectively. 
Surface coverages from the reduction of diazonium salts for different methods and sub-
strates are given in Table 1. 
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Scheme 1. Electrografting of 4-nitrobenzenediazonium tetrafluoroborate salt.

Later, functionalisation of materials via diazotisation has garnered interest, with
several studies dedicated to exploring its potentials in sensing applications [8–11]. Surface-
immobilised groups can induce specific chemical and physicochemical properties to the sur-
face, which may be used in fields, such as chemical [9,12,13] or biological sensing [14–19],
molecular electronics [20–22], microbial fuel cells [11] and energy conversion applica-
tions [23,24]. Additionally, diazonium salts have been used for the attachment of metal
(aluminium, gold, etc.) nanoparticles [25–27], oxide nanoparticles [28–30] and nanotextured
anti-icing surfaces [31].

Quantifying the efficiency of surface modification is critical to achieving the best
sensor performance. A wide range of tools has been reported to determine the efficiency of
the diazonium grafting process and quantify the surface coverage of nitrophenyl groups
produced. For example, in 1995, Y. C. Liu et al. used high sensitivity surface Raman spec-
troscopy to obtain spectra from the monolayers of nitrophenyl groups covalently bonded
to glassy carbon (GC) and highly ordered pyrolytic graphite (HOPG). They demonstrated
that the electrochemical reduction of 4-nitrophenyl diazonium ions in acetonitrile resulted
in the formation of 4-nitrophenyl radicals, which, in turn, covalently bonded to the glassy
carbon surface. In their work, cyclic voltammetry, X-ray photoelectron spectroscopy (XPS)
and Raman spectroscopy data were used to estimate the surface coverage of 4-nitrophenyl
as 6.5 × l0−10 mol/cm2 and 1.6 × l0−10 mol/cm2 on glassy carbon and HOPG, respec-
tively. Surface coverages from the reduction of diazonium salts for different methods and
substrates are given in Table 1.

Table 1. 4-p-nitrophenyl surface coverage on carbon-based substrates.

Substrate Potential (V) Surface Coverage
(mol/cm2) × l0−10 Conditions Ref.

GC 14 4 min electrolysis [3]
GC 6.5 ± 0.5 10 min electrolysis [32]
GC 18 4 min electrolysis [33]
GC 5.6 4 min electrolysis [34]
GC −1.06 19 ± 1 t = 10 and 100 min [35]
SD −1.17 1.3 N2 purged Glove box [36]
EG 16.6 RT, argon atm. 20 h [18]
GC −0.8 22 Argon (oxygen free) [5]
GC −0.6 8.02 ± 0.2 Air (atmospheric), 1 min, RT This work

GC—glassy carbon; SD—single-crystalline diamond surface; EG—epitaxial graphene; RT—room temperature.

Antibody immobilisation plays a critical role in determining the immunosensor per-
formance.

Antibodies are composed of hundreds of amino acids to form the characteristic Y-
shape, where the carboxyl (–COOH) group is positioned at the lower end of this Y-shape
structure (Fc region- = —Scheme 2a). Through the two upper end parts of this Y-shape,
which are amine-terminated (Fab region), each antibody is able to bind two antigen species.
The orientation, chemical species for targeting, dimensions of antibodies all influence the
attachment of the functional groups, such as -NH2 and –COOH, to the substrate.
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Scheme 2. (a) Antibody important chemical species for targeting, (b) EDC/NHS coupling of the antibody carboxyl group
to surface amine group.

Traditionally, the carboxyl group of the support surface is activated by carbodiimide
and reacted with amino groups of antibodies to result in their cross-linking. This will lead
to the random orientation of the antibody [37,38]. Therefore, ethyl-3-(3-(dimethylamino)-
propyl) carbodiimide hydrochloride (EDC)/ N-hydroxysuccinimide (NHS) (EDC/NHS)
coupling of antibody amine and carboxyl groups to surface carboxyl and amine groups [37]
was selected to ensure correct orientation of antibody (Scheme 2b).

Alternatively, activating the carboxylic acid (Fc region) of the antibody and attaching
them onto the amine-terminated support surface would improve the antibody orienta-
tion [39].

Additionally, our recent work already demonstrated that improving and optimising
the amine surface coverage onto the support system (carbon, graphene, etc) would im-
prove the sensor performance by improving the antibody immobilisation via carbodiimide
reaction [17,40–42]. In addition, the utilisation of carboxylic acid groups of antibodies for
binding also prevents the potential loss of biological activity of the antibody fragment.

Our primary motivation for this work was to establish a clear understanding of the
influence of diazonium functionalisation efficiency over the biosensor performance. Our
interest lies in developing electrochemical biomedical sensors made by reduction of elec-
trode bound nitrophenol groups to amines, followed by reaction of these amine groups
with sensor molecules, such as antibody receptors. A key factor in determining sensor
sensitivity is the surface coverage of receptor molecules, and this, in turn, depends on the
surface coverage of the intermediate aminophenyl groups. Despite extensive research on
diazotisation of carbon-based substrates, previous studies have not quantified the electro-
chemical conversion of 4-nitrophenyl groups to aminophenyl groups [33,34]. This research
aimed to combat exactly these problems; we provided not only the optimum conditions
but also a rapid technique that is effective. Our focus was to report the quantification of
the electrochemical conversion of 4-nitrophenyl groups to aminophenyl groups, which, to
the best of our knowledge, has never been reported. The effect of the number of CV scans
was also discussed in detail. Furthermore, in order to prove this argument, we attached the
antibodies on diazotised surfaces of all different scan rates.

In this work, we explored this issue by quantifying the amine group coverage via
measurement of electron transfer during electrochemical addition of ferrocene carboxylic
acid (FCA) to aminophenyl groups on glassy carbon and highly ordered pyrolytic graphite
(HOPG) electrodes. Here, we also investigated the effect of nitro to amino CV reduction
scans by controlling the number of scans. The efficiency of our experimental parameter
optimisation was studied by developing biosensors prepared by coupling between the
electrode bound phenylamino and a carboxyl-terminated anti-beta amyloid antibody
specific to Aβ (1-42) peptide, a potential marker for Alzheimer’s disease. Here, Aβ (1-42)
was used as a model biomarker to illustrate the successful diazotisation and validate our
claim of achieving diazotisation via optimisation of the experimental parameters. Aβ

(1-42) is a promising biomarker for Alzheimer’s disease detection, and our group has also
previously worked with it and as such made an active decision to use it as the biomarker
for supporting better amine coverage in this work.
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2. Materials and Methods

Materials 4-nitrobenzenediazonium tetrafluoroborate 97% (4-NPD), tetrabutylam-
monium tetrafluoroborate 99% (BU4NBF4), 1-ethyl-3-(3-(dimethylamino)-propyl) carbodi-
imide hydrochloride (EDC), N-hydroxysuccinimide (NHS), ferrocene carboxylic acid (FCA),
potassium chloride, acetonitrile (ACN) and phosphate-buffered saline tablets (PBS; pH 7.4)
were all purchased from Sigma Aldrich (St. Louis, MO, USA) and used as received. All
reagents were of analytical grade, and the deionised water was used for the cleaning of
the glassy carbon electrodes. Highly ordered pyrolytic graphite (HOPG) was purchased
from MikroMasc (Wetzlar, Germany) with the following specifications: grade ZYA, mosaic
spread with the value of 0.4◦ ± 0.1◦, double-sided and with thickness 1 mm and the size of
10 × 10 mm2.

Biomarker amyloid-beta peptides Aβ ((1-42) (ab120301)) and anti-beta amyloid antibody
(ab224275), specific to Aβ (1-42) peptide Aβ, were purchased from Abcam (Cambridge, UK).

Amyloid-beta (1-42) was supplied in the lyophilised form by Abcam (Cambridge, UK).
It was then dissolved in 10 mM sodium hydroxide, followed by gentle Vortex for less than
1 min to make a homogeneous solution. The peptide stock solution was then aliquoted
and stored at −20 ◦C. Under these highly alkaline conditions, the peptide is fully dissolved
and exists only as monomers [43].

2.1. Electrochemical Measurements

Electrochemical experiments were carried out on an Autolab electrochemical work-
station (PGSTAT 302N Metrohm, Utrecht, The Netherlands) at room temperature using a
conventional three-electrode system: a bare or modified glassy carbon electrode (GCE) (MF-
2012, 3 mm diameter, BASI, West Lafayette, IN, USA) was used as the working electrode,
with a platinum wire counter electrode and Ag/AgCl (3 M NaCl, + 0.197 V vs Standard
Hydrogen Electrode (SHE)) reference electrode, and a scan rate of 50 mV/s. The GCEs
were polished stepwise with aqueous alumina slurries of 0.3 and 0.05 µm particle size
using micro-cloth, followed by rinsing thoroughly with isopropyl alcohol (IPA) and then
with deionised water for 30 min.

Electrochemical grafting of the diazonium salt was performed using 0.1 M BU4NBF4
electrolyte in acetonitrile. Typically, blank cyclic voltammetry (CV) was recorded using a
freshly cleaned GCE in the electrolyte, following which, the active diazonium compound
(5 mM) was added to the electrolyte, and further voltammograms were recorded for
5 cycles.

Subsequent electrochemical reduction of the nitro group (NO2) to an amino group
(NH2) was carried out in 0.1 M KCl in water:ethanol (9:1) electrolyte, using reduction cyclic
scanning at 50 mV/s scan rate between −1.2 V and + 1 V vs Ag/AgCl.

Functionalising the amine groups with FCA was carried out as follows: 5 mM
EDC/NHS (ratio 1:1) solution was added to 250 µM FCA solution, followed by 40 min
of incubation at room temperature. The resultant solution was drop-cast onto the freshly
prepared amine-terminated GC and left for 10 min before scanning between −0.3 V and
0.3 V at 5 mV/s in fresh PBS solution, which acted as the electrolyte.

Diazonium functionalisation to prepare a sensor incorporating a carboxyl termi-
nated anti-beta amyloid antibody specific to Aβ (1-42) peptide was carried out using an
EDC/NHS protocol [3,22,30]. The Aβ antibody was “activated” in 5 mM EDC/NHS solu-
tion for 40 min. This was followed by drop-casting the solution over the electrode surface
and incubating for 30 min at 4 ◦C. The electrode was then rinsed thoroughly with deionised
water and dried with N2. After that, amyloid-beta (Aβ (1-42)) peptides were added to the
electrode surface ranging from 0 ng/mL to 200 ng/mL at 4 ◦C, each for an incubation time
of 20 min. Differential pulse voltammograms (DPV), obtained by sweeping the potential
from −0.4 V to +0.3 V with a step potential of 5 mV, an amplitude of 25 mV and interval
time of 0.5 s, were used in examining the attachment of antigens to antibody.
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2.2. Characterisation Techniques

The layers that form the electrodes were characterised to determine their thickness
and topography using different techniques to check the quality of the functionalisation
of the layers. These techniques included atomic force microscopy (AFM) and scanning
electron microscopy (SEM). These were applied to the different stages of functionalisation.

Atomic force microscopy (AFM) was carried out using a JPK NanoWizard II (Berlin,
Germany), in intermittent contact mode with tip resonant frequency, spring constant and
nominal radius of 320 kHz, 40 N/m and 8 nm, respectively.

Scanning electron microscopy (SEM; Ultra-High-Resolution FE-SEM S-4800, Hitachi,
Tokyo, Japan) was carried out at 10 kV acceleration voltage and a 20 mA emission current.
The magnification was approximately × 3 k and working distance 10 mm.

3. Results and Discussion
3.1. Surface Functionalisation of Glassy Carbon via Diazotisation

Figure 1 shows the cyclic voltammetry response of GCEs before and after the addition
of diazonium to the electrolyte. As anticipated, no redox processes were noticed for the
blank scan (black line), and with the diazonium salt present, a broad irreversible peak
(orange curve) was observed at 0.2 V (vs Ag/AgCl), which corresponded to electron
transfer associated with the cleavage of dinitrogen from the diazonium salt. This peak
completely disappeared in subsequent scans, indicating no further reduction, presumably
due to saturation of the available GCE surface with nitrophenyl groups (olive green curve).
This observation was consistent with previous reports [44].
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3.2. Electrochemical Reduction of 4-Nitrophenyl Layers on Glassy Carbon

Electrochemical reduction of the nitro group (NO2) to an amino group (NH2) reduction
occurs in three steps, as shown in Scheme 3 [19].

Figure 2 shows the cyclic voltammetry response of 4-nitrophenyl-modified GCEs upon
subsequent reduction cycles. A strong irreversible reduction peak was observed at −0.9 V
at the first scan corresponding to the formation of the hydroxylamine (PhNHOH). In the
subsequent scans, a pair of reversible redox peaks disappeared at a half-wave potential of
approximately (−0.45 V). This reversible electrochemistry was attributed to the formation
of the hydroxy aminophenyl on the GCE surface. The CV data indicated that the reduction
of Ar-NO2 was irreversible.
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It was also observed from Figure 2 that three CV scans were sufficient for aminophenyl
conversion, as overlap in the reduction peaks indicated that no further reduction occurred
on the electrode surface after three scans (Figure 2 inset).

3.3. Quantification of Surface Amine Groups

The surface coverage of amines on the modified electrode was quantified by function-
alising the amine groups with FCA, using a standard N-(3-dimethylaminopropyl)-N’-ethyl
carbodiimide EDC/NHS coupling reaction (Scheme 4), as follows.
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Scheme 4. Immobilisation mechanism of electrochemically active ferrocene carboxylic acid (FCA) on
to an amine-modified glassy carbon electrode (GCE) through carbodiimide linking.

Carboxyl-to-amine crosslinking used the carbodiimide EDC and sulfo-NHS. Addi-
tion of NHS or Sulfo-NHS to EDC reactions increases efficiency and enables molecules
terminated with the carboxylic acid, such as FCA, to be activated for storage and later
use. NHS-activation is the basis for synthesising amine-reactive labelling reagents and
crosslinking compounds. This mechanism is very well known and reported [44].

Figure 3 shows the CV measurements performed in order to confirm the attachment
of FCA to surface-bound amino phenyl groups.
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The surface coverage of FCA was estimated using Equation (1):

Γ = Q/nFA (1)
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where Γ is the surface coverage of FCA (mol/cm2), A is the surface area of the electrode
(cm2), n represents the number of electrons involved in the reaction, F is the Faraday
constant (C/mol), Q is the total amount of charge calculated from the integration of the
reduction peak recorded using cyclic voltammetry. To calculate the surface coverage of the
working electrode, the area under the reduction part of the CV curve can be integrated.

As anticipated, our electrochemical measurements showed no FCA attachment to
measurements conducted on the first control of blank GCE due to the lack of amine surface
groups on pristine GCE (first control).

It was expected to observe strong FCA binding to the GCE-PhNO2 (reduction scan-1)
as the current literature reports that the large irreversible reduction peak in the first scan,
towards the negative potential, is due to the reduction of p-nitrophenyl to p-aminophenyl.
However, in striking contrast, the scan, where GCE-PhNO2 (reduction scan-1) underwent
only a single reduction cycle in KCl, showed no redox peaks upon FCA functionalisation.
However, FCA binding was observed for the electrodes under consecutive scans (reduction
scan 2–5 in KCl). The surface coverage of FCA at reduction scan-2 was found to be
14.7 pmol/cm2. This might be due to the fact that a single reduction of GCE-PhNO2 is
not sufficient to generate amine surface moieties, instead produces only an intermediate
GCE-PhNHOH moiety, which further needs additional scans to generate amine groups [45].

It was also found that the surface coverage of FCA varied strongly, depending on
the number of reduction scans (as shown in Figure 3). It was found that the maximum
degree of surface coverage was achieved for the sample prepared at reduction scan-3
(21.7 pmol/cm2), whereas any further increase in scan reduced the FCA coverage. The
decrease in the surface coverage of FCA in scans 4 and 5 could be attributed to the possible
loss of amine groups due to the oxidation. Thus, it is significant to achieve an optimal
number of reduction scans (in our case, three scans) to achieve the maximum generation of
amino phenyl, beyond which, there is a possibility of losing the generated amines via an
oxidation process.

3.4. Electrochemical Sensing via Analysis of the Electrodes

In order to confirm this behaviour in a practical sensor, we used diazonium functional-
isation to prepare a sensor, incorporating a carboxyl-terminated anti-beta amyloid antibody
specific to Aβ (1-42) peptide, a potential marker for Alzheimer’s disease. In this case, the
sensor response is a reduction in current in differential pulse voltammetry (DPV) as the
bound peptide acts as a barrier to electron transfer at the electrode surface [46,47].

Figure 4 shows the percentage current reduction (%IR) plotted against the log of
analyte concentrations. The sensing results indicated that electrode made from an amino
substrate prepared using reduction scan-3 showed significantly higher sensitivity (slope:
5.07 and R2 = 0.98) than those prepared using scan-5 (slope: 2.85 and R2 = 0.65). The
regression equation had a logarithmic linear relation with Aβ (1-42) concentration (0
ng/mL to 200 ng/mL), with R2 = 0.98 as the correlation coefficient.

It is worth mentioning that the control electrodes (GCE, reduction scan-0 and reduction
scan-2, Figure 5a,b) showed weak to no significant change in signal upon exposure to Aβ

(1-42) peptide. This confirmed that the experimental conditions of diazotisation greatly
influenced the sensor performance, and the nitrophenyl to amino phenyl conversion
occurred at the reduction scan-2, instead of reduction scan-1.
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of gauging the potential sensitivity of a sensor platform made by any particular process,
without the need for complete manufacture of the sensor itself.

3.5. Characterisation of Surface Morphology Electrode

The effect of surface diazotisation on surface morphology was investigated using
AFM on the HOPG electrode. The 40 × 40 µm2 AFM scans were conducted in intermittent
contact mode. The data were levelled using a linear background, and a high pass filter was
used to remove large scale undulations in the HOPG. The roughness and morphology of
the functionalised substrate are shown in Figure 6.
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(a) blank—before diazotisation, (b) after diazotisation—one scan, (c) after three scans, (d) after five scans.

The surface roughness appeared similar between the samples after one, three and five
scans, with graphite step edges still visible after five cycles. The root mean square (RMS)
roughness was generally higher on the blank samples (~5 nm) when compared with the
functionalised samples (1–2 nm). However, no clear difference was observed in roughness
values between the functionalised samples, with similar topography apparent in the AFM
images (Figure 6b–d).

Scanning electron microscopy (SEM) of the HOPG surface revealed a similar sup-
pression of surface features following initial functionalisation with diazotisation method
(Figure 7a,b), in agreement with AFM.

However, a reduction in visible step edges in the underlying HOPG with an increas-
ing number of cycles was also observed (Figure 7b–d). This could be explained by the
suppression of low energy secondary electron contrast at step edges due to the presence of
an overlayer or thin-film [48].

It is possible that AFM in intermittent contact mode is probing some underly-
ing topography through the functional layer, explaining this discrepancy in observed
surface morphology.
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4. Conclusions

Despite diazotisation being a well-researched topic, there have been no previous
reports concerning the quantification of surface coverage of aminophenyl groups, following
the conversion of 4-nitrophenyl films (deposited via electrochemical methods), or the
optimal conditions required for this reaction. Understanding the extent of conversion of the
nitro moiety on different electrode surfaces provides useful information for electroanalytical
chemistry researchers in their design of surfaces, and electrochemical procedures, for
biosensor molecule immobilisation.

Ferrocene carboxylic acid was introduced as a rapid and cheap assay to assess surface
coverage of amino-phenyl groups on electrodes. The number of electrons transferred
during the attachment of ferrocene carboxylic acid indicated an available amine coverage
of only ca 1/40th, which might be expected from the number of electrons used in the initial
diazotisation process, i.e., 2.2 × l0−11 mol/cm2 compared to 8.02 ± 0.2 × l0−10 (mol/cm2).
Furthermore, the available amine coverage was critically dependent upon the number of
CV cycles used in the reduction, and thus the procedures used in this step influenced the
sensitivity of any subsequent sensor. The applicability of these ideas was demonstrated
via developing a sensor, incorporating a carboxyl-terminated anti-beta amyloid antibody
specific to Aβ (1-42) peptide, a potential marker for Alzheimer’s disease. At optimum
amine coverage, the sensitivity of the differential pulse voltammetry sensor was in the range
0–200 ng/mL, with a slope of 5.07 µA/ng·mL−1 and R2 = 0.98. Our work demonstrated an
electrochemical-based low-cost surface quantification technique, which could be utilised in
combination with other sensor parameters’ optimisation to develop commercially viable,
high-performance, carbon-based electrochemical biosensors. Future developments of this
work will need to focus on exploring and optimising the sensitivity and selectivity of
sensors and using a range of different biomarkers.
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