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Despite all the medical advances mortality due to cirrhosis and hepatocellular carcinoma,
the end stages of fibrosis, continuously increases. Recent data suggest that liver fibrosis is
guided by type 3 inflammation with IL-17A at the top of the line. The storage of vitamin A
and its active metabolites, as well as genetics, can influence the development and
progression of liver fibrosis and inflammation. Retinoic acid (active metabolite of vitamin
A) is able to regulate the differentiation of IL-17A+/IL-22–producing cells as well as the
expression of profibrotic markers. IL-17A and its pro-fibrotic role in the liver is the most
studied, while the interaction and communication between IL-17A, IL-22, and vitamin A–
active metabolites has not been investigated. We aim to update what is known about IL-
17A, IL-22, and retinoic acid in the pathobiology of liver diseases.
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HIGHLIGHTS

• Type 3 inflammation (Th17, Tc17 cells) is involved in the process that guides liver fibrosis.
• Hepatic stellate cells activation is directly linked to the release of vitamin A from lipid droplets

that are used as an important energy source for myofibroblast transformation, supported by
autophagy.

• There are the SNP variants coding vitamin A metabolizing enzymes (PNPLA3, HSD17B13),
associated with opposite prognosis in several chronic liver diseases.

• Immune modulation of the IL-17A/RA axis could be a new important component of the very
active therapeutic developments of NASH and fibrotic disease.
INTRODUCTION

Liver fibrosis is the obligatory result of chronic liver disease, from which approximately 2 million
people die each year (1). Despite all the medical advances, mortality due to cirrhosis and
hepatocellular carcinoma (HCC), the end stages of fibrosis, continuously increases (2). The
background of liver fibrosis involves multiple processes, including alcoholic lesions, chronic
forms of viral hepatitis, and metabolic syndrome, which is becoming one of the most important
causes today, a burden on our society. Western diets, reduced physical activity, and constant stress
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all actively contribute to the dramatic increase in nonalcoholic
steato-hepatitis (NASH) prevalence (3, 4).

The liver is known to be the main storage site for vitamin A
and its derivatives. Vitamin A is a powerful antioxidant; its active
metabolites directly regulate gene expression, participate in
differentiation of IL-17A+/IL-22+ cells. Any impairment in
retinoic acid (RA) metabolism probably affects the metabolic
and immunological pattern of liver disease and, in particular,
progression to fibrosis. Recent studies on the genetic substrate of
liver diseases, particularly nonalcoholic fatty liver disease
(NAFLD), have highlighted the presence of associated SNPs in
genes that are involved in vitamin A metabolism. We propose to
trace the interaction of three molecules (IL-17A, IL-22, RA) and
assess the possible impact of this trio on the development of liver
fibrosis. There may be a need to study the interaction of vitamin
A metabolites and the immune component of the liver in the
development of fibrosis, and this will provide new options for
fibrosis treatment.
LIVER HOMEOSTASIS AND
INFLAMMATION

The main causes of liver fibrosis are viral hepatitis, alcoholic, and
nonalcoholic fatty liver disease, as well as cholestatic liver disease (1).
If viral hepatitis could be controlled by anti-viral therapy and
vaccination, alcoholic disease by abstinence from alcohol, the
trends of recent years indicate a clear increase of the part of
NAFLD in liver diseases and fibrosis, respectively. This is related to
lifestyle factors, reduced physical activity, consumption of excessive
amounts of fats and sugar, and great difficulty in changing lifestyle
and habits, which is required in the treatment of this pathology (4).

In the genesis of liver disease, a huge role belongs to the
development of chronic inflammatory response. The liver
microenvironment determines the balance between tolerance and
inflammation in the healthy organ (5). The blood carries large
amounts of intestinal antigens detected by pattern recognition
receptors (PRRs) located on liver resident macrophages (6) or
hepatocytes (7) that have to be neutralized. After PRR
stimulation, antigens are degraded silently, without usual
secretion of pro-inflammatory cytokines (5). Such silent blood
detoxification protects the body from massive activation of the
immune system in response to microbes from the gut. In healthy
subjects, such a process does not go beyond homeostasis. However,
under the influence of various factors, the immunological hepatic
tolerance is broken, followed by inflammation, and the tissue
regeneration processes are disturbed. The hepatic stellate cells
(HSC) lose lipid droplets of vitamin A and trans-differentiate into
myofibroblasts (8), secreting extracellular matrix (ECM). The HSCs
are located in the space of Disse, the space between hepatic
trabeculae and sinusoids. The space of Disse is separated from
the sinusoids by liver sinusoidal endothelial cells (LSECs). HSCs are
the main cells responsible for the initiation of fibrosis, producers of
extracellular matrix (9). In their inactive state, they express neuronal
markers and are the main site of vitamin A storage in lipid droplets
in the body. During activation, HSCs lose the expression of
neuronal markers, as well as lipid droplets and transdifferentiate
Frontiers in Immunology | www.frontiersin.org 2
into myofibroblasts (8), cells with high proliferative and migratory
potential. Myofibroblasts migrate to the site of inflammation and
increase the expression of mesenchymal markers, such as a-SMA
or type 1 collagen.

The massive and constant ECM production distorts the
hepatic and vascular architecture leading to cirrhosis and
hepatocarcinoma and may require liver transplantation.
Although hepatocarcinoma may occur in the absence of
advanced fibrosis stages (10).

In any case, inflammation precedes fibrosis. It appears that
the branch of CD4+T-lymphocytes, the Th17 population (11),
seems to be involved in the inflammation process that guides
liver fibrosis and underlining liver pathologies (12–15). This
branch is composed of Th17 CD3CD4+ or Tc17 CD3CD8+ cells,
expressing the RORgt transcription factor (16), and secreting IL-
17A alone or in combination with IL-22, as two signature
cytokines of this population.

Biology of IL-17A
The main source of IL-17A is the Th17 CD4+ T lymphocytes
(LTs) (11). Other cell populations may be involved: the CD8+

(Tc17) LTs (17–19), double-negative LTs, LTgd, NKT cells, ILC3

cells, MAIT cells, monocytes, and even neutrophils (20). IL-17A
expression in liver HSC cells has also been reported (21). IL-17A
receptor (IL-17AR) expression is ubiquitous with the highest
levels occurring in hematopoietic cells, while the major responses
to IL-17A occur in epithelial, endothelial, and fibroblast cells
(22). IL-17 receptor family includes five IL-17RA to IL-17RE
receptor subunits. IL-17A signaling is mediated predominantly
through the IL-17RA and IL-17RC subunits (23). In the liver, in
addition to immune cells, IL-17AR expression has been detected
on all types of hepatic cells, including hepatocytes, HSCs, biliary
epithelial cells, and LSECs (24).

IL-17A activates a highly pro-inflammatory gene expression
program, typical of that induced by innate immune receptors,
such as IL-1R and TLRs (25), using the Act1 adapter instead of
TRIF/Myd88, but similarly activates the nuclear factor kB
(NFkB), MAPK, C/EBPbd pathways (22).

IL-17A is a driver of hematopoietic cell differentiation in the bone
marrow to the granulocyte lineage by direct stimulation of
granulocyte colony-stimulating factor (GM-CSF) expression by
epithelial cells and STAT3 activation (26, 27). At the same time, IL-
17A incooperationwithTNF-a stimulates the expressionof adhesive
molecules on endothelial cells, such as Selectin-Eor ICAM-1,making
possible enhanced granulocyte migration (28), which is increased by
IL-8 secretion, that acts as an attractant for neutrophils (29, 30). A
similar mechanism is involved in the initiation and development of
liver fibrosis and is a part of carcinogenesis of certain tumors.

IL-17A neutralization is effective in psoriasis, rheumatoid
arthritis, ankylosing spondylitis (31, 32), but not Crohn’s
disease where it increases inflammation and susceptibility to
fungal infections (33). Moreover, in the experimental
autoimmune encephalomyelitis (EAE), an autoimmune model,
not all Th17 cells have destructive autoimmune properties. Th17
generated under the influence of TGF-b1 and IL-6 produce IL-
17A, and it does not induce autoimmune events without
receiving additional stimulation by IL-23. However, Th17
June 2021 | Volume 12 | Article 691073
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generated under the influence of TGF-b3 do not need to receive
IL-23 signal to be pathogenic. The molecular signature of these
two Th17 populations is different (34). Neutralization of IL-23
improves liver fibrosis in the bile-duct ligation (BDL) mouse
model (14). It turns out that the complete acquisition of the
pathogenic function of Th17 is mediated by IL-23 rather than by
TGF-b1 and IL-6 (35). All this suggests that IL-17A behaves
differently depending on its tissue localization and the
environment in which it acts.

Biology of IL-22
IL-22 is a cytokine of the IL-10 family, secreted by a vast majority
of hematopoietic cells: Th17, Tgd, ILC3, NKT lymphocytes (36).
Signaling occurs via the interferon family receptor IL-22R that
binds with a second CRF2-4 component (IL10R2) shared with
IL-10 (37, 38). An IL-22–binding protein (IL-22BP), a soluble
molecule, binds IL-22 and blocks its interaction with the receptor
complex, thereby preventing activation (39).

IL-22R is expressed on stromal and epithelial cells in various
organs, including liver (36, 40); however, immune cells do not
express it, and IL-22 does not appear to affect them (41).
Downstream of the IL-22 receptor complex is the JAK-STAT
pathway leading to the STAT1, STAT3, and STAT5
phosphorylation. In addition, IL-22 is capable of activating the
three main MAPK pathways: the MEK-ERK-RSK, the JNK/
SAPK, and the p38 kinase pathways (42). Unlike the majority
of cytokines that target different cell types, the unique target of
IL-22 is the non-hematopoietic cells of epithelia. IL-22 is a part of
the established inflammation, but regulates tissue processes, a
true regulator of epithelia.
Frontiers in Immunology | www.frontiersin.org 3
Retinoic Acid
RA is an active metabolite of vitamin A which is liposoluble.
Vitamin A is stored in its esterified form, retinyl esters, in the
HSCs, which mainly trigger liver fibrosis after activation.
Retinaldehydrogenases catalyze the release of active metabolites
of vitamin A (Figure 1), including RA (43, 45). Vitamin A is
distributed to tissues in the form of retinol, by retinol binding
protein 4 (RBP4), produced in the liver. RA regulates the
expression of several hundred genes, and this is what provides
most of its functions (45). RA acts through nuclear receptors: RA
receptors (RARa, b, g) and retinoid X receptors (RXRa, b, g).
The receptors form homo- or heterodimers and exert their action
by binding with the RA response element (RARE) in the
promoters of regulated genes (46).

Despite the storage of vitamin A in the liver, RA plays a critical
role in the regulation and maintenance of intestinal epithelium on
the one hand (47), and mucosal immunological function on the
other (48). NAFLD is directly related to a permeability disorder of
the intestinal epithelium. Disruption of vitamin A metabolism and
RA signaling will affect both hepatic functionality and intestinal
integrity, creating a vicious circle of events (43). It is still unknown
exactly what is primary and to what extent disruption of vitamin A
metabolism impacts the immunological environment in the liver,
the metabolic environment, and would promote the progression of
liver fibrosis.

RA is known to influence FoxP3+Tregs and Th17
differentiation, to induce intestinal homing of innate lymphoid
cells (ILC) (49), to stimulate the secretion of pro-inflammatory
cytokines during infections, and in synergy with dendritic cells to
sensitize effector lymphocytes (50, 51).
FIGURE 1 | Metabolism of vitamin A in the liver. Schema modified from Blaner, 43 and Pettinelli et al., 44. LRAT, lecithin retinol acyltransferase; DGAT, diglyceride
acyltransferase; ADH1A, alcohol dehydrogenase 1A; AKR1B10, aldo-keto reductase family 1 member B10; BCMO1, beta-carotene monooxygenase; ALDH1A,
aldehyde dehydrogenase 1 family member A; RBP4, retinol binding protein 4.
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Th17 Differentiation: The Role of RA
Th17 cells are considered to be the main source of the cytokines
IL-17A and IL-22 (52). The differentiation and expansion of
Th17 from naive LTs are dependent on two cytokines: TGF-b1
and IL-6 (Figure 2). This process is regulated by IL-23 and IL-21
(52). High concentrations of IL-6, secreted by macrophages, in
its STAT3-dependent manner will activate HIFa, which in turn
will target FoxP3 for ubiquitination and proteasomal
degradation (53), promoting the expression of the RORgt
factor and the Th17 branch (54). Low concentration of TGF-
b1 in cooperation with IL-6 will induce the development of
Th17s and the expression of the IL-23R receptor (54), while a
high concentration in the absence of IL-6 will promote the iTreg
lineage (53). This Treg/Th17 counterbalance is used in research
as a marker of type 3 inflammation. IL-23, which belongs to the
IL-12 family of cytokines, acts as a stabilizer that is essential for
the correct development of Th17 (55). During inflammation IL-
23 is produced by activated dendritic cells and, by acting on T
lymphocytes, increases IL-17A secretion (56).

In addition to IL-6, TGF-b1, and IL-23, the expression of IL-
17A is regulated by retinoids, in particular RA (Figure 2), which
is important in the context of liver disease and fibrosis, since the
liver is the main site of storage of Vitamin A. RA is capable of
inhibiting the expression of RORgt, promoting the development
of iTregs and the expression of FoxP3. This occurs in an
independent manner of STAT3/STAT5 and IL-2 signaling (57,
58). Schambach et al. provided evidence that the effects of active
Frontiers in Immunology | www.frontiersin.org 4
vitamin A metabolites are likely to be at least partially mediated
by the nuclear RARa (59). Moreover, RA induces IL-22BP
expression in monocyte-derived dendritic cells. In addition to
direct regulation of Th17 cells formation, RA separately regulates
the action of IL-22 (60).

In in vitro models, RA is very efficient in the generation of
iTregs despite Th17 (61). RA enhances TGF-b1-signaling by
increasing SMAD-3–dependent FoxP3 expression even in the
presence of IL-6 (61). However in vivo there is no increase in the
frequency of iTregs, whereas RA suppresses the EAE by
inhibiting the inflammatory action of Th17 through the
inhibition of IL-6Ra, IL-23R, and interferon regulatory factor 4
(IRF-4) receptor expression on effector T cells (61).

Genetic Associations, Vitamin A, and
Chronic Liver Diseases
Analysis of gene expression involved in vitamin A metabolism
showed that aldo-keto reductase family 1 member B10
(AKR1B10), the enzyme converting all-trans-retinaldehyde to
retinol (Figure 1), is up-regulated in NASH patients compared
with healthy controls, which is associated with elevated blood
retinol levels (44). In contrast, the enzymes known to convert
retinaldehyde to RA: aldehyde dehydrogenase 1 family member
A (ALDH1A1, ALDH1A2, ALDH1A3), exhibit decreased
expression in NASH patients (44)- (62). However, CYP26A1
and CYP26B1 expression is enhanced in NASH patients,
indicating more intensive degradation of RA (62).
FIGURE 2 | Th17 differentiation, role of RA. RA, the active metabolite of vitamin A, is capable to inhibit RORgt expression, promoting the development of iTregs and
FoxP3 expression. RA inhibits the expression of IL-23 and IL-6 receptors, stimulates IL-22BP synthesis by dendritic cells.
June 2021 | Volume 12 | Article 691073
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Consequently, this impairs the availability of active vitamin A
metabolites in the liver, particularly RA, altering the functioning
of signaling pathways.

Borel and Desmarchelier, 2017 have reviewed genetic
variations thought to be associated with modulation of vitamin
A blood levels (63). These include mutations and SNPs in RBP4,
beta-caroten oxygenase 1 (BCO1), scavenger-receptor class B 1
(SCARB1), APOB, CXCL8, CD36, and other genes. For the
moment, there are just some variants in genes that encode
important enzymes, associated with the progression of chronic
liver diseases, particularly the progression of NAFLD to fibrotic
or cirrhotic liver and HCC (64) (reviewed by Carlsson, 2020).
Some of them are presumably involved in vitamin Ametabolism.

PNPLA3 is a member of a family of patatine-domain
containing lipid hydrolases, localizes to the surface of lipid
droplets, with multiple substrates, including triacylglycerols,
phospholipids and retinols-esters, the storage form of vitamin
A. PNPLA3 is thought to be involved in release of retinol in
response to insulin from HSC (65), an important step of HSC
activation. The first SNP found to be associated with NASH
progression to advanced fibrosis or HCC is PNPLA3 I148M
variant, associated with decreased enzymatic activity, increased
hepatic fat storage, progression of steatohepatitis, elevated
plasma liver enzymes, fibrosis. At the same time, in PNPLA3
I148M minor allele carriers, the storage of liver retinyl-palmitate
is increased, and the ratio of retinol/retinyl-palmitate is reduced
(66), which reveals a disturbance in the vitamin A metabolism
and signaling. PNPLA3148M SNP carriers with obesity and fatty
liver disease or who are just obese, have lower levels of circulating
retinol, as well as RBP4 protein concentration (67). Meanwhile,
Blaner questions the hydrolase activity of PNPLA3, arguing for
insufficient data (43). This needs to be explored.

HSD17B13 is the second protein of interest with restricted
expression for hepatocytes, which belongs to the short-chain
dehydrogenase/reductase family, involved in the metabolism of
steroid hormones, prostaglandins, lipids, and xenobiotics.
Biological function of HSD17B13 is not clear: when
overexpressed, the size and number of lipid droplets in
hepatocytes is increased (68), but this remains debated (69).
Meanwhile, hepatic expression of HSD17B13 is higher in NASH
patients compared with healthy individuals (70). P260S mutation
(rs62305723) in HSD17B13 gene, abolishing retinol
dehydrogenase activity in vitro, is associated with decreased
inflammation and ballooning (70). Another loss-of-function
variant in HSD17B13 (rs72613567:TA) was found to be
associated with a reduced risk of chronic liver disease, like
alcoholic and non-alcoholic chronic liver diseases, reduced risk
of progression from steatosis to steatohepatitis, but not simple
steatosis, as well as reduced risk of alcoholic and non-alcoholic
cirrhosis in allele dose-dependent manner (69) (71),. However, an
attempt to replicate the protective effect in the whole body knock
out (KO) for HSD17B13 murine model failed. No difference was
observed between the KO model and the wild type (WT)
genotype neither in the severity of liver damage due to a high-
fat diet or alcohol consumption model nor in the rate of disease
progression to cirrhosis and hepatocarcinoma (72).
Frontiers in Immunology | www.frontiersin.org 5
IL-17A, IL-22, AND RA IN LIVER FIBROSIS

Fibrosis is a two-way process, capable of regressing even in
advanced stages (73). Liver fibrosis of any etiology predisposes to
the development of hepatocarcinoma (74), whichmay also occur on
a background of chronic inflammation without advanced fibrosis
(75, 76). The exact immunological mechanisms that direct the
development or regression of fibrosis, or development of
hepatocarcinoma without adjacent fibrosis, are not well elucidated.

IL-17A, IL-22, and Acute Liver Injury
IL-17A
During acute liver injury Kupffer cells, found in the sinusoids
and secreting platelet derived growth factor (PDGF), TNFa, IL-
6, IL-1b, TGF-b1 (77), stimulate STAT3 signaling in HSCs. HSC
awaken from their quiescent state, release their vitamin A stock
and transform into myofibroblasts, which migrate to the site of
injury (8). In the injury, INFg, the potent STAT1 activator,
secreted by intrahepatic T cells, induces apoptosis of damaged/
infected hepatocytes amplifying the inflammatory signal (78, 79).
While IL-6–directed response, ensured by STAT3 expression in
myeloid cells, protects against liver damage by counteracting
INFg-signaling (80). Meanwhile the promotion of STAT3
expression under TGF-b1 and IL-6 also stimulates the Th17
phenotype. IL-17A can stimulate STAT3 phosphorylation
directly (in vitro) or via enhancing IL-6 secretion (81). In the
case of acute viral diseases, IL-17A, on the one hand, can
sensitize antigen-specific effector T cells (82), promoting the
elimination of the agent, on the other hand, an exhaustive IL-
17A and IL-6 response can promote viral persistence (83).

IL-17A neutralization aggravates the development of acute
hepatitis in a-galactosylceramide model directed by IL-
17A+NKT cells (84). Similarly, TgdIL-17A+-depleted HBs+

transgenic mice during the concanavalin A (ConA) lesion,
develop inflammation exacerbated by INFg and accompanied
by potent necrosis. Injection of IL-23 decreased liver damage
(85). However, in WT mice in the ConA model, IL-17A
produced mainly by Th17, aggravates liver damage (86), but
macrophage depletion prevents the development of lesions, at
least in part, by interrupting IL-17A signaling. Moreover, it was
shown that in the early stage of liver injury, exosome-mediated
TLR3 activation in HSCs aggravates the development of liver
fibrosis by enhancing IL-17A Tgd-cell production in CCl4 mouse
fibrosis model. HSCs express IL-17A cytokine, and this secretion
is TLR3-dependent. TLR3 is activated by an unknown ligand
from hepatocyte exosomes (Table 1) (21).

IL-22
Transgenic IL-22− mice are highly susceptible to increased
development of acute hepatitis, and their regenerative
processes are delayed (87). The same applies to IL-22BP-
deficient mice in a model of toxic hepatitis (88). In a model of
acute liver injury (induced by LPS/d-galactosamine), treatment
with recombinant IL-22 (rIL-22) has a protective effect due to its
anti-apoptotic, anti-inflammatory, and antioxidant effects (89).
The same was found for ILC3RORgt+IL-22+ cells (90). IL-22
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overexpression significantly increases the expression of the anti-
apoptotic genes Bcl2, Bcl-xL and the STAT3-p53 axis, induces
HSCs senescence, and thus protects the liver from injury in
ConA, carbon tetrachloride (CCl4) or Fas agonist models (91–
94). In a mouse model of acute ethanol-induced injury,
treatment with rIL-22 improved alcoholic steatosis, tissue
damage, and oxidative stress via STAT3 activation (95); and
rIL-22 inhibited HSCs activation in vitro (96). All this points
rather to the protective side of IL-22 during acute liver injury,
directed towards tissue regeneration (Table 2).

IL-17A, IL-22, and Chronic Liver Injury
If the damaging factor is eliminated, the inflammatory process
shifts to regeneration, and, in addition to the regenerative signal
provided by IL-22, the switch in macrophage phenotype from
pro-inflammatory to pro-fibrotic downstream of the
inflammatory response has been reported (109). If the
damaging factor (metabolic syndrome, alcohol abuse, chronic
viral infection, auto-immune disease) persists, the inflammatory
Frontiers in Immunology | www.frontiersin.org 6
process results in fibrosis instead of regeneration. The sustained
inflammation leads to perpetual activation of the HSCs, which
undergo a myofibroblast phenotypic transformation: they secrete
the components of the extracellular matrix (8). Since MMPs are
blocked by the overexpression of tissue inhibitor of
metalloproteinases (TIMPs), the matrix invades the damaged
tissue. The role of IL-17A appears to be crucial in chronic liver
inflammation (Table 3). The pro-fibrogenic role of IL-17A has
also been reported in pulmonary (111) and intestinal
fibrosis (112).

IL-17A
Active liver fibrosis is accompanied by IL-17A+ Th17, myeloid-
derived suppressor cells (MDSCs) (99), LTgd, MAIT, ILC3 cells
infiltration (113, 114) in particular in CCl4 or BDL-inducing liver
fibrosis mice models (14, 115). The IL-17AR–deficient mice that
underwent CCl4-induced fibrosis, showed a reduction in
neutrophil influx, pro-inflammatory cytokines, hepatocellular
necrosis, inflammation, and fibrosis compared to control (14, 15).
TABLE 2 | IL-17A in chronic liver injury.

Model Cells Action Reference

Mice
IL-17AR-deficient mice CCl4-induced fibrosis Th17,

neutrophils IL-
17A+

Neutrophile influx, inflammation, fibrosis reduction in IL-
17AR-deficient mice

Tan et al. (15); Meng et al. (14)

CCl4-induced fibrosis in TLR3-deficient mice LTgd IL17-A+ Enhanced IL-17A production by LTgd TLR3-mediated Seo et al. (21)
BDL-induced model of liver fibrosis,
cholestatic model

Th17 IL-17A neutralization improved BDL-induced fibrosis Zhang et al. (97)

MDR-/- mice, cholestatic model LTgd IL17-A+ Periportal-bridging fibrosis, increased numbers of LTgd
IL17-A+

Tedesco et al. (98)

C57BL/6 mice on high fat diet Th17 Higher frequency of liver Th17 cells compared to normal
diet; inhibition of fatty acid oxidation, steatosis
exacerbation

Tang et al. (99); Shen et al. (100)

IL-17AR-deficient mice + high fat diet CD4+IL-17A+ IL-17A production exacerbated obesity-induced
hepatocellular damage.

Harley et al. (101); Giles et al. (102)

Humanized mice on high fat diet CD4+IL17A+ Inflammation, NASH progression, liver fibrosis Her et al. (103)
Human
Chronic HBV+ patients, human liver samples,
immunohistochemistry staining

neutrophils IL-
17A+ CD45+IL-
17A+

Neutrophils IL-17A+, CD45+IL-17+ infiltration of human
liver tissue, independent of fibrosis stage.

Macek et al. (104)

Chronic HBV+ patients, Human liver biopsies,
immunohistochemistry staining, Flow
Cytometry

CD4+IL-17A+ Increased IL-17A expression in advanced fibrotic stage,
increased CD4+IL-17A+ infiltration

Fabre et al. (105); Zhang et al. (12); Tan
et al. (15); Wang et al. (106); Zhang et al.
(107)

NASH patients IL-17A+ cells
Tregs

Increased Th17 infiltration, Il-17A association with
hepatic steatosis and proinflammatory response in
NAFLD

Tang et al. (99); Rau et al. (108)
TABLE 1 | IL-17A in acute liver injury.

Model Cells Action Reference

HepG2 cell line STAT3 phosphorylation enhances IL-6 secretion Hu et al. (81)
Viral Infection West Nil Fever (WNF) in IL-17A-/- mice Cytotoxic LT

CD8
Reduced survival of WNF IL-17A-/- mice IL-17A sensitize antigen-specific
effector T cells

Acharya (82)

Susceptible mice with Theiler’s murine
encephalomyelitis virus

Cytotoxic LT
CD8

Exhaustive IL-17A response promote viral persistence Hou et al. (83)

a-GalCer-induced acute hepatitis in mice NKT IL-17A+ Protective role, produced IL-17A inhibits the development of hepatitis. Wondimu et al.
(84)

HBsTg mice ConA lesion LTgd IL17-A+ Protective, IL-23 mediated role, ameliorated liver damage in HBsTg mice Meng et al. (85)
WT mice ConA lesion Th17 IL-17A aggravates liver damage Yan et al. (86)
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This may be due to NLRP3 inflammasome inhibition (116). In
turn, HSCs stimulated by IL-17A increase the secretion of IL-6,
TGF-b1, collagen production, a-SMA expression, all markers of
HSCs activation (15). However, IL-17A rather sensitizes HSCs
for TGF-b-signaling by regulating TGF-b2-receptor expression
and does not activate them directly (117). The same was seen in
the BDL model (97). Cholestatic mice mdr−/− model shows
increased infiltration of the liver by LTgdIL-17A+ (98).

A pro-fibrotic and pro-inflammatory role of IL-17A was
shown in the NASH mouse model (99, 100). The use of IL-
17A–deficient mice models has been shown to improve/resist to
the development of steatohepatitis, a major risk factor of fibrosis
(101, 102). Humanized mice on high fat diet with induced
NAFLD develop liver fibrosis that is mediated by CD4+IL17A+

cells (103). The depletion of CD4+ cells in these mice reduced
fibrosis and inflammation but not steatosis. Moreover, in human
liver, an increase in the number of IL-17+ cells, among
intrahepatic CD4+ cells, was observed during the transition of
NAFLD to NASH. Th17/Treg ratio was significantly higher in
NASH patients, and the Tregs count, on the contrary, was much
lower (108).

In patients with chronic viral hepatitis, neutrophils accounted
for most of the IL-17A+ cells, especially in the late fibrosis stage,
but the frequency of CD45+IL-17A+ lymphocytes in liver tissue
was independent of the stage of fibrosis (F0–F3) (104). However,
an increase in IL-17A expression has been shown in the
advanced stages of HBV-related liver disease by the
immunohistochemistry on fresh biopsies of HBV+ patients (12,
15, 105–107) or patients with non-alcoholic steatohepatitis (99).

IL-17A inhibits autophagy and may promote the
development of hepatocarcinoma (118). Zhang et al. (2017)
demonstrated that the resolution of BDL- or thioacetamide-
induced inflammation and fibrosis after IL-17A neutralization is
due to a shift of the “suppressive” immune response in the
fibrotic liver toward a Th1-type response, via restoration of
autophagy activity through inhibition of STAT3 signaling (97).
In addition, activation of autophagy in Kupffer cells decreases
liver fibrosis via suppression of IL-1b expression (119).

IL-22
The impact of IL-22 on fibrosis development in chronic liver
injury is much more ambiguous (Table 4). Since IL-22 promotes
Frontiers in Immunology | www.frontiersin.org 7
survival and proliferation of epithelial cells and shows its
protective properties during acute injury, its role differs
depending on the duration and progression of the disease. IL-
22 is unable to inhibit hepatitis B virus replication, and its
neutralization in a model of HBV transgenic mice improved
liver damage (12). At the same time, study on pulmonary fibrosis
showed lungs infiltration by TgdIL-22+ lymphocytes with
protective anti-fibrotic potential (127). IL-22 injection protects
mice against BDL-induced liver fibrosis (14). In CCl4-induced
liver fibrosis, IL-22 is capable to slow liver fibrosis progression
via an increase in anti-inflammatory KCs to pro-inflammatory-
KCs ratio (120). However, IL-22RA1 knock-out mice develop
mild fibrosis in response to CCl4 treatment, and IL-22/IL-17
inhibition leads to reduced fibrosis (105).

IL-22 shows protective traits in mice models of NASH
pathology, but only in the absence of IL-17A (122). CXCL1,
which regulates reactive oxygen species release by neutrophils
and stress kinase activation in a mouse model of NASH, can be
altered by IL-22, attenuating NASH progression (121). Recent
study has demonstrated that IL-22 is capable to increase lipid
metabolism in the liver and have anti-apoptosis activity (123).

Acting through STAT3 activation, IL-22 promotes hepatocyte
proliferation and survival, increases HSC senescence (93). As a
consequence, chronic inflammation and strong IL-22 signaling,
constitutive activation of STAT3, upregulation of anti-apoptotic
genes, vascular endothelial growth factor (VEGF) expression, all
these factors promote and enhance the development of
hepatocarcinoma (128).

Immunohistochemistry analysis of human biopsies shows
significant IL-22+ cell infiltration in HBV+ patients with liver
cirrhosis (105) (129),. Moreover, systemic level of IL-22 is
predictive of survival in cirrhotic HBV+ patients (130). The
high expression of IL-22 in HBV+ patients has been found to
promote fibrosis progression by inducing intrahepatic migration
of Th17 cells via decreased hepatic expression of CXCL10 and
CCL20 (124). Also, the pro-fibrotic function of IL-22 is
associated with an enhancement of TGF-b1-signaling in HSCs
in a p38 protein kinase-dependent manner (105). Meanwhile, IL-
22 was protective in chronic hepatitis C and schistosome
infection, the high level of IL-22BP was associated with
aggravation of hepatic fibrosis (125). However, another team
showed worsening effects of IL-22 in HCV-infected patients, as
TABLE 3 | IL-22 in acute liver injury.

Model Cells Action Reference

Mice
TgIL-22- mice Th17 IL-22+ Susceptible to the enlarged development of acute hepatitis,

protective role of IL-22
Zenewicz et al., (87)

IL-22BP-deficient mice Acetaminophen-Induced liver
Injury, toxic hepatitis

Susceptible to the enlarged development of acute hepatitis,
protective role of IL-22

Kleinschmidt et al., (88)

LPS/d-Gal, rIL-22 treatment Anti-apoptotic, anti-inflammatory, and antioxidant actions Xing et al., (89)
CCl4 acute liver injury ILC3RORgt+IL-

22+ cells
Protective role of ILC3RORgt+ IL-22+ cells Matsumoto et al., (90)

CCl4 acute liver injury, TgIL-22+ mice, rIL-22
administration.

Th17, Th22, Th1 Protective role of IL-22 via the induction of HSC senescence. Kong et al., (93); Lu
et al., (94)

ConA lesion T-cell mediated model LTCD3+

lymphocytes
protective role of IL-22 via STAT3 activation Radaeva et al., (110);

Pan et al., (91)
Ethanol-induced injury Th17 Improved liver damage, steatosis via STAT3 activation Ki et al., (95)
June 2021 | Vo
lume 12 | Article 691073

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kartasheva-Ebertz et al. Retinoic Acid, IL-17A, and IL-22 in Liver Fibrosis
manifested by increased infiltration of IL-22+ cells, colocalized
with a-SMA protein of HSCs in the advanced stages of
fibrosis (126).

Interplay Between IL-17A, IL-22, and RA
The differentiation of the main source of IL-17A and IL-22, the
Th17 cells, is dependent on RA signaling. The major cells involved
in the production of fibrosis, the HSCs, are a major source of
vitamin A, a storage form of retinyl esters packed in lipid droplets.

RA and HSCs Activation
HSCs activation is directly linked to the release of lipide droplets
with vitamin A storage, which they use as an important energy
source for their activation, supported by autophagy, which is a
major source of free fatty acids and fuels the activation of HSCs
(8). LPS flow enhances autophagy activation and deregulates
retinoid signaling (131). During the first phase of HSCs
activation, the lipid droplets decrease in size and migrate to the
newly formed cell expansions. Retinyl esters in the lipid droplets
are replaced by triacylglycerol species. In the second phase, the
remaining lipid droplets decrease in size and undergo
degradation (132). According to the limited number of studies,
lysosomal lipase (LIPA) as well as PNPLA3 have retinyl-esterase
activity and are involved in the breakdown of retinyl esters
during HSCs activation (65, 133).

At the same time, LRAT is the major enzyme for retinyl esters
synthesis. LRAT-deficient mice cannot produce retinyl esters.
Thus, HSCs of LRAT-deficient mice do not contain retinoid lipid
droplets. The absence of retinoid stockage does not enhance liver
fibrosis in BDL or CCl4 mice models (134). However, it was
discovered that exosome-derived long non-coding RNA-H19
(lncRNA-H19) enhanced RA signaling, which was manifested
in increased HSCs activation, increased retinol metabolism, and
decreased number of lipid droplets in HSCs (134, 135).
Moreover, ADH3 is an important link in this activation,
because its inhibition leads to disruption of lncRNA-H19/RA
signaling and to HSCs’ inactivation. The role of exosomes in
HSCs activation is much more ample and perfectly reviewed by
Frontiers in Immunology | www.frontiersin.org 8
Chen (135). Thus, the explicit role of retinoid lipid droplets and
active vitamin A metabolites during HSCs activation
remains open.

RA and Liver Pathology
A decrease in total retinol and an increase in RA were found in
the liver of rats treated with CCl4 or thioacetamide (136). RA
down-regulates fibrosis markers expression in a rat model of
alcoholic liver disease, enhancing the abstinence effect (137).

In patients with NASH or NAFLD (or type 2 diabetes), the
serum RA concentration is significantly lower than that in healthy
subjects (136) (138). Histologically, the expression of RXRa RNA
was inversely correlated with the stage of liver steatosis (138). The
protective effect of RXRa is likely to be related to the synergy of
action with the PPARg receptor (139–141). The analysis of vitamin
A metabolome in human livers with NASH showed disrupted
vitamin A homeostasis, potentially contributing to disease
progression. Interpretation of retinoid homeostasis on the basis of
indirect markers such as retinol concentrations or mRNA data is
probably misleading (142).

RA and IL-17A Interactions
On the one hand, RA enhances TGF-b1 signaling in T lymphocytes,
through increased expression and phosphorylation of the
transcription factor SMAD3 (61). On the other hand, RA
downregulates TGF-b1/Smad3 signaling, IL-6 and collagen
expression in the tissue parenchyma (131, 143). This results in
the decrease of HSCs proliferation and fibrogenic gene expression
(144). During liver fibrosis, these are key molecules upregulated by
IL-17A, thus it can be speculated that disruption of RA signaling will
extend the deleterious effects of IL-17A.

RA interacts with different immune populations, which are
involved in the development of liver fibrosis. It upregulates RAE1
expression, NK cell-activating ligand expressed on HSC. NK cells
proceed to cytotoxicity and thus regulate the number of formed
myofibroblasts (110, 145). On the one hand, RA inhibits IL-17A
secretion in cultured Tgd cells stimulated by IL-1b and IL-23 and
in infected mice (autoimmunity model), but does not affect INFg
TABLE 4 | IL-22 in chronic liver injury.

Model Cells Action Reference

Mice
HBV+ Tg mice, IL-22 neutralization LTCD4+IL-22 IL-22 neutralization improves liver damage Zhang et al. (12)
BDL-induced fibrosis Protective role of IL-22 Meng (14)
CCL4 -induced fibrosis M1/M2 Kupffer

cells
IL-22 can increase the ratio of M2/M1, protective role of IL-22 Su et al. (120)

CCL4 -induced fibrosis Th17, Th22 IL-22 deleterious effects on liver fibrosis Fabre et al. (105)
CXCL1/High Fat Diet-induced NASH IL-22 blocked hepatic oxidative stress, via induction of the antioxidant proteins.

Inhibited inflammation in NASH
Hwang et al. (121)

NASH model (mice fed methionine
choline-deficient diet)

Th17, Th22, Th1 IL-22 is protective in NASH but only in the absence of IL-17A Rolla et al. (122)

NASH model (high fat diet) ILC3KO mice ILC3RORgt+IL-
22+ cells

IL-22 enhances hepatic lipid metabolism, and have anti-apoptosis activity Hamaguchi et al.
(123)

Human
HBV+ patients, liver cirrhosis -IL-22+ cells

-Th17
Increased IL-22+-cell infiltration, correlation with advanced stages, cirrhotic liver Fabre et al. (105);

Zhao et al. (124)
HCV+ patients IL-22BP IL22-BP aggravates liver fibrosis in HCV infection, protective role of IL-22 Sertorio et al. (125)
HCV+ patients IL-22+ cells Increased IL-22+-cell infiltration depending on fibrosis stage Wu et al. (126)
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secretion (146). On the other hand, under the influence of RA,
Tgd lymphocytes can secrete large amounts of IL-22, which
promotes the affinity of the RAR receptor to the IL-22
promoter, thus reducing inflammation (147, 148). RA also
improves liver damage in a T-cell-mediated mouse model by
reducing INFg secretion by NKT cells, but does not affect their
activation (149).

RA decreases the expression of IL-6, IL-23, and IRF-4 receptors
in vitro (61). This implies that even in the presence of IL-6 and IL-
23, there is an increase in FoxP+Tregs and inhibition of IL-17A,
which can lead to a decrease in neutrophil inflow to the site of
inflammation. In in vivo EAE models, RA does not increase the
frequency of Treg, but was able to inhibit inflammatory response of
Th17 cells (61). Lymphocytes T previously treated with RA are no
longer able to induce EAE in mice, there is a decrease in the
infiltration of the central nervous system by IL-17A+T cells (146).
Moreover, vitamin A supplementation has been shown to decrease
RORgt and IL-17A expression in multiple sclerosis (150).

Another team reports a decrease in liver damage in the
cholestatic mouse model (BDL) after treatment of mice with
ursodeoxycholic acid (UCDA), the only drug approved for the
treatment of liver cholestasis, in combination with RA (151). RA
alone or in combination with UCDA significantly reduced the
Frontiers in Immunology | www.frontiersin.org 9
expression of TGF-b1, Col1A1, MMP-2, a-SMA, CYP7A1,
TNFa, and IL-1b (151). The same results were seen in the
murine model of hepatic fibrosis CCl4, administration of RA
decreasing TGF-b1 and IL-6 secretion and increasing
survival (152).

IL-17A activates the expression of the MMP-2 and MMP-9 in
vitro (153), which are widely implicated in the progression of
liver fibrosis (154). RA, for its part, is able of reversing this
activation, thus moderating the spread of the pathological
process (fibrosis or cancer) (155). In a rat model of alcoholic
liver disease, RA treatment downregulated MMP-2 and MMP-9
expression, as well as TIMPs expression (137), but could enhance
MMP-3 and MMP-13 expression in HSC rat cell line (144). In
addition RA can promote the upregulation of MMPs in dendritic
cells (156) or mesenchymal stem cells (157) causing their
enhanced migration to the site of injury.
CONCLUSIONS

There is much evidence of the deleterious effects of IL-17A on the
development of a liver disease, particularly liver fibrosis.
Regardless of regeneration or fibrosis, the liver responds to
FIGURE 3 | Trio IL-17A/RA/IL-22 in development of liver fibrosis. Under the influence of damaging factors there is an activation of the intrahepatic immune system
guided by IL-17A, TGF-b1 and IL-6. Under TGF-b1 and IL6 secreted by Kupffer cells, as well as IL-17A secreted by Tgd, Th17, myeloid populations, there is an
activation of HSC. Upon activation, the HSC releases lipid droplets filled with retinyl esters and transforms into myofibroblasts, generating the extracellular matrix,
notably collagen. IL-17A promotes the migration of circulating immune cells. RA is able to disrupt IL-17A, TGF-b1 and IL-6 signaling by inhibiting the expression of
IL-6 receptors, thereby moderating HSCs activation. Fibrosis progression is associated with permanent remodeling of the deposited matrix. RA is capable of
inhibiting MMP-2, MMP-9, certain TIMPs, and thus moderating the spread of fibrosis. Through STAT3 activation IL-22 contributes to hepatocyte proliferation,
differentiation and migration. HSC, hepatic stellate cell; RA, retinoic acid; ECM, extracellular matrix; MMP, metalloproteinase; TIMP, tissue inhibitor of
metalloproteinase; ILC3s, type 3 innate lymphoid cells; MAITs, mucosal associated invariant T cells. Red arrows—possible inhibitory effect, Green arrows—possible
activator effect.
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damage by activating HSCs that release their vitamin A stores.
Active metabolites of vitamin A, such as RA, are strongly
involved in the differentiation of the Th17 cell population, the
main producers of IL-17A and IL-22. As a result of its anti-
inflammatory and immunomodulatory effects, RA can down-
regulate the secretion of IL-17A by immune cells and promote
IL-22 signaling. However, very few studies have examined the
relationship of this IL-17A-AR-IL-22 trio in the context of
liver fibrosis.

In addition to a role in the immune component, genetic
variations in enzymes, regulating the availability of active
Vitamin A metabolites in the liver, have been found. These
SNPs affect the prognosis of the course of chronic liver disease,
like alcoholic and nonalcoholic liver diseases. In animal models,
RA is able to inhibit IL-17A secretion, IL-6R, IL-23R expression,
regulate MMPs/TIMPs and TGF-b1 expression, and thus
regulate the development of inflammation and fibrosis
(Figure 3). The data suggest that the concentration of RA in
the liver increases progressively as fibrosis progresses and
decreases in the serum. This, on the one hand should alleviate
IL-17A-associated inflammation, but, on the other hand means a
high activation of HSCs and, consequently, advancement of the
disease. In addition, according to the data, there is an increased
activity of CYP26A1, the enzyme responsible for RA
degradation. RA signaling could also be deregulated. There is a
need to explore the possible interaction between IL-17A and RA
in the liver, to understand whether IL-17A-associated
Frontiers in Immunology | www.frontiersin.org 10
inflammation can be reversed by the action of active
metabolites of vitamin A in humans, and to unravel the
molecular mechanisms behind this likely regulation. Based on
the immunopathobiology of human fibrogenesis, we can
speculate that immune modulation of the IL-17A/RA axis
could be a new important component of the very active
therapeutic development of NASH and fibrotic disease.
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GLOSSARY

HCC hepatocellular carcinoma
NASH non-alcoholic steatohepatitis
NAFLD non-alcoholic fatty liver disease
RA retinoic acid
HSCs hepatic stellate cells
PRRs pattern recognition receptors
TLR4 toll-like receptor 4
LPS lipopolysaccharide
LSEC liver sinusoidal endothelial cells
TGF-b transforming growth factor
ECM extracellular matrix
PD-L1 programmed death-ligand 1
Th17 T helper 17 lymphocytes
Tc17 T cytotoxic 17 lymphocytes
LTs lymphocytes T
NKT natural killer T cell
ILC3s type 3 innate lymphoid cells
MAITs mucosal associated invariant T cells
GM-CSF granulocyte colony-stimulating factor
EAE experimental autoimmune encephalomyelitis
BDL bile-duct ligation
RADLH retinaldehydrogenases
RBP4 retinol binding protein 4
RARa, b, g retinoic acid receptors
RXRa, b, g retinoid X receptors
TNFa tumor necrosis factor a
IRF-4 interferon regulatory factor 4
AKR1B10 aldo-keto reductase family 1 member B10
ALDH1A aldehyde dehydrogenase 1 family member A
BCO1 beta-caroten oxygenase 1
SCARB1 scavenger-receptor class B 1
PNPLA3 patatin-like phospholipase domain-containing protein 3
HSD17B13 17b-Hydroxysteroid dehydrogenase type 13
WT wild type
CCl4 carbon tetrachloride
PDGF platelet derived growth factor
INF -4 interferon 4
G-CSF granulocyte colony-stimulating factor
ConA concanavalin A
MMP metalloproteinase
TIMP tissue inhibitor of metalloproteinases
MDSCs myeloid-derived suppressor cells
VEGF vascular endothelial growth factor
UCDA ursodeoxycholic acid
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