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ABSTRACT: The aim of this study is to determine the influence of the various
parameters on the flow of thin film motion on an inclined extending surface. Maxwell
fluid is used as a base fluid, and magnesium oxide (MgO) and titanium dioxide
(TiO,) are used as nanocomponents. The width of the thin film is considered
variable and varied according to the stability of the proposed model. The magnetic
field is used in the vertical track to the flow field. The entropy generation and Bejan
number are examined under the influence of various embedded parameters. The
outputs of the liquid film motion, thermal profile, and concentration field are also
shown with the help of their respective graphs based on the collected data. The
solution of the model involves key features such as entropy generation, Bejan
number, drag force, and heat transfer rate. Brinkman number, magnetic parameter,
radiation parameter, thickness parameter f, and unsteadiness parameter S are also
deliberated graphically. The percentage improvement for the enhancement of heat
transfer has been calculated and compared for both the nanofluid and hybrid
nanofluids. The results are validated through comparison with the existing literature.

1. INTRODUCTION

In nature, most of the existing fluids are not Newtonian, and it
is not easy to study these fluids through simple Naiver stocks
equations without making alterations. Non-Newtonian fluids
are needed in our daily lives, including food items,
medications, polymers, and so on. These fluids are the
combination of shear stresses and normal stresses. The time
retardation effect, elasticity, and viscoelastic nature of these
fluids make them different from the common fluids. These
fluids has the tendency to improve the heat transfer rate
efficiently and store energy due to their elastic nature. The
researchers have also used these fluids for the cooling and
thermal applications. The cooling and heating applications of
these fluids are discussed by Hoyt' considering friction
reduction. The other fruitful applications include pipelines
carrying petroleum’s which are made of high polymers in
industries. Plastic materials are usually made of elastic fluids,
and similarly, chemical and mining industries are dependent on
Newtonian fluids. The viscoelastic fluids are more suitable for
testing purposes in the form thin layers.

These tiny layers are widely used in the coating industry,
including wire and fiber coatings. Thin films are usually used in
lubrication to reduce the friction force and improve the device
efficiency. Liquid films are more compatible to use for the heat
transfer analysis. The basic ideas regarding thin film flow were
investigated by Wang.” This idea is further improved by the
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Andersson et al.® to add the energy equation. Similarly, new
terminologies like the concept of pulse waves were used by
researchers™” in the flow regime of the thin film. In the initial
studies, a constant thickness of the liquid film was used by the
researchers, which was not so effective in maintaining the
stability. Maintaining the stability of the thin film is more
effective by using variable thickness instead of a constant
thickness.” Thermal performance produces a dimensionless
outcome that are restrained by an appliance that restores
energy. The thickness of the thin film is very thin and quite
suitable for heat transfer analysis in a short time at the
laboratory level. Therefore, the researchers focus on the thin
materials like the thin film for the testing purpose in terms of
the heat transfer. Akkus et al.” calculated liquid-film vapors
considering 2D modeling. The thermal performance of the
base liquids is commonly low, and nanoparticles or nanoma-
terials are usually stably dispersed in the base liquid to improve
the thermal performance of the traditional fluid, known as
nanofluids. Different mathematical models and various nano-
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materials were used by researchers®>* to improve the thermal
performance of the base liquids. The efficiency in the heat
transfer analysis can be seen in the mechanical, industrial, and
renewable energy resources, and the proposed model is also a
part of the enhancement in heat transfer considering hybrid
nanofluids for the applications of renewable energy resources
in terms of the theoretical analysis. Tahir et al.*’ have
examined the behavior of various parameters using the liquid
film flow.

The viscoelastic fluid flow in terms of thin film is commonly
used in medication and industries. In fact, blood is a class of
Maxwell fluid and some drugs also lie in the viscoelastic class of
non-Newtonian fluids. Similarly, elastic materials are another
form of the Maxwell fluid usually used in the industries.
Maxwell fluid reveals both viscous and elastic performance,
which means stress relaxation and elastic recovery after
distortion are the main characteristics of the Maxwell fluid to
distinguish this fluid from the rest of the non-Newtonian fluids.
Nadeem et al.”* have used the Maxwell fluid as a base fluid for
thermal applications by inserting nanoparticles in the base
solvent. They focused on the heat transfer rate and calculated
all the thermal features related to the Maxwell fluid. Binetti et
al.”®> have used the more reliable concepts by treating
C¢HgNaO, in direct relation to the viscoelastic behavior of
the Maxwell fluid. Sunnapwar and Pawar’® used the same idea
by using the stable thermophysical properties of the solid
particles. Later on, the idea of using C4HyNaO, for thermal
performance has also been used.”””® These researchers
correlated their studies with the agriculture sector.

Initially, working fluids with millimeter to micrometer sizes
were used in renewable energy devices and the performance
was not very encouraging. The use of working fluid containing
an amalgamation of black liquid and micron-sized particles
leads to erosion, sedimentation, and pipe blockage. Nanofluids
are basically an amalgamation of nanosized nanofluid (<100
nanometers) metallic particles and the conventional liquid with
extended heat transfer capabilities described by Bahiraei et al.*

The direct absorption of the nanofluids in the solar collector
improved the thermal properties and is more effective in terms
of the radiation characteristics as displayed in Al-Rashed et
al.* The solution of the model is obtained by the researchers
using the Keller box scheme.” = The thermal performance of
the nanofluids in the form of the direct absorption via solar
collector using various nanoparticles, including silver and so
on, was analyzed. The experiment depicted that a volume
concentration of 3% with an ~10 mm collector height
improves the efficiency by 90%. An analytical solution for
the thermal radiation and the Joule heating impact for a
thixotropic nanofluid flow is attained elsewhere.’® A
comparatively weaker boundary layer and low velocity of the
fluid are witnessed for a strong magnetic field. Similar studies
highlighting thermal radiation impacts on solar collectors are
found elsewhere.””*® Free convection and thermic reaction
convection were first introduce by Cess®” and Arpaci.*’ Gul et
al.*"** analyzed nanofluid flow using various models for the
applications of heat transfer. Takabi & Salehi®" analyzed hybrid
nanofluids using the mathematical model of the sinusoidal
enclosures for thermal applications. Hybrid nanofluid is the
combination of the stable dispersion of different nanoparticles
having different thermophysical and chemical properties in the
same base fluid. These are widely used in the heat exchangers,
solar systems, and drug deliveries.””~>°

The Maxwell fluid thin film flow over an extending surface
has been examined by Takabi and Salehi.”' The idea regarding
heat and mass transfer including the variable thickness of the
liquid film was discussed by Qasim et al.’> The concept of
TiO, and Ag materials for the drug delivery was analyzed by
Charegh and Dinarvand® using blood as the base fluid. Gul
and Pervez’ have used the thin film of Maxwell hybrid
nanofluids for various thermal applications. They observed the
thermophoresis’ and Brownian motion parameters’ impact on
the liquid film flow. The viscoelastic fluids were used by
researchers’>*® for heat transfer enhancement applications.
The thermal effect is mostly targeted by researchers to improve
energy resource efficiency.

Originality/Value

o The entropy generation in the liquid film using Maxwell
fluid is a new addition.

e The Bejan number impact under the influence of various
parameters improves the novelty of the suggested model.

e MgO and TiO, nanomaterial dispersion in the Maxwell
fluid to perform hybrid nanofluids for the enhancement
of heat transformation is a very rare approach in the
form of thin film.

e The thin film Maxwell hybrid nanofluids in terms of the
MgO and TiO, nanomaterials are a new extension for
the heat and mass transfer analysis.

e A porous medium, thermal radiation, and magnetic
parameters further improve the novelty of the thin film
fluid flow on an inclined plane.

1.1. Methodology. The proposed flow model was
developed through a system of PDEs, which later is
transformed into non-linear ODEs. The homotopy analytical
method (HAM) in MATHEMATICA has been used for the
analytical solution of the proposed model.

2. FORMATION

In the proposed flow demonstration, we took into account the
thin-layer flow of the Maxwell hybrid nanofluid on an inclined
extending surface, and the Maxwell fluid has been used as a
base fluid. Two MgO and TiO, nanomaterials are used in
hybrid nanofluid preparation.

As the fluid lies on the extending sheet as force is applied to
the sheets, they start moving. h(t) represents the thickness of
the film.

In the above figure, the extending sheet is placed inclined to
make an angle ¢ with the horizontal plane. When we apply
force on the sheet, it starts moving with a velocity

U=bx(l —at)™ (1)

The operative elasticity of the velocity is b(1 — at) /2
toward the x axis, and the parameter “a” stands for the
increment of time in a selected range (0 < a < 1) while “b”
represents the elasticity. The surface temperature of the
extending sheet is signified as “T,”, and the temperatures of the
slit are defined as T and T,. The range of these constraints are
referred to as 0 < T, < T,

The unsteady magnetic term in a perpendicular track is

defined as
By(x, t) = (1 — at)_1/230 (2)
The basic flow equations are
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The components of velocity are represented by u, v, which
are acting along the directions of x and y, respectively. The
physical conditions for the thin film flow is defined as

ou oh
u, o =U, vl =0, — , v=— ,
¥y Y f@y . ot =it
Theo =T, Cl_y=C, T =« =0
dy dy
y=h(t) y=h(t)
(7)
h(t) stands for the liquid film width.
w )2 oy oy
y= (1 — at) xf(n), u= PR
1/2 N
b bx o(n)
=] » T=%-T|=|—1
1 (u(l—at)) 4 0 [21}](1—(;zt)3/2
2
C = CO —_ Cr bi %)3/2
2 (1 = ar) (®)
The transformed form is displayed as follows:
1/2
b
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chemical reaction, thermal Grashof number, radiation param-

eter, and mass Grashof number, respectively.

The transformed form of the physical conditions are taken as
f(0)=0,f(0) =1,0(0) = 1, ®(0) = 1

Jom CSP  a
f1B)=0,f(p) ==, 0(p) =0, (p) =0 -

21, 1% D*

C, = N = = T~
! Dy(C, - Co)  (16)

/)U Y ‘ k(Tw - TE))’
aT ac
y 9, = —k a_ y 9, = —Up 6_
y=0 y y=0 'y

These terms are transformed and in the simplified form are

y=0

displayed as

JZ ky,
Re'/2Cf= ——Lf7(0), Re “/*Nu= —[ "+ Rd|©/(0),
Hinf kg
U
Re /2Sh = —d'(0), Re= ¥
¢ ©), Re=-= (17)

2.1. Entropy Rate. Entropy is an essential idea in
engineering, mathematical models, and physics. It plays a
vital role in continuum physics, thermodynamics, biology, and
economics.”” % Entropy is actually a phenomenon dependent
on the second law of thermodynamics, which states that
entropy increases in an isolated system through any activity.
While this idea is further extended in quantum mechanics with
the inclusion of a density matrix. In the case of the statistical
system or in the theory of probability, entropy is used to
measure the uncertainty of the variables that are used in the

statistical phenomena.
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00 02 04 06 08 10 and Maxwell fluids are the most systematically studied. The
! critical Reynolds number is more visible in the tiny layers like
Figure 2. Consequence of 8 vs f'(1). thin liquid films. The flow of Maxwell hybrids on an inclined

and stretching sheet is taken into consideration.
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Solid nanoparticles (NPs) from magnesium oxide (MgO)
and titanium dioxide (TiO,) are used to produce hybrid
nanofluids. These nanoparticles are dispersed in the Maxwell
fluid efficiently up to 5% of the total fluid. The mathematical
model in the form of nonlinear ODEs has been applied using a
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well-known seminumerical technique (HAM). The latest
version or package BVPh 2.0 of this method is a more reliable
version to sustain the stability, and convergence is used here to
find out the solution. The key objective of this study is to
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Figure 18. Consequence of Rd vs NG.
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investigate the heat transfer rate enhancement using the hybrid
nanofluid, and it is observed that hybrid nanofluids are more

$1, 02
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Figure 23. Consequence of ¢}, ¢, vs Nusselt number enhancement in
%.

reliable to improve the heat transfer rate. The physical
structure of the problem is revealed in Figure 1.

Figures 2 and 3 show the consequence under . As f
upsurges, the velocity field declines, but the temperature field
rises due to the increased film thickness.

The film width causes the enhancement in the distribution
of velocity components in the downward direction. Physically,
the increasing thickness of the liquid film progresses the
resistance force and consequently the fluid motion decline. It is
also noted that hybrid nanofluids (TiO, + MgO) are more
effective than nanofluids (MgO) used for f§ variation.

The axwell parameter influence is displayed in Figure 4.

The fluid movement changes in relation to the Maxwell
parameter A. Therefore, the change of A disrupts the velocity
profile. Thus, the increase of A decreases the movement of the
liquid film. The viscoelasticity parameter increment increases
the resistive force and as a result the fluid flow decline.

Figures 5—7 illustrates the impact of "S” in the suggested
model; it was noted that the parameter "S” has a significant
impact on f'(17) and O(z).

The intensification in "S” explains a decrease in the velocity
field; likewise, an increase in the temperature distribution is
caused by an upsurge in “S”. Liquid film motion was
expressively decreased due to the increasing values of the
instability parameter.

These outputs depict the nature of the unstable parameter
resulting in a drop in the liquid film thickness f. The
distinction in the liquid film thickness bears the stability of the
fluid motion, and also the convergence is mainly based on the
thickness of the liquid film. Also, the concentration profile
decreases with the higher values of S. Figure 8 illustrates the
behavior of the porosity parameter ” Ar”. It is seen that for
increasing the porous parameter, the velocity declines. The
declining trend is due to the fact that the increased porous
parameter dominates the frictional effects. MgO and TiO, +
MgO nanomaterials are melted in the Maxwell liquid to
perform nanofluid and hybrid nanofluids. The resistance force
is initiated due to the larger liquid film thickness f, and the
same influence is produced with the rising value of the porosity
parameter “Ar”. Therefore, the resistance force is improved
with the increasing value of the porosity parameter.

Figures 9 and 10 display the influence of the Gc (Mass
Grashof number) over the liquid film motion. The mass
Grashof number is acting along the flow direction, and
therefore the augmentation of Gc¢ enhances the fluid motion.
The increasing effect is further improved in terms of the hybrid
nanofluids..
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Table 1. Thermophysical Features of the Nanoparticles

APS (average particle size),

parameter nm mMorphology
MgO 25—45 nearly spherical
TiO, 18-23 nearly spherical

80 wt % MgO-20 wt % TiO, 10—45 spherical

true derlssity, thermal ctzr}dufltivity, specific hejt Cﬂ:)acity,
g cm Wm™ k JkgT K
3.57 S.112 0.852
395 5.407 0.835
2.87 4.768 0.842

Table 2. Comparison between the Published Work and Present Work for the Surface and Wall Temperature Gradients
Considering Common Factors Using the Regular Fluid Having Pr = 7.56“

Wang2 Wang2 Qasim et al.**
S o(1) -0'(0) o8
0.1 0.34201 0.5302 0.34810
3 0.65321 1.20437 0.67224
6 1.02531 1.72810 1.05168
9 1.73106 2.23017 1.82021

“Note that they used small and variables values of the Prandtl number.

Qasim et al.*” present present

—0'(0) CI0) ~4©'(0)
0.53263 0.348320 0.532865
1.31026 0.681210 1.34720
1.81321 1.062102 1.85210
2.37630 1.881312 2.413021

Table 3. Comparison between the Published Work and
Present Work for the Sherwood Number Considering a
Common Factor Using the Regular Fluid Having Pr = 7.56,
$=10

Qasim et al.”>  Qasim et al.>” present present
Se @) —2'(0) (p) —2'(0)
10 0.31264 0.72018 0.31301 0.723510
12 0.21235 0.68382 0.21423 0.69310
14 0.13641 0.52103 0.13910 0.55102

The increasing values of the thermal Grashof number in
terms of linear temperature difference enhance the fluid
motion and this effect is more effective by using hybrid
nanofluids (MgO and TiO,).

Figures 11 and 12 show the nanoparticle volume fraction
(¢, @,) for velocity and thermal profiles. The increasing
values of the nanoparticle volume fraction in a particular range
(¢1, ¢, = 0.01,0.02,0.03) reduce the velocity field and boost
the temperature distribution.

The obtained outputs show that those hybrid nanofluids
containing MgO + TiO, nanomaterial progress the thermal
characteristics of the conventional fluids. The target of the
proposed model is to progress the thermal transport of the
conventional fluids, and the addition of the radiation term
shown in Figure 13 improves the temperature distribution.
Again, the increasing amount of Rd boosts the temperature
profile.

Increasing values of chemical reaction y reduce the
concentration field as shown in Figure 14. The cohesive forces
between the molecules increase due to the increasing values of
the chemical reactions, which reduces the concentration field.
The augmentation in the Schmidt number (Sc) also reduces
the concentration profile, and this happens due to the
reduction in the molecular diffusion as shown in Figure 15.

The entropy regime enhances with the cumulative values of
the porosity parameter while the opposite trend is achieved in
the case of the Bejan number as shown in Figures 16 and 17.
Similarly, the thermal growth upsurges with the accumulation
in the radiation parameter, and thus the entropy of the fluid
upsurges while the Bejan number decreases as shown in
Figures 18 and 19.

A plot of the Bejan number versus Brinkman number is
displayed in Figure 20. The Bejan number declines with the
augmentation in the Brinkman number. In fact, fluid and

33371

entropy upsurge with an increase in the Brinkman number, and
the Bejan number plays a reverse role of entropy.

The statistical analysis was also done for the imperative
parameters like skin friction (drag force), Nusselt number
(heat transfer rate), and Sherwood number. The comparative
analysis for the nanofluid and hybrid nanofluid has been
performed in terms of the above physical parameters. The
increment in the mass Grashof number Gc improves the liquid
film flow, as displayed in Figure 21. Physically, the ways of the
flow and mass Grashof number are in the same direction and
the increasing value of the mass Grashof number improves the
fluid velocity, and therefore the skin friction declines.

The thermal Grashof number influence on the skin friction
is displayed in Figure 22. Again, the greater values of the Gr
improve the liquid film flow and decline the skin friction.
Figure 23 shows the consequences of ¢;, ¢,. The thermal
profile and thermal transport rate are more enhanced due to
the increasing amount of the nanoparticle volume fraction. The
hybrid nanofluid is more effective in comparison with
nanofluids and conventional fluids to enhance the heat transfer
rate as shown in Figure 23. The percentage-wise enhancement
in the heat transfer provides more evidence to show that
hybrid nanofluids have the tendency to improve the heat
transfer rate more efliciently. The thermophysical properties of
the solid nanoparticles are displayed in Table 1. The
comparisons of the proposed model with the published work
are shown in Tables 2 and 3. The Prandtl number values
remain fixed in all the existing and current work. As per the
experimental approach, the Prandtl number is fixed and does
not vary for the regular fluid. Therefore, the common
parameter, the unsteadiness S, was compared with the
published work,”>* and as a result a much closer agreement
was attained. As Wang’s” study is limited up to heat transfer,
the variation in the Schmitt number, which is a common
parameter of the concentration profile among the present work
and that of Qasim et al,*” has been compared for the various
values. The comparison shows the authentication of the
present results with the existing literature.

4. CONCLUSIONS

The current study delineates the effect of nanocomposites on
the Maxwell hybrid nanofluid. The heat transfer rate for
various parameters in the presence of radiation, magnetic field,
and porosity is analyzed in the form of physical and
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computational data. Mass transfer and entropy factors are
considered in this model.

The problem is tackled through the homotropy analysis
method (HAM) in MATHEMATICA. The proposed flow
model is very worthwhile and valuable in various physical
processes involving heat and mass phenomena. This work
demonstrated its productivity and valuable usage in medical
sciences, engineering, and other industries.

The key conclusions are the following:

e The growing inputs of the thermal Grashof number
increase the fluid motion.

e The thermal field grows with the augmentation in the
volume fraction of the nanoparticles, and this effect is
more effective in terms of the hybrid nanofluids.

o Increasing the width of the film would cause the velocity
profile to increase.

e The large value of the magnetic moment parameter
would cause the Lorentz force enhancement, and
therefore the deceleration in fluid motion occurs.

e The percentage-wise improvement in the heat transfer
rate confirms that the hybrid nanofluids are more
effective at enhancing heat transfer.

e The entropy of the hybrid nanofluids increases with
increasing porosity parameter, and for the same variation
of the porosity parameter, the Bejan number decreases.

e The radiation parameter increases the entropy of the
hybrid nanofluids for its larger values and reduces the
Bejan number.
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B NOMENCLATURE

A time relaxation

T extra stress tensor

K thermal conductivity

G specific heat

Pr Prandtl number

Ty T,y constant temperature

S unsteadiness parameter

T temperature

O kinematic viscosity of hybrid nanofluid
u, v Velocity components

p density

Mg dynamic viscosity of hybrid nanofluid
Sc Schmitt number

k® permeability coefficient

A time relaxation

n similarity variable

S temperature in non-dimensional form

h(t) thickness of the film
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