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Abstract

Background: Mortality prediction models generally require clinical data or are derived from information coded at discharge,
limiting adjustment for presenting severity of illness in observational studies using administrative data.

Objectives: To develop and validate a mortality prediction model using administrative data available in the first 2 hospital
days.

Research Design: After dividing the dataset into derivation and validation sets, we created a hierarchical generalized linear
mortality model that included patient demographics, comorbidities, medications, therapies, and diagnostic tests
administered in the first 2 hospital days. We then applied the model to the validation set.

Subjects: Patients aged $18 years admitted with pneumonia between July 2007 and June 2010 to 347 hospitals in Premier,
Inc.’s Perspective database.

Measures: In hospital mortality.

Results: The derivation cohort included 200,870 patients and the validation cohort had 50,037. Mortality was 7.2%. In the
multivariable model, 3 demographic factors, 25 comorbidities, 41 medications, 7 diagnostic tests, and 9 treatments were
associated with mortality. Factors that were most strongly associated with mortality included receipt of vasopressors, non-
invasive ventilation, and bicarbonate. The model had a c-statistic of 0.85 in both cohorts. In the validation cohort, deciles of
predicted risk ranged from 0.3% to 34.3% with observed risk over the same deciles from 0.1% to 33.7%.

Conclusions: A mortality model based on detailed administrative data available in the first 2 hospital days had good
discrimination and calibration. The model compares favorably to clinically based prediction models and may be useful in
observational studies when clinical data are not available.
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Introduction

Bacterial pneumonia is a leading cause of morbidity and

mortality in the United States. Every year, more than 8 million

patients are admitted to US hospitals with pneumonia; 8.8% of

them will die. [1] Despite the common nature of this condition,

there are large gaps in our knowledge regarding how best to care

for pneumonia patients. Most recommendations in national

treatment guidelines are not based on randomized trials, and

there is a paucity of comparative effectiveness research.

Administrative databases derived from billing records are

attractive candidates for health services research, as well as for

use in hospital profiling initiatives, because the number of patient

records is large and the acquisition cost is low. Observational

studies using administrative data can be used to assess comparative

effectiveness in real world settings, and findings from such studies

are sometimes confirmed in randomized trials. One concern,

PLOS ONE | www.plosone.org 1 January 2014 | Volume 9 | Issue 1 | e87382



however, is that such studies are often biased by confounding by

indication, in which the choice of treatment is influenced by a

patient’s severity of illness. This threat can be limited through the

use of validated risk prediction instruments that are capable of

adjusting for pre-treatment severity of illness, as well as comor-

bidities.

There exist a number of validated pneumonia mortality

prediction instruments for use in clinical care. [2,3] All of these

require clinical data, such as respiratory rate or blood urea

nitrogen, which are not generally available in administrative data

sets. Others have attempted to construct predictive mortality

models from administrative data. International Classification of

Diseases, Ninth Revision, Clinical Modification (ICD-9-CM)

codes assigned at discharge are highly predictive of mortality, in

great part because they include complications of hospitalization

which often precede death. [4] Such models are not useful for

severity adjustment because they incorporate the results of

treatment (e.g., complications) as predictors. Models restricted to

demographics and comorbidities at the time of admission have

much lower predictive accuracy [5].

Highly detailed administrative datasets include a date-stamped

record for each item administered during a hospitalization; this

allows for differentiation between factors present at the time of

hospitalization and those arising during the stay. We used one such

dataset to create and validate a mortality risk prediction model

that included only tests and treatments administered in the first 2

hospital days along with patient demographics and comorbidities.

Methods

Setting and Patients
We identified patients discharged between July 1, 2007 and

June 30, 2010 from 347 US hospitals that participated in Premier,

Inc.’s Perspective, a database developed for measuring quality and

healthcare utilization that has been described previously. [6–8]

Member hospitals represent all regions of the US, and are

generally reflective of US hospitals; although larger hospitals,

hospitals in the South and those in urban areas are over

represented. Perspective contains all data elements found in the

uniform billing 04 form, such as sociodemographic information,

ICD-9-CM diagnosis and procedure codes, as well as hospital and

physician information. It also includes a date-stamped log of all

billed items and services, including diagnostic tests, medications,

and other treatments. Because the data do not contain identifiable

information, the Institutional Review Board at Baystate Medical

Center determined that this study did not constitute human

subjects research.

We included all patients aged $18 years with a principal

diagnosis of pneumonia, or a secondary diagnosis of pneumonia

paired with a principal diagnosis of respiratory failure, ARDS,

respiratory arrest, sepsis or influenza (Figure S1). Diagnoses were

assessed using International Classification of Diseases, Ninth

Revision, Clinical Modification (ICD-9-CM) codes. We excluded

all patients transferred in from or out to other acute care facilities,

because we either could not assess initial severity or could not

assess outcomes; those with a length of stay of 1 day or less;

patients with cystic fibrosis; those whose attending physician of

record was in a specialty that would not be expected to treat

pneumonia (e.g., psychiatry); those with a diagnosis related

grouping (DRG) inconsistent with pneumonia (e.g., Prostate OR

procedure); those with a code indicating that the pneumonia was

not present on admission; and any patient who did not have a

chest radiograph and did not begin antibiotics on hospital day 1 or

2. For patients with multiple eligible admissions in the study

period, 1 admission was randomly selected for inclusion.

Markers of Comorbid Illness and Pneumonia Severity
For each patient, we extracted age, gender, race/ethnicity,

insurance status, principal diagnosis, comorbidities, and specialty

of the attending physician. Comorbidities were identified from

ICD-9-CM secondary diagnosis codes and DRGs using Health-

care Cost and Utilization Project Comorbidity Software, version

3.1, based on the work of Elixhauser. [9] We identified a group of

medications, tests, and services that are typically associated with

chronic medical conditions (e.g., spironolactone, warfarin, need

for a special bed to reduce pressure ulcers), as well as acute

medications that may indicate severe illness (e.g., vasopressors,

intravenous steroids). We also identified early use of diagnostic

tests (e.g., arterial blood gas, serum lactate) and therapies (e.g.,

mechanical ventilation, blood transfusion, restraints) that are

associated with more severe presentations of pneumonia. The

complete list of medications, tests, and treatments appears in

Table S1. To avoid conflating initial severity with complications of

treatment, we limited our analysis to those markers received in the

first 2 hospital days. We used the first 2 days because hospital days

are demarcated at midnight and the first day often represents only

a few hours.

Statistical Analysis
Individual predictors of mortality were assessed using Chi-

square tests using the full study cohort. Stratifying by hospital,

80% of the eligible admissions were randomly assigned to a

derivation and 20% to a validation cohort, and the two cohorts

were compared for differences in potential predictors. Using the

derivation cohort, we developed a series of multivariable logistic

regression models to predict in-hospital death. Hierarchical

generalized linear models (HGLM) with a logit link (SAS PROC

GLIMMIX) were used to account for the clustering of patients

within hospitals. We grouped predictors into the following

categories: demographics, comorbid conditions, and severity

markers. We developed separate mortality models for each of

these categories, including main effects and significant pairwise

interactions. Factors significant at p,0.05 were retained. For each

model we calculated the area under the receiver operating

characteristic (AUROC) curve, together with 95% confidence

intervals. [10] The final model was developed by sequentially

adding effects retained in individual category models and

evaluating pairwise interaction terms. Main effects that were

dropped at earlier stages were re-evaluated for inclusion in the

final model.

The purpose of the model was accurate prediction of mortality

and risk stratification. We did not attempt to determine which

individual factors were associated with mortality or to imply

causality. Therefore, we did not require a priori information about

the association of the various risk factors or interaction terms with

the outcome. Although such an approach may result in spurious

associations of individual risk factors, it need not necessarily

detract from the model’s accuracy of prediction, which was our

primary concern [11].

In order to guard against the possibility of overfitting our model,

parameter estimates derived from the model were used to compute

individual mortality risk in the remaining 20% of the admissions

(the validation cohort). Discrimination of the final model in the

validation set was assessed by the c-statistic as well as the

expected/observed ratio. Both cohorts were categorized by decile

of risk based on the probability distribution in the derivation

cohort, and observed mortality was compared to that predicted by

Risk Model for Pneumonia
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the model. We also used the integrated discrimination improve-

ment (IDI) index [12] to measure the improvement of the final

model over a basic model including only demographics and ICD-

9-CM comorbidities.

We next evaluated model performance in subpopulations of the

entire cohort based on hospital and patient characteristics.

Specifically, we assessed model performance in strata defined by

hospital size, teaching status, patient age, ICU and non-ICU

admissions, and pneumonia type [healthcare-associated (HCAP)

vs. community-acquired (CAP)]. All analyses were performed

using the Statistical Analysis System (version 9.2, SAS Institute,

Inc., Cary, NC) and STATA (StataCorp. 2007. Stata Statistical

Software: Release 10. College Station, TX: StataCorp LP).

Results

The dataset included 200,870 patients in the derivation cohort

and 50,037 patients in the validation cohort. Patient characteristics

of the full study cohort appear in Table 1. Most patients were over

age 65, 53.3% were female and 68.0% were white. The most

common comorbidities were hypertension (46.5%), diabetes

(23.8%), chronic pulmonary disease (48.6%), and anemia

(22.2%). Patients in the validation cohort were similar (Table S2).

Model Development
Overall in-hospital mortality in the derivation cohort was 7.2%.

A large number of patient and hospital factors were associated

with mortality (Table 1). Due to the large sample size, even weak

associations appear highly statistically significant. Figure 1 shows

the model discrimination, as measured by the area under the

ROC curve, when subgroups of factors were used to model

mortality. Including only patient demographics produced a model

with poor discrimination (AUROC = 0.66). Using traditional

ICD-9-CM based measures of comorbidity showed greater

discrimination (AUROC = 0.71), as did a model that used

admission to the ICU in day 1 or 2 as the only predictor

(AUROC = 0.73). As an alternative measure of comorbidity,

chronic medications were superior to ICD-9-CM codes in

predicting mortality (AUROC 0.74 vs. 0.71, p,.001). Combining

demographics, comorbidities, and markers of severity of illness on

presentation (other infections present-on-admission, admission to

ICU, the ability to take oral medications, and acute medications,

tests and therapies used in first 2 days) offered excellent

discrimination in the derivation cohort (AUROC = 0.85). We also

assessed model discrimination using the IDI. Compared to the

model including only demographics and ICD-9-CM comorbidi-

ties, the full model had an IDI which was 12 percentage points

higher (16.6% vs. 4.6%, p,.001).

The final multivariable model included 3 demographic factors,

25 comorbidities, 41 medications, 7 diagnostic tests, and 9

treatments, as well as a large number of interaction terms (Table

S3). The strongest predictors were early vasopressors (OR 1.71,

95% CI 1.62–1.81), early non-invasive ventilation (OR 1.55, 95%

CI 1.47–1.64), and early bicarbonate treatment (OR 1.70, 95% CI

1.59–1.82). The final model produced deciles of mean predicted

risk from 0.3% to 34.5%, while mean observed risk over the same

deciles ranged from 0.1% to 34.1% (Figure 2).

Validation
Model discrimination measured by the c-statistic in the

validation set was 0.85 (95%CI: 0.844–0.856). Deciles of predicted

risk ranged from 0.3% to 34.3% with observed risk over the same

deciles from 0.1% to 33.7% (Figure 2). The expected mortality

rate according to the model was 7.1% (expected/observed ratio:

1.00 [95% CI 0.97–1.03]).

Performance of the model in subpopulations of the entire cohort

is shown in Table 2. The model performed well in all

subpopulations tested, but discrimination was poorest among

patients in intensive care (c-statistic 0.78) and best among patients

aged 18 to 64 years (c-statistic 0.89). In all subgroups the range of

predicted mortality extended from #0.3% to .90%. Model

calibration was also good in all subgroups. The model tended to

underestimate the risk of mortality among patients with health-

care-associated pneumonia, and to a lesser extent among patients

in teaching hospitals and those outside of the ICU. At the same

time, it overestimated the risk of mortality among patients with

community-acquired pneumonia.

Discussion

In this retrospective cohort study, we used highly detailed

administrative data to derive and validate a pneumonia mortality

prediction model for use in observational studies. The model had

discriminatory ability comparable to those derived from clinical

data, but unlike most other administrative models, it included

information on illness severity that would be available in the first 2

hospital days. The model also had excellent calibration and

successfully divided patients into mortality deciles ranging from

,0.5% to .33%. Interestingly, the 30% of patients with the

lowest predicted mortality had an observed mortality of ,1%.

At least two clinical prediction tools have been developed for the

purposes of risk stratifying patients with community acquired

pneumonia–the CURB-65, [3] modified from earlier work by the

British Thoracic Society, and the Pneumonia Severity Index (PSI).

[2] The CURB-65 consists entirely of exam findings and

laboratory values, while the PSI incorporates some historical

information as well. At least 3 studies have prospectively compared

the predictive abilities of these two measures. [13–15] Perhaps due

to differences in study population, c-statistics for predicting 30-day

mortality ranged from 0.73 to 0.89 across studies; however, within

any given study, there were no statistically significant differences

between the two scales.

Because the clinical information required for these tools is not

available in administrative databases, others have attempted to

create models based solely on administrative claims. In general,

such models have modest discriminatory ability, unless they are

combined with laboratory data. For example, one administrative

claims model developed for profiling hospitals’ pneumonia

mortality rates, and containing age, sex, and 29 comorbidities

(based on ICD-9-CM codes from the index hospitalization and the

prior year’s outpatient visits) had a c-statistic of 0.72. [16] Addition

of laboratory values to administrative data can substantially

enhance discrimination. Tabak et al. demonstrated that laborato-

ry values alone contributed 3.6 times as much explanatory power

as ICD-9-CM codes and 2.5 times as much as vital signs to

mortality prediction. [17] For example, the c-statistic for a model

that only includes laboratory values and age was 0.80. Adding

ICD-9-CM codes and vital signs increased the c-statistic to 0.82.

[17] Pine et al. also found that ICD-9-CM codes alone produced a

c-statistic of 0.78, whereas addition of laboratory values increased

the c-statistic to 0.87. [4] Addition of chart-based data (e.g., vital

signs) had a small marginal effect on the model’s predictive ability

[4,18].

Our study takes a different approach to overcoming the

limitations of administrative data. In brief, our results suggest that

it is possible to tell a lot about patients by the tests, medications

and treatments they are prescribed. Although others have utilized
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Table 1. Patient Characteristics Associated with Inpatient Mortality.

Discharged Alive Died p

n (%) n (%)

Total 232835 (92.8) 18072 (7.2)

Demographics

Age, y

18–24 3344 (98.3) 57 (1.7) ,.001

25–34 7304 (98.0) 149 (2.0)

35–44 13209 (97.1) 396 (2.9)

45–54 27068 (96.0) 1133 (4.0)

55–64 37040 (94.1) 2331 (5.9)

65–74 46217 (92.8) 3587 (7.2)

75–84 57140 (91.1) 5598 (8.9)

85+ 41513 (89.6) 4821 (10.4)

Gender

Female 124878 (93.4) 8846 (6.6) ,.001

Male 107957 (92.1) 9226 (7.9)

Race/Ethnicity

White 158251 (92.8) 12334 (7.2) ,.001

Black 27436 (93.7) 1853 (6.3)

Hispanic 11417 (93.2) 829 (6.8)

Other 35731 (92.1) 3056 (7.9)

Marital status

Married 88933 (93.0) 6743 (7.0) ,.001

Single 118828 (92.9) 9144 (7.1)

Other/Missing 25074 (92.0) 2185 (8.0)

Insurance payor

Medicare 155340 (91.7) 14143 (8.3) ,.001

Medicaid 19457 (94.4) 1155 (5.6)

Managed care 33300 (95.5) 1564 (4.5)

Commercial-Indemnity 8990 (94.7) 502 (5.3)

Other 15748 (95.7) 708 (4.3)

Comorbidities

Metastatic cancer 5493 (82.4) 1177 (17.6) ,.001

Weight loss 13584 (85.6) 2293 (14.4) ,.001

Acquired immune deficiency syndrome 60 (88.2) 8 (11.8) 0.15

Peptic ulcer disease without bleeding 46 (88.5) 6 (11.5) 0.23

Liver disease 4418 (89.8) 500 (10.2) ,.001

Solid tumor without metastasis 6315 (90.0) 701 (10.0) ,.001

Chronic blood loss anemia 1486 (90.2) 162 (9.8) ,.001

Pulmonary circulation disease 11155 (90.5) 1173 (9.5) ,.001

Congestive heart failure 44861 (90.7) 4618 (9.3) ,.001

Lymphoma 2869 (90.9) 288 (9.1) ,.001

Paralysis 6061 (91.8) 543 (8.2) 0.001

Peripheral vascular disease 13038 (92.0) 1132 (8.0) ,.001

Other neurological disorders 23753 (92.6) 1897 (7.4) 0.21

Valvular disease 14635 (92.7) 1154 (7.3) 0.59

Deficiency anemias 51929 (93.2) 3815 (6.8) ,.001

Chronic pulmonary disease 113818 (93.4) 8072 (6.6) ,.001

Alcohol abuse 5884 (93.7) 393 (6.3) 0.004

Hypothyroidism 27213 (94.3) 1638 (5.7) ,.001

Risk Model for Pneumonia
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Table 1. Cont.

Discharged Alive Died p

n (%) n (%)

Diabetes 56398 (94.5) 3311 (5.5) ,.001

Hypertension 110429 (94.7) 6145 (5.3) ,.001

Rheumatoid arthritis/Collagen vascular disease 7603 (94.7) 422 (5.3) ,.001

Depression 25111 (95.7) 1133 (4.3) ,.001

Psychoses 9670 (95.9) 409 (4.1) ,.001

Obesity 19606 (96.3) 758 (3.7) ,.001

Drug abuse 4648 (97.5) 121 (2.5) ,.001

Chronic Kidney Disease

ICD 585.4 (Stage IV - Severe) 3106 (87.2) 457 (12.8) ,.001

ICD 585.5 (Stage V) 551 (88.6) 71 (11.4) ,.001

ICD 585.9 (Unspecified) 20339 (88.7) 2583 (11.3) ,.001

ICD 585.3 (Stage III - Moderate) 7353 (91.3) 700 (8.7) ,.001

ICD 585.2 (Stage II - Mild) 1300 (94.0) 83 (6.0) 0.08

ICD 585.1 (Stage I) 154 (94.5) 9 (5.5) 0.41

Markers of chronic diseasea

Vitamin K 4378 (77.7) 1260 (22.3) ,.001

Tube feeds 2094 (79.3) 548 (20.7) ,.001

Total parenteral nutrition 2481 (80.2) 612 (19.8) ,.001

Mannitol 169 (80.5) 41 (19.5) ,.001

Packed red blood cells 12946 (81.5) 2934 (18.5) ,.001

Unfractionated heparin treatment 3618 (82.2) 783 (17.8) ,.001

Ammonia 5451 (82.4) 1165 (17.6) ,.001

Lactulose (.30 gm/day) 1917 (84.9) 340 (15.1) ,.001

Special bed 827 (85.2) 144 (14.8) ,.001

Anti-arrhythmics 10354 (85.4) 1772 (14.6) ,.001

Megace 3350 (86.7) 514 (13.3) ,.001

Zinc 1797 (86.7) 276 (13.3) ,.001

Nutritional supplements 8292 (87.1) 1233 (12.9) ,.001

Oral sodium bicarbonate 1372 (87.3) 199 (12.7) ,.001

Digoxin 18149 (88.8) 2284 (11.2) ,.001

Thiamine 5902 (89.8) 669 (10.2) ,.001

Procrit/Epoetin 4473 (90.1) 493 (9.9) ,.001

Vitamin B2 73 (90.1) 8 (9.9) 0.35

Vitamin C 7130 (91.3) 682 (8.7) ,.001

Histamine2 blockers 24045 (91.4) 2265 (8.6) ,.001

Low molecular weight heparin treatment 10836 (91.4) 1014 (8.6) ,.001

Proton pump inhibitors 122825 (91.6) 11234 (8.4) ,.001

Vitamin B - folic acid 13660 (91.9) 1212 (8.1) ,.001

Calcitriol 1320 (92.0) 115 (8.0) 0.23

Vitamin A 106 (92.2) 9 (7.8) 0.80

Vitamin B6 786 (92.5) 64 (7.5) 0.71

Ferrous sulphate (.325 mg/day) 7133 (92.9) 548 (7.1) 0.81

Multi-vitamins 32291 (93.0) 2417 (7.0) 0.06

Vitamin B combination 3105 (93.1) 230 (6.9) 0.49

Spironolactone/Eplerenone 5506 (93.3) 393 (6.7) 0.10

Inhaled steroids 9437 (93.7) 630 (6.3) ,.001

Vitamin B12 3447 (93.7) 233 (6.3) 0.040

Alzheimer medications 13343 (93.8) 888 (6.2) ,.001

Risk Model for Pneumonia
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Table 1. Cont.

Discharged Alive Died p

n (%) n (%)

Aspirin 74529 (93.9) 4815 (6.1) ,.001

Carvedilol 15273 (94.3) 927 (5.7) ,.001

Parkinson medications 7304 (94.3) 443 (5.7) ,.001

Beta blockers 52491 (94.4) 3125 (5.6) ,.001

Oral calcium 18678 (94.4) 1099 (5.6) ,.001

Theophylline/Aminophylline 4156 (94.5) 244 (5.5) ,.001

Vitamin E 1445 (94.6) 82 (5.4) 0.006

Anti-depressants 59680 (94.6) 3374 (5.4) ,.001

Warfarin 19603 (94.8) 1071 (5.2) ,.001

Gastrontestinal/Antispasmodics 1633 (94.8) 89 (5.2) 0.001

Vitamin D 12545 (94.8) 691 (5.2) ,.001

Meglitinides 901 (94.8) 49 (5.2) 0.015

Tiotropium 13470 (95.0) 716 (5.0) ,.001

Oxybutynin 1809 (95.0) 96 (5.0) ,.001

Statins 64793 (95.2) 3240 (4.8) ,.001

Calcium channel blockers 27120 (95.7) 1231 (4.3) ,.001

Clonidine 9135 (95.7) 412 (4.3) ,.001

Angiotensin-converting enzyme (ACE) inhibitors 43996 (95.9) 1864 (4.1) ,.001

Salmeterol 22837 (95.9) 974 (4.1) ,.001

Nadolol 510 (95.9) 22 (4.1) 0.006

Doxazosin 2569 (95.9) 109 (4.1) ,.001

Cod liver oil 847 (96.3) 33 (3.8) ,.001

Sulfonylureas 13777 (96.4) 519 (3.6) ,.001

Thiazolidinediones 4913 (96.4) 185 (3.6) ,.001

Muscle relaxants 8138 (96.4) 302 (3.6) ,.001

Angiotensin-II receptor blockers (ARB) 20206 (96.5) 724 (3.5) ,.001

Dipeptidyl peptidase IV inhibitors 1764 (96.8) 59 (3.2) ,.001

Thiazide diuretics 14736 (97.5) 378 (2.5) ,.001

Biguanides 10789 (97.5) 276 (2.5) ,.001

Alpha-glucosidase inhibitors 119 (97.5) 3 (2.5) 0.043

Nicotine replacement therapy 11256 (97.6) 280 (2.4) ,.001

Other infections (Present on admission)

Other infections 3453 (84.8) 618 (15.2) ,.001

Urinary tract infection 31044 (88.6) 3984 (11.4) ,.001

Empyema/Lung abscess 2224 (89.0) 275 (11.0) ,.001

Pansinusitis/Sinusitis 3225 (96.9) 103 (3.1) ,.001

ICU variablesa

Intensive care unit 38192 (82.0) 8359 (18.0) ,.001

Intensive care unit (observation, CVICU) 7967 (82.0) 1747 (18.0) ,.001

Intermediate care admission (step down) 4405 (94.1) 275 (5.9) ,.001

Markers of Initial Severitya

Dobutamine 1072 (69.4) 473 (30.6) ,.001

Bicarbonate 6116 (70.4) 2568 (29.6) ,.001

Vasopressors 15249 (72.0) 5928 (28.0) ,.001

Pulmonary artery catheter 178 (72.1) 69 (27.9) ,.001

IV Calcium 5425 (74.8) 1827 (25.2) ,.001

Restraints 2016 (78.0) 569 (22.0) ,.001

Not able to take oral medications 22582 (82.5) 4779 (17.5) ,.001

Risk Model for Pneumonia
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Table 1. Cont.

Discharged Alive Died p

n (%) n (%)

Benzodiazepenes 26279 (84.3) 4886 (15.7) ,.001

Foley 25858 (85.1) 4524 (14.9) ,.001

Unfractionated heparin prophylaxis 28142 (90.3) 3007 (9.7) ,.001

Anti-cholinergics/Histamines 11411 (93.2) 829 (6.8) 0.06

Anti-emetics 21441 (93.3) 1552 (6.7) 0.005

Meperidine 2225 (93.4) 156 (6.6) 0.22

Low molecular weight heparin prophylaxis 83079 (93.6) 5709 (6.4) ,.001

Acetaminophen 121316 (94.9) 6467 (5.1) ,.001

Ketorolac 11701 (97.5) 298 (2.5) ,.001

Antibiotics

Vancomycin, linezolid, or quinupristin/dalfopristin 57871 (86.0) 9454 (14.0) ,.001

Anti-pseudomonal cephalosporin, carbapenem, beta-lactam, or
aztreonam

75502 (87.2) 11124 (12.8) ,.001

Anti-pseudomonal quinolone or aminoglycosides 106741 (92.1) 9220 (7.9) ,.001

Respiratory quinolone 125492 (93.0) 9460 (7.0) ,.001

Macrolide or respiratory quinolone 200329 (93.8) 13144 (6.2) ,.001

Beta-lactam, 3rd-generation cephalosporin, or non-pseudomonal
carbapenem

117650 (94.6) 6695 (5.4) ,.001

3rd-generation cephalosporin or non-pseudomonal beta-lactam 118016 (94.6) 6699 (5.4) ,.001

Macrolide or doxycycline 107480 (95.0) 5649 (5.0) ,.001

Oral steroids (in prednisone equivalent dose)

No PO steroid 210588 (92.6) 16916 (7.4) ,.001

,10 mg 2682 (94.5) 156 (5.5)

$10 mg & #80 mg 16265 (95.2) 818 (4.8)

.80 mg 3300 (94.8) 182 (5.2)

IV steroids (in prednisone equivalent dose)

No IV steroid 168258 (92.9) 12829 (7.1) ,.001

,10 mg 78 (94.0) 5 (6.0)

$10 mg & #120 mg 2983 (90.6) 309 (9.4)

.120 mg 61516 (92.6) 4929 (7.4)

Markers of acute or chronic diseasea

Pentazocine 60 (87.0) 9 (13.0) 0.06

Loop diuretics 64968 (89.9) 7310 (10.1) ,.001

Opiates 54723 (90.9) 5466 (9.1) ,.001

Insulin 62312 (90.9) 6263 (9.1) ,.001

Ipratropium 114595 (92.5) 9334 (7.5) ,.001

Anti-psychotics 19728 (92.6) 1572 (7.4) 0.29

Albuterol 125306 (92.9) 9642 (7.1) 0.23

Zolpidem 20974 (96.6) 747 (3.4) ,.001

Non-steroidal anti-inflammatory drugs 18682 (96.9) 598 (3.1) ,.001

Tests and therapiesa

Platelets 81 (64.8) 44 (35.2) ,.001

Plasma 703 (69.5) 308 (30.5) ,.001

Arterial line 1720 (74.6) 585 (25.4) ,.001

Central line 4713 (75.1) 1561 (24.9) ,.001

Invasive mechanical ventilation 18807 (75.9) 5979 (24.1) ,.001

Non-invasive ventilation 17164 (83.4) 3409 (16.6) ,.001

Blood lactate 40150 (86.7) 6146 (13.3) ,.001

Arterial & venous blood gas 83752 (87.2) 12298 (12.8) ,.001
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ambulatory medications to predict outpatient costs and mortality,

these generally do not perform better than comorbidity models

based on ICD-9-CM codes. [19,20] In contrast, by assessing

medications, tests and treatments administered in the first 2

hospital days, we were able to identify chronic comorbid

conditions, as well as factors indicative of the severity of illness

on presentation. Indeed, use of chronic medications alone

predicted mortality better than ICD-9-CM codes. This could be

because billing codes are more sensitive than ICD-9-CM codes,

but also because medication use can identify not just the presence

of disease, but also provide information about disease severity. For

example, among patients with heart failure, spironolactone often

signifies severe systolic dysfunction, and nadolol in the presence of

liver disease likely indicates portal hypertension. Medications,

however, did not capture all the information present in ICD-9-

CM codes, and the combination of the two was a more powerful

predictor than either one alone. This is likely because some

chronic conditions, such as metastatic cancer, may not be

associated with any routine medications, but are nonetheless

potent predictors of mortality.

The inclusion of certain initial tests and therapies also allowed

us to estimate the severity of illness at the time of admission in the

absence of laboratory or clinical data. Although it would be helpful

to know the results of a blood gas, the simple presence of that test

is indirect evidence that the treating physicians were concerned

about a patient’s respiratory condition. Similarly, a patient

receiving vasopressors is almost certainly hypotensive. More

importantly, our model’s predictive ability was comparable to

that seen with other administrative models that include laboratory

data, as well as those that are based on physiological information

obtained from review of medical records. An analogous model,

designed for use in sepsis patients, demonstrated that highly

detailed administrative data can achieve discrimination and

calibration similar to clinical mortality prediction models, [21]

with the majority of the additional explanatory power of the model

arising from the inclusion of initial treatments [22].

Our study has several limitations. First, our main outcome was

in-hospital mortality. Others have modeled 30-day mortality and

the factors that are predictive of in-hospital mortality may be

different than those which predict 30-day mortality. [23] Second,

our study was conducted retrospectively and the model, therefore,

may perform differently in a prospective cohort. It would certainly

be premature to base treatment decisions on our model, but that is

not its intended purpose. Third, our definition of pneumonia was

based on diagnosis and charge codes. Some patients may not have

had pneumonia and some cases of pneumonia may have been

missed. These numbers are likely to be small, as the positive

predictive value of an ICD-9 diagnosis paired with an antibiotic

description is .95%. [24] Fourth, we excluded patients with

pneumonia not present on admission, as well as transfer patients,

Table 1. Cont.

Discharged Alive Died p

n (%) n (%)

Pleural fluid analysis 1714 (88.0) 234 (12.0) ,.001

Head CT 30575 (88.9) 3826 (11.1) ,.001

Abdominal CT 15853 (89.7) 1813 (10.3) ,.001

Urine cultures 90452 (90.0) 10102 (10.0) ,.001

Brain natriuretic peptide 108369 (90.7) 11047 (9.3) ,.001

Sputum cultures 34434 (91.8) 3075 (8.2) ,.001

D-dimer 30434 (92.3) 2541 (7.7) ,.001

Blood cultures 209280 (92.6) 16663 (7.4) ,.001

Cerebrospinal fluid analysis 2242 (93.1) 167 (6.9) 0.61

Hospital characteristics

Bed size

#200 beds 47040 (94.2) 2889 (5.8) ,.001

201–400 beds 90461 (92.5) 7357 (7.5)

400+ beds 95334 (92.4) 7826 (7.6)

Rural/Urban status

Urban 201477 (92.7) 15950 (7.3) ,.001

Rural 31358 (93.7) 2122 (6.3)

Teaching status

Non-teaching 152705 (93.1) 11283 (6.9) ,.001

Teaching 80130 (92.2) 6789 (7.8)

Region

Northeast 37590 (91.6) 3447 (8.4) ,.001

Midwest 51779 (93.6) 3522 (6.4)

West 39471 (92.4) 3248 (7.6)

South 103995 (93.0) 7855 (7.0)

awithin first 2 hospital days.
doi:10.1371/journal.pone.0087382.t001
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so our model is not applicable to these groups. Finally, our model

derives much of its power from physician assessments of patients’

disease, as represented by physician ordering. To the extent that

prescribing thresholds vary by institution, the model may be more

or less accurate in certain hospitals, and therefore could not be

used for benchmarking purposes. The fact that model discrimi-

nation was good across various subgroups of hospitals is reassuring

in this regard.

This model could be used in various ways. It could be used for

adjustment in observational trials, including comparative effec-

tiveness or epidemiologic studies. Although such studies might also

be performed using clinical data, many institutions do not

Figure 1. Comparison of Model Components’ Discrimination in the Derivation Cohort. Factors not significant at p,.05 and interaction
terms are not included. All medications, tests and therapies are within the first 2 hospital days. Legend includes area under the ROC curve and 95%
confidence intervals.
doi:10.1371/journal.pone.0087382.g001

Figure 2. Model Calibration by Deciles of Predicted Risk in the Development and Validation Cohorts.
doi:10.1371/journal.pone.0087382.g002
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currently have the ability to automatically extract clinical data

from electronic medical records and many administrative datasets

do not yet contain laboratory data. Our model represents a low-

cost yet accurate alternative. In addition, unlike existing clinical

models, our model was validated in several different sub-

populations, with excellent performance in small and large

hospitals, and in teaching and non-teaching institutions.

The model could, for example, be used for severity-adjustment

in a study to compare effectiveness of guideline recommended

therapies to alternative treatment options in community acquired

pneumonia. It could also be used to study the severity of an illness

such as healthcare associated pneumonia, in which multiple

comorbid illnesses might contribute to poor outcomes. It could

have application for studying the methods of hospital profiling for

public reporting (e.g., testing alternative definitions of diagnosis),

but may not be useful for profiling hospitals per se, because

thresholds for treatment might vary across hospitals making

patients appear more or less sick. Finally, some aspects of the

model–specifically the chronic medications–could be incorporated

into clinical prediction rules such as the PSI, in order to improve

their accuracy. To avoid showering clinicians with unnecessary

complexity, these could be embedded in clinical information

systems to provide prognostic information at the point of care.

However, prospective validation of such a hybrid model is

required before it can be applied in clinical care.

In conclusion, we have created a mortality prediction model

based on highly detailed administrative data available in the first 2

days of hospitalization. The performance of the model was

comparable to that of models based on clinical data, and the

performance was consistent across different patient subpopula-

tions. The model should be useful for comparative effectiveness

research using large, administrative databases.
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Table 2. Model Performance in Subpopulations of Entire Cohort.

Cohort AUROC (95% CI)
Range of predicted
mortality (%) Expected vs. Observed (95% CI)a

Derivation (80%) 0.852 (0.849–0.855) 0.01–92.11 1.00 (0.98–1.02)

Validation (20%) 0.850 (0.844–0.856) 0.02–91.46 1.00 (0.97–1.03)

Hospital size

Large Hospitals (.400 beds) 0.850 (0.846–0.854) 0.01–91.87 1.03 (1.00–1.05)

Medium (201–400 beds) 0.850 (0.846–0.854) 0.01–92.11 0.96 (0.94–0.98)

Small hospitals (#200 beds) 0.856 (0.849–0.862) 0.01–90.56 1.00 (0.96–1.04)

Hospital teaching status

Teaching hospitals 0.852 (0.848–0.857) 0.01–91.82 0.96 (0.94–0.98)

Non-teaching hospitals 0.851 (0.848–0.854) 0.01–92.11 1.01 (1.00–1.03)

Age groups

Patients aged 85+ years 0.800 (0.793–0.806) 0.24–91.82 0.99 (0.96–1.02)

Patients aged 75–84 years 0.830 (0.824–0.835) 0.14–91.87 0.99 (0.96–1.02)

Patients aged 65–74 years 0.841 (0.834–0.845) 0.07–92.11 0.99 (0.95–1.02)

Patients aged 18–64 years 0.891 (0.887–0.896) 0.01–90.29 1.02 (0.99–1.05)

Admitted to ICU 0.775 (0.770–0.780) 0.03–92.11 1.02 (1.00–1.04)

Admitted to non-ICU care 0.829 (0.824–0.833) 0.01–91.82 0.98 (0.95–1.00)

Community acquired pneumonia 0.862 (0.859–0.866) 0.01–92.11 1.09 (1.07–1.12)

Healthcare associated pneumonia 0.814 (0.810–0.819) 0.01–91.87 0.91 (0.89–0.93)

a95% CI: (Expected/Observed)*exp(2/+1.96*1/(!(# of deaths))).
doi:10.1371/journal.pone.0087382.t002
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