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ATP-binding cassette (ABC) transporters can promote cells to absorb nutrients and

excrete harmful substances. It plays a vital role in the transmembrane transport of

macromolecules. Therefore, the identification of ABC transporters is of great significance

for the biological research. This paper will introduce a novel method called DeepRTCP.

DeepRTCP uses the deep convolutional neural network and a feature combined of

reduced amino acid alphabet based tripeptide composition and PSSM to recognize

ABC transporters. We constructed a dataset named ABC_2020. It contains the latest

ABC transporters downloaded from Uniprot. We performed 10-fold cross-validation on

DeepRTCP, and the average accuracy of DeepRTCP was 95.96%. Compared with

the start-of-the-art method for predicting ABC transporters, DeepRTCP improved the

accuracy by 9.29%. It is anticipated that DeepRTCP can be used as an effective

ABC transporter classifier which provides a reliable guidance for the research of

ABC transporters.

Keywords: ABC transporters, deep convolutional neural network, tripeptide composition, cross validation, PSSM

1. INTRODUCTION

The ABC transporter is a member of ATP-binding protein superfamily. The core structures of ABC
transporters are two nucleotide-binding domains and two transmembrane domains (Abbas et al.,
2015). The nucleotide-binding domain is a conserved domain. It can help the transmembrane
domain to perform the function. Subdomains of the nucleotide-binding domain have some
conserved sequencemotifs with specific functions. Themost important motifs areWalker-Amotifs
and LSGGQ motifs. In the process of molecular transports, the two nucleotide-binding domains
bind together. There will be two ATP-binding sites and two hydrolysis sites between the Walker-A
motifs of one nucleotide-binding domain and the other nucleotide-binding domain (Chen et al.,
2003). The ABC transporter performs its transport functions based on the nucleotide-binding
domain and the transmembrane domain. The transport functions of ABC transporters are divided
into two types: inward transport and outward transport. The inward ABC transporter exists not
only in prokaryotes but also in eukaryotes. It can promote the transport of nutrients such as
amino acids and carbohydrates from the extracellular environment into the intracellular matrix,
thereby promoting cell growth. Outward ABC transporters, like inward ABC transporters, coexist
in prokaryotes and eukaryotes. They can expel antibiotics, fatty acids and other substances that are
not conducive to cell growth. Outward ABC transporters help cells to keep non-essential foreign
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substances or secondary metabolites in a low concentration
range, thereby reducing the growth pressure of the cells,
maintaining the normal growth of the cells, and greatly
improving the survival rate of the cells (Gedeon et al., 2006;
Davidson et al., 2008; Cui and Davidson, 2011). Based on
these physiological characteristics, the identification of ABC
transporters is of great significance not only for the development
of biomedicine, but also for the crop cultivation and themicrobial
industry. Effective and accurate ABC identification methods are
urgently needed.

Biological experiments are reliable methods for identifying
protein functions. But most of these methods require expensive
equipments and long experimental cycles. In addition, the
experimental method cannot give priority to a function which
needs to be identify urgently (Konc et al., 2013). With
the development of sequencing technology, a large number
of new protein sequences have been discovered. Biological
experiments alone are not enough to meet the growing
need for protein function identification. Researchers need a
fast and accurate method to help identify protein functions.
In recent years, predicted methods for protein functions
have been widely used. Predicted methods have improved
the efficiency of protein identifications, and its accuracy is
also high. Protein function predictions usually use machine
learning algorithms (Libbrecht. and Noble, 2015) as the
classifiers such as support vector machine (SVM) (Suykens
and Vandewalle, 1999), random forest (RF) (Vladimir et al.,
2003), naive bayes (NB) (Rish, 2001) and artificial neural
network (ANN), and obtain good results. The development of
deep learning (Lecun et al., 2015) has further improved the
performance of predicted methods (Gligorijevic et al., 2018;
You et al., 2018). The most commonly used deep learning
algorithm is the deep convolutional neural network (DCNN)
(Lecun and Bottou, 1998). It has got good results in both
the identification of protein functional sites and the protein
function prediction (Kulmanov and Robert, 2019; Zhang and Yu,
2019).

A good feature is also crucial for the protein function
prediction. In past studies, researchers usually used information
extracted from proteins as features, including protein-protein
interactions (Haretsugu et al., 2010; Jiang, 2012), structural

FIGURE 1 | An example using DeepRTCP to predict ABC transporters. (1) Multiple sequence alignments were built for query proteins, and amino acid sequences

were replaced with reduced amino acids sequences. (2) The PSSM of the query protein was calculated from multiple sequence alignment, and the RTC was extracted

from the reduced amino acids sequence. (3) PSSM and RTC combine into RTCP. (4) Deep convolutional neural network uses RTCP as input to train the classifier. (5)

The output of the convolutional neural network passes through a binary classifier to get the prediction result.

information (Zhang et al., 2016; Le et al., 2019), physicochemical
property (Cai et al., 2003), amino acid composition (Luo et al.,
2010), evolutional information (Mundra et al., 2007), and the
combinations of different information mentioned above (Chen
et al., 2012, 2013; Song et al., 2014; Zou et al., 2016). Among these
features, amino acid composition and evolutional information
have been widely used. The amino acid composition is divided
into peptide composition, dipeptide composition, and tripeptide
composition, etc. The tripeptide composition contains more
information than the peptide composition and the dipeptide
composition. But the dimension of tripeptide composition is
large. The tripeptide composition of amino acids sequence is an
8000-dimensional vector. The tripeptide composition of most
proteins is a sparse vector, which affects the use of tripeptide
composition in protein function predictions. Lin et al. (2017)
divided the 20 amino acids into several pseudo-amino-acids
called reduced amino acid alphabet (RAAA). By using RAAA
to represent protein sequences, the dimension of the tripeptide
composition can be reduced, thereby improving the accuracy of
protein function predictions. The position specific score matrix
(PSSM) (Michael et al., 1987) contains evolutional information
of a protein. It is obtained from the multiple sequence
alignment (MSA). PSSM contains statistical information about
the distribution of residues at different positions in a MSA.
The value in PSSM represents the score that a residue at one
position will mutate to another residue during evolution. PSSM
contains information about the homologous sequence of the
query protein, which is not available in other sequence-based
protein features. It has achieved good results in protein function
predictions (Wang et al., 2018, 2019; Gao et al., 2019).

TABLE 1 | Classification of amino acids based on different types of

physicochemical properties.

Physicochemical properties Class 1 Class 2 Class 3

Hydrophobicity RKEDQN GASTPHY CVLIMFW

Surface tension GQDNAHR KTSEC ILMFPWYV

Solvent solubility ALFCGIVW KTSEC MPSTHY

Charged polarity LIFWCMVY PATGS HQRKEND
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In this study, we proposed a novel method called DeepRTCP.
It applies the 1-dimensional DCNN and a feature combined
of the PSSM and RAAA based tripeptide composition to

TABLE 2 | RAAAs based on different types of physicochemical properties.

Combination

of different

classes

HP_ST HP_SS HP_CP ST_SS ST_CP SS_CP

Class-1-1 RQND GA ICWFLV

Class-1-2 EK NEQRDK AG NQDR AG

Class-1-3 RKDQEN RNDQH H

Class-2-1 AGH AG Y C C

Class-2-2 ST GPSTA ST EK

Class-2-3 PY SPYHT H KE TS RDENQK

Class-3-1 CFIVWL LFVCIWM MYVLFWI FLWIV MY

Class-3-2 C P SPT

Class-3-3 WIFLMV M MYP LH

Class-i-j represents a class of reduced amino acid that determined by the intersection set

between Class-i of one physicochemical property and Class-j of another physicochemical

property.

predict ABC transporters. This experiment used a dataset
named ABC_2020. Through experimental comparison, we
chose the feature based on surface tension and solvent
solubility, and chose a 7-layers DCNN as the classifier.
Finally, we compared DeepRTCP with the state-of-the-
art method for predicting ABC transporters. The results
show that DeepRTCP is better than the existing method
in all evaluation indicators used in this article. The overall
process of using DeepRTCP to predict ABC transporters is
shown in Figure 1.

TABLE 3 | Comparison among methods based on different types of RTCP.

Type of RTCP Acc Spec Sens F-score Mcc

HP_ST 93.54% 92.21% 94.76% 0.9343 0.8716

HP_SS 93.44% 92.26% 94.28% 0.9334 0.8668

HP_CP 93.23% 93.23% 93.33% 0.9421 0.8619

ST_SS 93.94% 92.45% 94.76% 0.9383 0.8810

ST_CP 93.68% 92.30% 94.28% 0.9357 0.8715

SS_CP 93.32% 92.26% 94.28% 0.9323 0.8691

FIGURE 2 | The structure of the DCNN used in DeepRTCP. The DCNN has five convolutional layers: Conv1, Conv2, Conv3, Conv4, and Conv5, five

batchnormalization layers, two max-pooling layers: Max-pooling1 and Max-pooling2, and two fully connected layers: Fc1 and Fc2. Fc2 is the output layer. The blue

line represents the convolution. The red line represents the max-pooling.
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2. MATERIALS AND METHODS

2.1. Dataset
This experiment used a dataset named ABC_2020. It includes
2,105 positives and 2,105 negatives. The positives were download
from the Swiss-prot database of Uniprot (Amos et al., 2009) by
using a key word "ABC transporter."We used CD-HIT to remove
redundant sequences in the downloaded data. We hope to keep a
large number of samples while reducing the impact of redundant

TABLE 4 | Comparison between RTCP based method and TCP based methods.

Feature Acc Spec Sens F-score Mcc

TCP_8020 93.25% 91.92% 94.00% 0.9314 0.8507

TCP_1000 93.39% 92.11% 94.59% 0.9330 0.8645

TCP_500 93.49% 92.21% 95.50% 0.9339 0.8738

TCP_200 93.34% 92.01% 94.59% 0.9325 0.8645

TCP_80 93.16% 92.40% 93.69% 0.9309 0.8552

RTCP 93.94% 92.45% 94.76% 0.9383 0.8810

The number behind TCP represents the dimension of TCP.

sequences on themodel, so that ourmodel can be fully trained. So
we chose 0.6 as the E-value of CD-HIT. We selected the protein
families in Pfam (Finn et al., 2014), which do not contain the
proteins in positives. Then we took the longest protein sequence
in each protein family as a negative. We got 9,736 negatives and
randomly selected 2,105 sequences from these negatives as the
negative set of ABC_2020.

2.2. Feature Extraction
We proposed a novel RAAA based on the physicochemical
property of amino acids. The research used four physicochemical
properties, including hydrophobicity (HP), surface tension
(ST), solvent solubility (SS), and charged polarity (CP). Each
physicochemical property divides amino acids into three classes
(as shown in Table 1). We regarded the intersection set of a class
of amino acid based on a type of physicochemical property and
a class of amino acid based on another type of physicochemical
property as a reduced amino acid. Therefore, every two types
of physicochemical properties can determine an expression of
RAAA.Table 2 shows six RAAA representations: HP_ST, HP_SS,
HP_CP, ST_SS, ST_CP, and SS_CP. We replaced the amino
acid sequence with a RAAA sequence. The RAAAs of HP_ST,
HP_SS, HP_CP, ST_SS, ST_CP, and SS_CP are composed of 7,

FIGURE 3 | The variation curve of the training accuracy.
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5, 5, 7, 8, and 6 reduced amino acids, respectively. We counted
the frequency of different tripeptides in the RAAA sequence to
obtain the RAAA based tripeptide composition (RTC). The RTC
used in this experiment is a 1-dimensional vector. Comparing
with amino acid based tripeptide composition (TC), RTC further
adds the information of the physicochemical property of the
amino acid.

For a protein P, the PSSM of P was obtained by PSI-
BLAST (Altschul et al., 1997). The database used in PSI-
BLAST is Swissprot which can be download from ftp://ftp.ncbi.
nih.gov/blast/db/FASTA/. The PSSM contains the evolutional
information of a protein. It is a L*20 matrix, where L is the length
of P. The matrix is shown as follows:

PSSM =







a1,1 . . . a1,L
...

. . .
...

a20,1 . . . a20,L







20×L

(1)

where ai,j represents the score that the i-th residue in P evolves
into an amino acid j. We used the following formulas to convert
PSSM into a 20-dimensional vector:

Ai,j =
1

1+ e−ai,j
(2)

PSSM − feature =

{

∑L
i=1 Ai,j

L
| j = 1, 2 · · · 20

}

(3)

We spliced the feature vectors of RTC and PSSM together to
form a new feature called RTCP, and used RTCP as the input of
the classifier.

2.3. Classifier
DeepRTCP uses SVM and DCNN as classifiers. SVM is used for
choosing the optimal RTCP. DCNN uses the optimal RTCP as
input to determine whether a protein is an ABC transporter.
SVM is a powerful and effective machine learning algorithm. We
used the RBF kernel SVM in this study. The penalty parameter
and the gamma were set into 105 and “auto,” respectively.
DCNN is a heuristic algorithm that imitates the local receptive
field of biological neurons. We used a 1-dimensional DCNN
in this work. Figure 2 shows the architecture of the DCNN,
which consists of 5 convolutional layers, 5 batchnormalization
layers, 2 max-pooling layers and 2 fully connected layers. The
convolutional layer extracts important local information from
the input features. The fully connected layer is equivalent to a
classifier. It uses the information extracted by the convolutional
layer to classify the input protein. If we have an input x of

FIGURE 4 | The variation curve of the validation accuracy.
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length L and a kernel function f (x), the output of the convolution
operation is defined as:

y = [al, a2, a3 . . . . . . , ak] , k =
L− F

S
(4)

ai =
F

∑

j=1

f (j)× x(i+ j− 1) (5)

where F is the length of the filter, and S is the stride. The i-th value
of the output vector is obtained by the convolution summation of
the x[i : i+ F − 1] and the convolution kernel f (x).

In order to accelerate the convergence rate of the model,
we inserted a batchnormalization layer after each convolutional
layer. The batchnormalization layer ensures that the distribution
of features in each batch will not change much. We also added
max-pooling layers to the network to reduce the redundant
information contained in the output of the convolutional layer.

2.4. Training
DeepRTCP takes the RTCP as input. The RTCP is a 532-
dimensional vector. We used PCA (Belhumeur et al., 1997) to

reduce the dimension of RTCP to 80 to optimize the performance
of DeepRTCP. In order to fit the model better, we used a learning
rate decay strategy. We set the initial learning rate to 10−3, and
then reduced the learning rate to one-tenth of the original value
every 100 epochs. We had trained the model for 1,000 epochs,
and the learning rate will continue to decrease until the end
of training. DeepRTCP uses Relu as the activation function of
hidden layers, Sigmoid as the activation function of the output
layer, Adam as the optimizer and binary cross-entropy as the
loss function. The strides of convolution and pooling are 2.
This experiment used Tensorflow (Rampasek and Goldenberg,
2016) to build the deep learning model and Tensorboard to
record the loss and the accuracy of the model. DeepRTCP ran
on Nvidia RTX 2070(8G) GPU card. Training time of DeepRTCP
was greatly reduced by using the CUDA (Nickolls et al., 2008)
framework and the GPU card.

2.5. Evaluation Methods
This experiment uses some evaluation indicators that are widely
used in protein function predictions, including accuracy (Acc),
specificity (Spec), sensitivity (Sens), F-score, and Matthews’
correlation coefficient (Mcc) (Matthews, 1975; Shan et al., 2019;
Zhang et al., 2019). The formulas of these indicators are

FIGURE 5 | The variation curve of the training loss.
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as follows:

Acc =
TP + TN

TP + FP + TN + FN
(6)

Spec =
TN

TN + FP
(7)

Sens =
TP

TP + FN
(8)

Pre =
TP

TP + FP
(9)

F − score =
(

1+ β2
) Pre× Sens

β2 × (Pre+ Sens)
(10)

Mcc =
TP × TN − FP × FN

√
(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)

(11)
where TP, FP, TN, and FN represent the rates of true positives,
false positives, true negatives, and false negatives, respectively. In

the formula of F-score, β measures the importance between Pre
and Sens. We set β to 1 which means that Pre is as important
as Sens.

We also used ROC curve (Hanley and Mcneil, 1982)
and the area under the curve (AUC) to evaluate the
performance of different classifiers. If the ROC curve of
one method is covered by the ROC curve of another
method, the latter is better. But the ROC curves of
different methods are usually intersecting. So it is difficult
to judge which method is better. So we need to compare
AUCs of these methods. The larger the AUC, the better
the method.

TABLE 5 | Performance comparison among different classifiers.

Classifier Acc Spec Sens F-score Mcc

SVM 93.94% 92.45% 94.76% 0.9383 0.8810

NB 83.13% 79.52% 86.73% 0.8375 0.6643

ANN 91.69% 91.43% 91.94% 0.9172 0.8337

RF 90.97% 95.71% 86.26% 0.9055 0.8025

DCNN 95.96% 97.14% 94.81% 0.9593 0.9195

FIGURE 6 | The variation curve of the validation loss.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 February 2021 | Volume 8 | Article 614080

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Zhang et al. DeepRTCP

FIGURE 7 | The ROC curves of different classifiers.

3. RESULTS AND DISCUSSION

Firstly, we compared the performances of DeepRTCPwhen using
different RTCPs. Secondly, we compared the RTCP basedmethod
with the methods based on TC and PSSM (TCP). Thirdly,
we compared the performance among DCNNs with different
structures and selected the optimal DCNN for predicting ABC
transporters. Fourthly, we compared the performance among
different classifiers. Fifthly, we analyzed the predicted false
negatives and false positives. Finally, we compared DeepRTCP
with the existing method.

3.1. Comparison Among Different Types of
RTCPs
In order to select the most suitable features, we used SVM
to test the performance among six types of RTCPs. The
reason for choosing SVM is that it can get results fast. We
used PCA to reduce the dimension of the RTCP. We tested
the performance among RTCPs with different dimensions.
The results were presented in Supplementary Tables 1–6. We
compared the performance among different RTCPs. Table 3

shows the comparison results. The ST_SS based RTCP achieved

the best performance which mainly related to the nature of
the ABC transporters. ABC transporters perform functions
on both sides of the cell membrane, which may cause
the difference in surface tension and solvent solubility with
other proteins.

3.2. Comparison With the TCP Based
Method
We used PCA to reduce the dimension of the TCP, and
then compared its performance with the RTCP’s. Table 4

shows that even if PCA is used for dimension reduction, the
performance of the TCP based method is still not as good
as that of the RTCP based method. Comparing with TC,
RTC contains information of the physicochemical property,
which makes RTC more efficient than TC for predicting
protein functions. The TCP based method achieved the best
performance after using PCA to reduce the dimension to
500. This shows that by combining the physicochemical
property, RTCP is not only better than TCP in performance,
but also has lower dimensions than TCP. This makes the
RTCP based method faster and less expensive than TCP
based methods.
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FIGURE 8 | The distribution of the samples in ABC_2020 in two-dimensional space.

FIGURE 9 | Amino acid composition of samples in ABC_2020.
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FIGURE 10 | Comparison between DeepRTCP and other method.

3.3. Comparison Among DCNNs With
Different Structures
The structure of DCNN has a great influence on its performance.
We compared DCNNs with different depths. The layer numbers
of these DCNNs are 5, 6, 7, 8, and 9, respectively. The filter
number of these DCNNs is 64. From Figures 3, 4, we can
see that the 7-layers DCNN achieve the highest accuracy on
the validation set. Comparing with other DCNNs, the 7-layers
DCNN has the smallest difference between the training accuracy
and the validation accuracy. Therefore, the 7-layers DCNN is
more suitable for predicting ABC transporters than DCNNs with
other depth. From Figures 5, 6, we can see that using RTCP
as the feature, these DCNNs fit around the 400th epoch. The
training loss and the validation loss of each DCNN are similar,
which indicates the robustness of RTCP. We also compared the
performance of 7-layers DCNNs with different filter numbers of
8, 16, 24, 32, 40, 48, 56, 64, 72, and 80, respectively. The result was
presented in Supplementary Table 7. After the filters number is
greater than 32, the accuracy of the model no longer changes
significantly. The 7-layers-32-filters DCNN and the 7-layers-
64-filters DCNN had achieved the best validation accuracy.
Comparing with the 7-layers-64-filters DCNN, the 7-layers-32-
filters DCNN is simpler and less computationally expensive. So

the 7-layers-32-filters DCNN was selected as the classifier for
this experiment.

3.4. Comparison Among Methods Based
on Different Classifiers
We used different classifiers to predict ABC transporters,
including SVM, NB, ANN, RF, and DCNN. We used 10-fold
cross-validation to evaluate the performance of these classifiers.
Table 5 shows the results of the test. Except for NB, the validation
accuracies of other classifiers exceeds 90%, and the validation
accuracy of DCNN is as high as 95.96%. ANN has the minimum
difference of 0.54% between Spec and Sens. DCNN achieved the
best F-score and Mcc of 0.9593 and 0.9125, respectively. Then
we analyzed the ROC curves of these methods (as shown in
Figure 7). It is worth noting that the AUC of DCNN is as high
as 0.99. The true positive rate of DCNN is much higher than that
of other classifiers when the false positive rate is 0. These results
show that DCNN is more suitable for the identification of ABC
transporters than other classifiers.

3.5. Analysis of TP and FP
There were many false positives and false negatives in the
prediction results of DeepRTCP. We tried to analyze the reasons

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 February 2021 | Volume 8 | Article 614080

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Zhang et al. DeepRTCP

why these data were predicted incorrectly. We trained 100
models for each cross-validation, and selected the proteins that
were predicted incorrectly more than 50 times as false negatives
and false positives. The false negatives and false positives can
be obtained from https://github.com/zhichunlizzx/DeepRTCP.
We used t-Distributed Stochastic Neighbor Embedding (T-
SNE) (Shao et al., 2018) to map the features of the samples
in the dataset to two-dimensional space. We founded that in
the two-dimensional space, false positives (false negatives) were
distributed in the area where the positives were clustered (as
shown in Figure 8). We counted the amino acid composition
of the samples in ABC_2020 (as shown in Figure 9). We
found that the content of histidine, glutamine, and valine in
positives (negatives) and false positives (false negatives) are
similar, but there are significant differences in the content
of histidine, glutamine, and valine in positives (negatives)
and false negatives (false positives). This may result in a
positive (negative) being incorrectly predicted as a false negative
(false positive).

3.6. Comparison With Other Method
In the past study, Hou et al. (2020) used RF and a feature of
188 dimension to predict ABC transporters. We downloaded the
dataset provided by Hou, which included 875 positives and 875
negatives. We performed 10-fold cross-validation on DeepRTCP
on this dataset and compared the results with Hou’s. Since
the number of samples in Hou’s dataset is smaller than that
of ABC_2020, we use a simple DCNN on this dataset. The
DCNN includes 4 convolutional layers and 2 fully connected
layers. The filter numbers in the four convolutional layers are
16, 16, 32, and 32, respectively. The two fully connected layers
contain 13 and 2 neurons, respectively. Figure 10 shows that
the average validation accuracy of DeepRTCP is as high as
98.29%. Compared with Hou’s method, DeepRTCP improved
the Acc by 9.29%, Spec by 12.81%, Sens by 5.8%, and Mcc by
0.1757. In addition, the difference between the Spec and Sens
of Hou’s method is as high as 5%, which makes Hou’s method
not well applied in practices. The difference between Spec and
Sens of DeepRTCP is about 1%, which is a great improvement
to Hou’s method. This is mainly due to the effective classifier
and feature.

4. CONCLUSION

In this study, we propose a novel method for ABC transporter
prediction called DeepRTCP. It uses the DCNN as the classifier.
The classifier uses a feature named RTCP which composed
of TCP and PSSM. We tested the performance of six types
of RTCPs. The results show that the ST_SS based RTCP
has the best performance. In the comparison of different
classifiers, DCNN achieved the best results that Acc, Spec,
Sens, F-score and Mcc were 95.96%, 97.14%, 94.81%, 0.9593
and 0.9195, respectively. Compared with the state-of-the-art
method, DeepRTCP improved Acc by 9.29%,Spec by 11.81%,
Sens by 5.8%, and Mcc by 0.1757. DeepRTCP can label the ABC
transporters faster than traditional biological experiments, and
the accuracy of DeepRTCP is also high. DeepRTCP provides a
reliable guide for the further research of ABC transporters.
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