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The circadian clock provides amechanism foranticipating environmental cycles
and is synchronized by temporal cues such as daily light/dark cycle or photo-
period. However, the Arctic environment is characterized by several months of
Midnight Sunwhen the sun is continuouslyabove thehorizonandwhere sea ice
further attenuates photoperiod. To test if the oscillations of circadian clock genes
remain in synchronywith subtle environmental changes, we sampled the cope-
pod Calanus finmarchicus, a key zooplankter in the north Atlantic, to determine
in situ daily circadian clock gene expression near the summer solstice at a
southern (74.5°N) sea ice-free and a northern (82.5°N) sea ice-covered station.
Results revealed significant oscillation of genes at both stations, indicating the
persistence of the clock at this time. While copepods from the southern station
showed oscillations in the daily range, those from the northern station exhibited
an increase in ultradian oscillations. We suggest that in C. finmarchicus, even
small daily changes of solar altitude seem to be sufficient to entrain the circadian
clock and propose that at very high latitudes, in under-ice ecosystems, tidal cues
may be used as an additional entrainment cue.
1. Introduction
Biological clocks are ubiquitous, ancient and adaptive mechanisms enabling
organisms to track and anticipate environmental cycles and regulate biological
processes accordingly. Recent work on Calanus finmarchicus, a key pelagic
species in the northern Atlantic food web [1], revealed that C. finmarchicus pos-
sesses a functional circadian clock that might be involved in the timing of both
diel vertical migration (DVM) [2] and seasonal events such as diapause [3].

TheArctic is characterized bystrong seasonal fluctuations in photoperiod lead-
ing to permanent illumination during Midnight Sun and permanent darkness
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Figure 1. Physical characteristics of the sampling sites. (a) Map with sampled stations JR85 (blue) and B13 (red) and the position of the sea ice edge at the day of sampling at
JR85 (18.06.2018). (b) Solar altitude at 12.00 throughout the year 2018 at both stations. The dashed yellow line marks the day of summer solstice, the dashed black line marks
the horizon and the blue and red dots mark the day of sampling for the respective station. (c) Diel fluctuations in PAR (area plot) and solar altitude (lines) over the course of the
first sampling day at each station (18.06.2018 and 30.06.2018 for JR85 and B13, respectively). (d ) Tidal height over the course of the first sampling day at each station.
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duringPolarNight. Since circadianclocksofmostorganismsuse
the daily light/dark cycles as a Zeitgeber (literally, time giver) to
maintain synchrony with the environment (entrainment), the
capacity of the mechanism to persist under Midnight Sun con-
ditions remains uncertain [4,5]. Climate change-induced
latitudinal range shiftsdisplacezooplanktonsuchasC. finmarch-
icus to higher latitudes [6] yet the impact of high-latitude
photoperiods on the endogenous timing systems of non-
endemic species is currently unknown. Indeed, the northward
expansion of organismsmaybe limited by the adaptive capacity
of the clock to entrain to such extreme photoperiods [7,8].

The persistence of zooplanktonDVMduring the highArctic
Midnight Sun period is still debatable [9–13] and therefore
raises the question whether associated clock gene oscillations
are maintained at this time or whether the clock stops ‘ticking’
and only reinitiates once clear light/dark cycles resume?
Here we address this by determining circadian clock gene
expression in C. finmarchicus during the Midnight Sun period.
2. Material and methods
(a) Study area, field sampling and data collection
Sampling was conducted during Cruise JR17006 of the RRS James
Clark Ross in summer 2018 at two stations along a latitudinal
gradient, from the Nansen Basin ( JR85; 82.5° N, 30.85° E, sea
ice-covered) to the southern Barents Sea (B13; 74.5° N, 30° E,
sea ice-free, figure 1a). Sampling covered a complete 24 h cycle
at 4 h intervals, resulting in seven timepoints per station.
Sampling at JR85 started 3 days before the summer solstice, on
18th June at 11.00 and ended on 19th June at 11.00 (all times
noted in local time (UTC + 2). Sampling at B13 started 9 days
after the summer solstice, on 30th June at 14.00 and ended on
1st July at 14.00. For each timepoint, the water column was
sampled between 200 m depth to the surface with a WP2 plank-
ton net (200 µm mesh size). Net contents were preserved in
RNAlater (Ambion, UK) for later analysis post cruise.

Measurements of photosynthetically active radiation (PAR, i.e.
the range of wavelengths available to photosynthesis, 400 to
700 nm)were takenbyPQS1PARsensors (Kipp&Zonen,TheNeth-
erlands) from the ship’s meteorological platform. Modelled data of
sun altitudewere obtained from theUnited States Naval Observatory
(https://aa.usno.navy.mil/data/docs/AltAz.php, USNO, USA)
and the keisan.casio website (https://keisan.casio.com/exec/
system/1224682331). Information on the tidal dynamics have
been drawn from the TPX08model [14] by using theOTPS package
(Tidal Prediction Software, http://www-po.coas.oregonstate.edu/
~poa/www-po/research/po/research/tide/index.html), via the
mbotps program (MB-System; [15]). Additional methodological
information and physical characteristics of the water column are
available in the electronic supplementary material.

(b) Copepod sorting and clock gene expression
For each replicate (n = 3–5 per time point), 15 C. finmarchicus
CV stage copepods were sorted from the samples using morpholo-
gical characteristics. Since there is considerable morphological
overlap between congeners C. finmarchicus and C. glacialis, species
identification was corroborated molecularly (see electronic sup-
plementary material S1). Copepod total RNA was obtained by a
combination of TRIzol-based extraction and the Direct-zol™
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Figure 2. Temporal expression profiles of circadian clock and clock-related genes in CV stage C. finmarchicus during Midnight Sun in the high Arctic. Relative gene
expression is shown in blue for the station JR85 (82.5˚ N, 18/19.06.2018) and in red for the station B13 (74.5˚ N, 30.06./01.07.2018). Grey dashed lines indicate the
standard errors of the mean (s.e.m.). Significance levels of oscillations detected by RAIN (Benjamini–Hochberg-adjusted p-values) with daily (D, 24 ± 4 h) and
ultradian (U, 12 ± 4 h) period ranges are indicated with stars: ‘*’ adjusted-p≤ 0.05, ‘**’ adjusted-p < 0.01, ‘***’ adjusted-p < 0.001. The yellow lines indicate
the sun’s altitude above the horizon and the grey lines the tidal height over the course of sampling.
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MiniPrepKit (ZymoResearch, USA). Total RNAwas transcribed to
cDNA using RevertAid H Minus Reverse Transcriptase (Thermo
Scientific, USA). The expression of six core circadian clock genes
(clock, cycle, period1, timeless, cryptochrome2, vrille), 2 circadian
clock-related genes (cryptochrome1 and doubletime2) and 3 candidate
reference genes was determined using SYBRGreen-based
quantitative real-time PCR (qPCR).

(c) Data treatment and statistical analyses
Gene expression data were normalized according to the 2−ΔCt

method [16] using the geometric mean of elongation factor 1α and
16 s rRNA as a reference. Profiles of clock genes were checked for
rhythmic expression with ultradian (12 h ± 4 h) and daily (24 h ±
4 h)period rangesusing theRpackage ‘RAIN’ [17]. Periodphase esti-
mateswere obtained from the RAIN algorithm and the amplitude of
oscillation was calculated by taking half the distance between the
maximum and minimum expression value of each time series.
3. Results
During the sampling period, the sun remained permanently
above the horizon (figure 1b) but still showed diel altitude
cycles, reflected by changes in PAR (figure 1c). Daily PAR
changes increased at the lower latitude and with time from
the summer solstice. Both stations exhibited semi-diurnal
tidal cycles. During the time of sampling at station JR85 (18–
19/06/2018, 82.5° N, sea ice-covered), daily cycles in solar alti-
tude were lower when compared to the time of sampling
several days later at station B13 (30/06/2018 – 01/07/2018,
74.5° N, sea ice-free, figure 1c). Conversely, tidal height
cycles were higher at JR85 when compared to B13 (figure 1d ).

The expression profiles of C. finmarchicus clock genes and
clock-related genes showed significant oscillations at both
stations (figure 2 and table 1). Rhythm analysis identified both
daily (24 ± 4 h) and ultradian (12 ± 4 h) period ranges in gene
expression, but with distinct differences between the stations.
At station B13, all clock genes showed oscillations with daily
periods, except for cycle (both daily and ultradian) and
cryptochrome1 (not significant). At station JR85, all clock genes
showed significant oscillations but with an increase in ultradian
periods. While clock, period1, timeless and cryptochrome1 showed
daily oscillations, cryptochrome2, vrille and doubletime2 exhibited
ultradian oscillations. As in B13, cycle showed both daily
and ultradian oscillations in gene expression.
4. Discussion
We reveal in situ daily circadian clock gene expression of a
key zooplanktonic species, C. finmarchicus, at high Arctic lati-
tudes (74.5° N, 82.5° N) during the Midnight Sun, near the
time of the summer solstice. While limited studies have
shown several Arctic species exhibit 24 h activity rhythms
during the Polar Day [18–21], quite how the circadian clock
is entrained without overt day/night cycles is unknown
and currently under debate [4,5,22].

It is also still unclearwhat constitutes zooplanktonDVMbe-
haviour during this time, with some studies suggesting that
synchronizedDVMceases [9–11] and some that it ismaintained
[12,13]. Copepods, specifically C. finmarchicus, are a dominant
constituent of the zooplankton community and have been the
focus of many DVM studies [2,12,23]. It has been shown that
C. finmarchicus collected from a high-latitude Fjord (78°N)
maintained circadian clock gene rhythmicity even under long
photophases at the very end of the Midnight Sun period [24].
Our results go further, showing circadian clock gene oscillations
within days of the summer solsticewhere daily changes in sun’s
altitude are at a minimum. At station B13 in the Southern



Table 1. Benjamini–Hochberg-adjusted p-values from rhythm analysis of clock
gene expression profiles with RAIN for ultradian (12 ± 4 h) and daily (24 ± 4 h)
period ranges. Values higher than p= 0.05 were considered not significant (n.s.).

target

JR85 B13

ultradian

range

daily

range

ultradian

range

daily

range

clock n.s. 0.01 n.s. <0.0001

cycle 0.006 0.005 0.04 <0.0001

period1 n.s. 0.04 n.s. <0.0001

timeless n.s. 0.05 n.s. <0.0001

cryptochrome2 0.004 n.s. n.s. <0.0001

vrille 0.002 n.s. n.s. 0.001

doubletime2 0.0007 n.s. n.s. <0.0001

cryptochrome1 n.s. 0.0009 n.s. n.s.
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Barents Sea (74.5° N, sea ice-free), clock gene expression shows
pronounced daily oscillations and striking similarities with pre-
vious findings from animals at lower latitudes with clock and
period1 in antiphase [2]. While it is possible that self-sustained
clock gene cycling could exist without synchronization to
environmental cycles, the concordance of synchronicity
between large numbers of individuals strongly suggests
that the populations sampled are synchronized by a common
Zeitgeber. Our results therefore strongly suggest that even
small fluctuations in light intensity, barely perceptible to the
human eye, are sufficient to sustain the circadian clock [22].
This is potentially explainedbyhigh irradiance [25] and spectral
light sensitivity [26] in these organisms.

In contrast with the daily oscillations found at station B13,
C. finmarchicus sampled at the northern sea ice-covered station
JR85 (82.5°N) exhibited a significant increase of ultradian oscil-
lations in circadian clock gene expression, with period ranges of
12 ± 4 h. The reduced daily solar altitude at JR85 is associated
with less pronounced daily oscillations, lower amplitude and
phase differences in some genes. For example, at JR85, clock
peaks at decreasing light while at B13, it peaks at increasing
light; however, clock and period1 maintain their antiphase
relationship. Furthermore, sampling at JR85 was conducted
within very closely packed snow-covered sea ice, which will
reduce the photoperiodic signal [27] thus limiting the potential
of light to provide a reliable measure of time. It is noteworthy
that the decrease in daily oscillations is not accompanied by a
loss of rhythmicity but by the appearance of ultradian oscil-
lations. These may be the result of circadian bimodality caused
by complex interactions of multiple phase shifted circadian
rhythms [28] or thepresenceof two circadianoscillators indiffer-
ent tissues peaking at different times of the day [29]. Further,
ultradian rhythms of 12.4 h are often observed in marine
organisms, including several crustaceans, under the influence
of semi-diurnal tidal cycles [30,31]. Tides lead to cycles of current
reversal, hydrostatic pressure, food, agitation or turbulence,
known to entrain organisms [32–35]. In zooplankton, tidal
rhythmsof verticalmigration [36–39] allowpopulations tomain-
tain position within estuaries [36], while in Pseudoclanaus sp.
cycles of ingestion have been documented under sea ice [39].
Here, the cyclic erosion of ice algae by tidal currents provided
pulses of food for the copepods, with highest ingestion at slack
water [39]. Our results reveal that ultradian oscillations of circa-
dian clock genes at JR85 provide some correlation with tidal
height cycles, though direct causation is untested (figure 2).
Further, many covariables change with the tidal cycles, such as
periodic turbulence, agitation or food supply. In the absence of
overt photoperiodic cycles during the Midnight Sun period
and under sea ice shading, tidal cues could function as an
alternative Zeitgeber for the C. finmarchicus circadian clock and
lead to both circadian and tidal oscillations of the circadian
clock machinery [40,41]. Ultimately this would increase the
adaptive advantages of a functioning clock in high-latitude
environments, e.g. by optimizing the food intake and thus
energy storage during the summer months. The accumulation
of large lipid reserves throughout the spring/early summer is
a fundamental process and key toC. finmarchicus’ seasonal strat-
egy to survive for the rest of theyear in diapause and forawinter
moult to adults [42]. An endogenous clock with sufficient plas-
ticity to entrain to the extreme conditions at polar latitudes could
therefore favour the permanent establishment of a boreal species
like C. finmarchicus in the high Arctic.
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