

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Bromo-2-[(*E*)-(2-fluoro-5-nitrophenyl)iminomethyl]phenol

Shaaban K. Mohamed,^{a,b} Mehmet Akkurt,^c* Peter N. Horton,^d Antar A. Abdelhamid^{a,b} and Adel A. Marzouk^e

^aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^bChemistry Department, Faculty of Science, Minia University, El-Minia, Egypt, ^cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^dSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, and ^ePharmaceutical Chemistry Department, Faculty of Pharmacy, Al AzharUniversity, Egypt Correspondence e-mail: akkurt@erciyes.edu.tr

Received 12 December 2012; accepted 13 December 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.025; wR factor = 0.059; data-to-parameter ratio = 15.4.

The molecular conformation of the title compound, $C_{13}H_8BrFN_2O_3$, is essentially planar, with maximum deviations of 0.076 (1) and -0.080 (2) Å for the O atoms of the NO₂ group. The molecular conformation is stabilized by an intramolecular O-H···N hydrogen bond, forming an *S*(6) ring motif. In the crystal, pairs of molecules are linked *via* two pairs of C-H···O hydrogen bonds, forming inversion dimers that enclose $R_2^2(7)R_2^2(10)R_2^2(7)$ ring motifs.

Related literature

For the synthesis and biological activity of azomethines, see: Przybylski *et al.* (2009); Kalaivani *et al.* (2012); Blair *et al.* (2000). For the synthesis of fluorinated azomethines, see: Mohamed *et al.* (2012). For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For standard bond lengths, see: Allen *et al.* (1987).

b = 19.815 (4) Å

c = 13.853 (3) Å

 $\beta = 95.484 (5)^{\circ}$ V = 1231.8 (4) Å³

Experimental

Crystal data $C_{13}H_8BrFN_2O_3$ $M_r = 339.11$ Monoclinic, $P2_1/n$ a = 4.5082 (9) A Z = 4Mo $K\alpha$ radiation $\mu = 3.36 \text{ mm}^{-1}$

Data collection

Rigaku AFC12 (Right)	
diffractometer	
Absorption correction: multi-scan	
(CrystalClear-SM Expert; Rigaku,	
2012)	
$T_{\min} = 0.500, \ T_{\max} = 0.906$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ 182 parameters $wR(F^2) = 0.059$ H-atom parameters constrainedS = 1.05 $\Delta \rho_{max} = 0.52$ e Å⁻³2811 reflections $\Delta \rho_{min} = -0.54$ e Å⁻³

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O1-H1\cdots N1\\ C7-H7\cdots O3^{i}\\ C13-H13\cdots O3^{i}\end{array}$	0.84	1.86	2.601 (2)	146
	0.95	2.45	3.399 (3)	173
	0.95	2.48	3.430 (3)	173

Symmetry code: (i) -x + 2, -y + 1, -z + 1.

Data collection: *CrystalClear-SM Expert* (Rigaku, 2012); cell refinement: *CrystalClear-SM Expert*; data reduction: *CrystalClear-SM Expert*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

The EPSRC National Crystallography Service is gratefully acknowledged for the X-ray diffraction data. AAA and SKM thank the Ministry of Higher Education of Egypt for financial support of this collaporative project. The authors are also thankful to Manchester Metropolitan University and Erciyes University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5665).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Blair, J. B., Kurrasch-Orbaugh, D., Marona-Lewicka, D., Cumbay, M. G., Watts, V. J., Barker, E. L. & Nichols, D. E. (2000). J. Med. Chem. 43, 4701–4710.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Kalaivani, S., Priya, N. P. & Arunachalam, S. (2012). Int. J. Appl. Biol. Pharm.
- *Technol.* 3, 219-223. Mohamed, S. K., Abdelhamid, A. A., Akkurt, M., Fanwick, P. E. & Maharramov, A. M. (2012). *Acta Cryst.* E68, 01618.
- Przybylski, P., Huczynski, A., Pyta, K. & Bartl, B. (2009). Curr. Org. Chem. 13, 124–130.

Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

organic compounds

 $0.24 \times 0.04 \times 0.03 \text{ mm}$

8107 measured reflections 2811 independent reflections

2633 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.023$

supplementary materials

Acta Cryst. (2013). E69, o107 [doi:10.1107/S1600536812050696]

4-Bromo-2-[(E)-(2-fluoro-5-nitrophenyl)iminomethyl]phenol

Shaaban K. Mohamed, Mehmet Akkurt, Peter N. Horton, Antar A. Abdelhamid and Adel A. Marzouk

Comment

Schiff bases have been shown to exhibit a broad range of biological activities, including antifungal, antibacterial, antimalarial, antiproliferative, anti-inflammatory, antiviral, and antipyretic properties (Przybylski *et al.*, 2009; Kalaivani *et al.*, 2012). Among such compounds, the fluorinated Schiff's bases were considered to possess a distingushed biological activity due to the dramatic affect of fluorine atom on the metabolism and distribution of drug molecules in the body (Blair *et al.*, 2000). Further to our on going study on synthesis of bioactive fluorinated compounds (Mohamed *et al.*, 2012) we herein report the synthesis and crystal structure of a new fluorinated azomethine derivative.

In the title compound (I), (Fig. 1), the molecular conformation is essentially planar, with maxium deviations of 0.076 (1) and -0.080 (2) Å, respectively, for O2 and O3. The C1–C7–N1–C8 torsion angle is 179.92 (16)°. The bond lengths and angles in (I) are within the normal range (Allen *et al.*, 1987).

Molecular conformation is stabilized by O—H···N hydrogen bond (Table 1), forming an S(6) ring motif. In the crystal, the pairs of molecules are linked by C—H···O interactions (Table 1, Fig. 2), generating $R^2_2(7)R^2_2(10)R^2_2(7)$ ring motifs (Bernstein *et al.*, 1995) along the [001] direction.

Experimental

A mixture of 1 mmol (156 mg) 2-fluoro-5-nitroaniline and 1 mmol (201 mg) 5-bromo-2-hydroxybenzaldehyde in 50 ml e thanol was heated at 350 K and monitored by TLC till completion after 12 h. A mass solid product was deposited once the reaction mixture was allowed to cool at room temperature. The crude product was filtered dried under vacuum and washed by ethanol. Pure yellow rods (m.p. 465 K) suitable for X-ray diffraction were obtained in an excellent yield (92%) by crystallization of crude product from ethanol.

Refinement

H atoms were positioned geometrically and refined using a riding model, with O—H = 0.84 Å, C—H = 0.95 Å, and with $U_{iso}(H) = 1.5 U_{eq}(O)$ for hydroxyl and $U_{iso}(H) = 1.2 U_{eq}(C)$ for the other H atoms.

Computing details

Data collection: *CrystalClear-SM Expert* (Rigaku, 2012); cell refinement: *CrystalClear-SM Expert* (Rigaku, 2012); data reduction: *CrystalClear-SM Expert* (Rigaku, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of (I) with ellipsoids drawn at the 50% probability level.

Figure 2

Crystal packing of (I) viewed along the a axis. The hydrogen atoms not involved in the hydrogen bonds have been omitted for clarity.

4-Bromo-2-[(E)-(2-fluoro-5-nitrophenyl)iminomethyl]phenol

Crystal data

C₁₃H₈BrFN₂O₃ $M_r = 339.11$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 4.5082 (9) Å b = 19.815 (4) Å c = 13.853 (3) Å $\beta = 95.484$ (5)° V = 1231.8 (4) Å³ Z = 4

Data collection

Rigaku AFC12 (Right)
diffractometer
Radiation source: Rotating Anode
Detector resolution: 28.5714 pixels mm ⁻¹
profile data from ω -scans
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
$T_{\min} = 0.500, \ T_{\max} = 0.906$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.025$	Hydrogen site location: inferred from
$wR(F^2) = 0.059$	neighbouring sites
<i>S</i> = 1.05	H-atom parameters constrained
2811 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0255P)^2 + 1.1447P]$
182 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.52 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.54 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

F(000) = 672

 $\theta = 2.5 - 31.2^{\circ}$

 $\mu = 3.36 \text{ mm}^{-1}$

T = 100 K

Rod, yellow

 $R_{\rm int} = 0.023$

 $k = -25 \longrightarrow 24$ $l = -17 \longrightarrow 14$

 $D_{\rm x} = 1.829 {\rm Mg} {\rm m}^{-3}$

 $0.24 \times 0.04 \times 0.03 \text{ mm}$

8107 measured reflections 2811 independent reflections 2633 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$ $h = -5 \rightarrow 5$

Mo *K* α radiation, $\lambda = 0.71075$ Å

Cell parameters from 4566 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	-0.15532 (4)	0.22619(1)	0.43736(1)	0.0188 (1)
F1	0.7510(2)	0.50903 (6)	0.05672 (7)	0.0202 (3)
01	0.2171 (3)	0.37891 (7)	0.09274 (9)	0.0171 (4)
02	1.5039 (3)	0.63282 (8)	0.41030 (11)	0.0290 (4)
O3	1.2227 (5)	0.56614 (11)	0.48212 (12)	0.0614 (8)

N1	0.5847 (3)	0.44689 (7)	0.21201 (11)	0.0140 (4)
N2	1.3057 (4)	0.59101 (9)	0.40914 (12)	0.0227 (5)
C1	0.2662 (4)	0.36222 (8)	0.26646 (12)	0.0123 (5)
C2	0.1398 (4)	0.34652 (9)	0.17204 (12)	0.0135 (5)
C3	-0.0742 (4)	0.29535 (9)	0.15895 (13)	0.0157 (5)
C4	-0.1635 (4)	0.26099 (9)	0.23746 (13)	0.0159 (5)
C5	-0.0389 (4)	0.27669 (9)	0.33084 (12)	0.0140 (5)
C6	0.1728 (4)	0.32683 (9)	0.34603 (12)	0.0145 (5)
C7	0.4936 (4)	0.41399 (9)	0.28338 (13)	0.0138 (5)
C8	0.8050 (4)	0.49730 (9)	0.22592 (13)	0.0136 (5)
C9	0.8877 (4)	0.52873 (9)	0.14215 (12)	0.0150 (5)
C10	1.0992 (4)	0.57931 (9)	0.14290 (13)	0.0165 (5)
C11	1.2365 (4)	0.60049 (9)	0.23159 (13)	0.0157 (5)
C12	1.1566 (4)	0.56969 (9)	0.31484 (13)	0.0156 (5)
C13	0.9451 (4)	0.51880 (9)	0.31435 (13)	0.0154 (5)
H1	0.34830	0.40790	0.10930	0.0260*
H3	-0.15830	0.28430	0.09540	0.0190*
H4	-0.31010	0.22660	0.22810	0.0190*
H6	0.25500	0.33730	0.41000	0.0170*
H7	0.57530	0.42350	0.34770	0.0170*
H10	1.14920	0.59910	0.08410	0.0200*
H11	1.38190	0.63530	0.23510	0.0190*
H13	0.89690	0.49900	0.37330	0.0180*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0189(1)	0.0213 (1)	0.0161 (1)	-0.0045 (1)	0.0003 (1)	0.0053 (1)
F1	0.0209 (6)	0.0273 (6)	0.0115 (5)	-0.0064 (5)	-0.0028 (4)	0.0011 (4)
01	0.0208 (7)	0.0184 (6)	0.0119 (6)	-0.0042 (5)	0.0007 (5)	0.0008 (5)
O2	0.0326 (8)	0.0292 (8)	0.0243 (7)	-0.0159 (7)	-0.0022 (6)	-0.0043 (6)
03	0.0880 (16)	0.0804 (15)	0.0135 (8)	-0.0628 (13)	-0.0074 (9)	0.0082 (8)
N1	0.0128 (7)	0.0141 (7)	0.0150 (7)	0.0001 (6)	0.0013 (6)	-0.0005 (5)
N2	0.0290 (9)	0.0228 (8)	0.0156 (8)	-0.0085 (7)	-0.0011 (7)	-0.0008 (6)
C1	0.0110 (8)	0.0124 (8)	0.0136 (8)	0.0021 (6)	0.0011 (6)	-0.0003 (6)
C2	0.0137 (8)	0.0135 (8)	0.0133 (8)	0.0026 (6)	0.0015 (6)	0.0004 (6)
C3	0.0156 (9)	0.0171 (8)	0.0140 (8)	0.0000 (7)	-0.0011 (6)	-0.0047 (7)
C4	0.0145 (8)	0.0144 (8)	0.0186 (9)	-0.0005 (7)	0.0001 (7)	-0.0018 (7)
C5	0.0144 (8)	0.0148 (8)	0.0127 (8)	0.0009 (7)	0.0015 (6)	0.0021 (6)
C6	0.0147 (8)	0.0160 (8)	0.0125 (8)	0.0014 (7)	0.0000 (6)	0.0002 (6)
C7	0.0123 (8)	0.0151 (8)	0.0137 (8)	0.0012 (7)	-0.0005 (6)	-0.0014 (6)
C8	0.0129 (8)	0.0129 (8)	0.0151 (8)	0.0007 (6)	0.0016 (7)	-0.0003 (6)
C9	0.0139 (8)	0.0179 (8)	0.0125 (8)	0.0022 (7)	-0.0023 (6)	-0.0014 (6)
C10	0.0164 (9)	0.0166 (8)	0.0167 (9)	0.0011 (7)	0.0022 (7)	0.0036 (7)
C11	0.0155 (8)	0.0126 (8)	0.0191 (9)	-0.0009 (7)	0.0017 (7)	0.0007 (7)
C12	0.0163 (9)	0.0155 (8)	0.0145 (8)	-0.0004 (7)	-0.0010 (7)	-0.0021 (6)
C13	0.0160 (9)	0.0159 (8)	0.0143 (8)	-0.0009 (7)	0.0012 (7)	0.0007 (6)

Geometric parameters (Å, °)

Br1—C5	1.8980 (18)	C5—C6	1.380 (3)
F1—C9	1.339 (2)	C8—C13	1.390 (3)
O1—C2	1.347 (2)	C8—C9	1.399 (2)
O2—N2	1.218 (2)	C9—C10	1.383 (3)
O3—N2	1.215 (3)	C10—C11	1.387 (3)
01—H1	0.8400	C11—C12	1.383 (3)
N1—C7	1.284 (2)	C12—C13	1.387 (3)
N1—C8	1.409 (2)	С3—Н3	0.9500
N2—C12	1 473 (2)	C4—H4	0.9500
C1-C6	1.175(2) 1 405(2)	С6—Н6	0.9500
C1 - C7	1.103(2) 1 453(2)	C7—H7	0.9500
C1 - C2	1.435(2) 1 411(2)	C_{10} H10	0.9500
$C_2 = C_3$	1 300 (3)	C11H11	0.9500
$C_2 = C_3$	1.375(3)	C13 H13	0.9500
$C_3 - C_4$	1.370(3) 1 305 (2)	015-1115	0.9500
04-03	1.595 (2)		
C2—O1—H1	109.00	F1—C9—C10	118.47 (15)
C7—N1—C8	121.86 (16)	C8—C9—C10	123.70 (16)
O2—N2—C12	118.63 (16)	C9—C10—C11	118.36 (16)
O3—N2—C12	118.09 (18)	C10-C11-C12	118.40 (17)
O2—N2—O3	123.29 (18)	N2—C12—C11	118.69 (16)
C2—C1—C7	121.43 (15)	C11—C12—C13	123.40 (17)
C6—C1—C7	119.05 (15)	N2—C12—C13	117.91 (16)
C2—C1—C6	119.52 (16)	C8—C13—C12	118.76 (16)
O1—C2—C3	117.94 (15)	С2—С3—Н3	120.00
C1—C2—C3	119.50 (16)	С4—С3—Н3	120.00
O1—C2—C1	122.56 (16)	C3—C4—H4	120.00
C2—C3—C4	120.43 (16)	C5—C4—H4	120.00
C3—C4—C5	120.02 (17)	С1—С6—Н6	120.00
Br1—C5—C4	119.11 (13)	С5—С6—Н6	120.00
Br1—C5—C6	119.98 (13)	N1—C7—H7	120.00
C4—C5—C6	120.88 (16)	С1—С7—Н7	120.00
C1—C6—C5	119.65 (15)	C9—C10—H10	121.00
N1—C7—C1	120.45 (16)	С11—С10—Н10	121.00
N1—C8—C9	116.27 (16)	C10—C11—H11	121.00
N1—C8—C13	126.35 (16)	C12—C11—H11	121.00
C9—C8—C13	117.38 (16)	C8—C13—H13	121.00
F1—C9—C8	117.83 (16)	C12—C13—H13	121.00
C8—N1—C7—C1	-179.92 (16)	C3—C4—C5—C6	0.4 (3)
C7—N1—C8—C9	179.13 (17)	C3—C4—C5—Br1	-177.66 (14)
C7—N1—C8—C13	-1.3 (3)	Br1-C5-C6-C1	177.55 (13)
O3—N2—C12—C13	-4.7 (3)	C4—C5—C6—C1	-0.5 (3)
O2—N2—C12—C11	-3.3 (3)	N1-C8-C9-C10	179.72 (16)
O2—N2—C12—C13	175.80 (17)	C13—C8—C9—F1	-179.08 (16)
O3—N2—C12—C11	176.20 (19)	C13—C8—C9—C10	0.1 (3)
C7—C1—C2—C3	178.71 (17)	N1-C8-C9-F1	0.5 (2)
C7—C1—C6—C5	-178.80 (17)	N1-C8-C13-C12	-179.49 (17)

supplementary materials

C2—C1—C7—N1	0.1 (3)	C9—C8—C13—C12	0.1 (3)
C2—C1—C6—C5	0.7 (3)	F1-C9-C10-C11	178.83 (16)
C6—C1—C2—C3	-0.8 (3)	C8—C9—C10—C11	-0.4 (3)
C7—C1—C2—O1	-1.2 (3)	C9-C10-C11-C12	0.4 (3)
C6—C1—C7—N1	179.58 (16)	C10-C11-C12-N2	178.83 (16)
C6-C1-C2-O1	179.35 (16)	C10-C11-C12-C13	-0.3 (3)
O1—C2—C3—C4	-179.43 (16)	N2-C12-C13-C8	-179.08 (16)
C1—C2—C3—C4	0.7 (3)	C11—C12—C13—C8	0.0 (3)
C2—C3—C4—C5	-0.5 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D··· A	D—H···A
01—H1…N1	0.84	1.86	2.601 (2)	146
C7—H7····O3 ⁱ	0.95	2.45	3.399 (3)	173
C13—H13…O3 ⁱ	0.95	2.48	3.430 (3)	173

Symmetry code: (i) -x+2, -y+1, -z+1.