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Abstract

Nicotine and alcohol are often co-abused. Adolescence is a vulnerable period for the initiation

of both nicotine and alcohol use, which can lead to subsequent neurodevelopmental and

behavioral alterations. It is possible that during this vulnerable period, use of one drug leads

to neurobiological alterations that affect subsequent consumption of the other drug. The aim

of the present study was to determine the effect of nicotine exposure during adolescence on

ethanol intake, and the effect of these substances on brain gene expression. Forty-three ado-

lescent female C57BL/6J mice were assigned to four groups. In the first phase of the experi-

ment, adolescent mice (PND 36–41 days) were exposed to three bottles filled with water or

nicotine (200 μg/ml) for 22 h a day and a single bottle of water 2 h a day for six days. In the

second phase (PND 42–45 days), the 4-day Drinking-in-the-Dark paradigm consisting of

access to 20% v/v ethanol or water for 2h or 4h (the last day) was overlaid during the time

when the mice did not have nicotine available. Ethanol consumption (g/kg) and blood ethanol

concentrations (BEC, mg %) were measured on the final day and whole brains including the

cerebellum, were dissected for RNA sequencing. Differentially expressed genes (DEG) were

detected with CuffDiff and gene networks were built using WGCNA. Prior nicotine exposure

increased ethanol consumption and resulting BEC. Significant DEG and biological pathways

found in the group exposed to both nicotine and ethanol included genes important in stress-

related neuropeptide signaling, hypothalamic–pituitary–adrenal (HPA) axis activity, gluta-

mate release, GABA signaling, and dopamine release. These results replicate our earlier

findings that nicotine exposure during adolescence increases ethanol consumption and

extends this work by examining gene expression differences which could mediate these

behavioral effects.
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1. Introduction

Nicotine and ethanol are often used concomitantly. Smoking rates among alcoholics are esti-

mated to be higher than in the general population (around 80% vs. 34%) and the prevalence of

alcoholism in the United States has been calculated to be 10 times higher in smokers than

among non-smokers [1,2]. Adolescence is a vulnerable period for the onset of nicotine and

ethanol use [3–5], with evidence linking the risk of smoking during this period with subse-

quent development of alcohol abuse and dependence [6–8]. Additionally, sex differences have

been reported, suggesting a stronger association between concurrent smoking and alcohol use

disorders (AUDs) among females as compared to males [9–12]. Because the majority of smok-

ers begin smoking during adolescence [13], these findings suggest that adolescent females may

be especially vulnerable to negative consequences of early alcohol and tobacco use.

Nicotine exposure during adolescence has unique effects on the developing brain. Exposure

to nicotine during this period produces long-term alterations in developing structures such as

the neocortex, hippocampus, and cerebellum [14]. Nicotine alters the function of these brain

regions by inducing changes in dendritic spines and neuronal morphology, that are produced

by alterations in transcriptional regulators of synapse maintenance [15]. These nicotine-

induced neurobiological alterations can produce cognitive impairment, increase risk-taking

behaviors [16], and increase risk of future depression [17] or anxiety [18]. These biological and

behavioral alterations can predispose certain individuals to develop substance use disorders

[19]. Therefore, it is crucial to examine the effects of adolescent nicotine exposure on physio-

logical and behavioral outcomes. One such physiological response is changes in gene expres-

sion. These changes could alter normal developmental trajectories, increasing the risk of

substance use later in life.

In animal models, age and sex-related differences in nicotine and ethanol consumption

have been identified. Adolescent rodents show age-related differences in nicotine sensitivity,

reward, tolerance, withdrawal, and nicotinic acetylcholine receptor (nAChRs) function com-

pared to adults [20–23]. Further, adolescent female mice and rats consume more nicotine

(adjusted for body weight) than do their male counterparts [24–26]. Moreover, adolescent

female mice are more responsive to the rewarding effects of nicotine [27] and more susceptible

to binge ethanol drinking compared to males [28,29].

Previous studies have shown that nicotine exposure increases ethanol self-administration in

rodents [30,31]. One proposed mechanism by which nicotine increases ethanol self-adminis-

tration is via the release of stress hormones [32–33]. Nicotine activates the stress-responsive

neuroendocrine system (i.e. hypothalamic–pituitary–adrenal (HPA)) and, consequently,

induces glucocorticoid release [32]. In adult rodents, glucocorticoids reduce ethanol-induced

dopamine signaling through enhancement of GABAergic inhibition on dopamine (DA) neu-

rons in the ventral tegmental area (VTA) [31,34,35]. Further, blunted DA levels have been

associated with increased susceptibility to drug and ethanol use [36]. Ethanol can also potenti-

ate GABAA, nACh, and 5-HT3 receptor function, and inhibit the function of glutamatergic

receptors [37]. However, these studies in adult animals have focused on either nicotine or etha-

nol’s specific mechanisms of action rather than the effects of these substances on adolescent

brain development and their link to later drug behaviors.

The effect of adolescent nicotine exposure on brain gene expression and ethanol consump-

tion are poorly understood. The aim of this study was to determine the effect of nicotine expo-

sure on ethanol consumption and resulting gene expression in female adolescent C57BL/6J

mice. Our findings reveal that nicotine exposure increases ethanol consumption and blood

ethanol concentrations (BEC) in female adolescent mice compared to nicotine-naïve animals.

Significant differentially expressed genes (DEG) and biological pathways after nicotine and/or
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ethanol administration were associated with neuropeptide, HPA axis activity, neurogenesis,

glutamatergic and GABAergic neurotransmission, and DA release. Our results allow us to

hypothesize that nicotine exposure alters stress-related neuroendocrine and reward-associated

neurotransmitter systems, which may mediate enhanced ethanol consumption, however,

future work is required to test this.

2. Materials and methods

2.1. Animals

Forty-three adolescent (PND 28) female C57BL/6J mice were purchased from The Jackson

Laboratory, Bar Harbor, ME. Only female mice were tested due to reported differences in nic-

otine consumption and ethanol effects observed between sexes [26,38–40]. Mice were singly

housed in standard sized Plexiglas cages with bedding (Bed-o’Cobs, The Anderson Agriser-

vices, Inc. Maume, OH) in a temperature-controlled room (20.3˚C ± 0.8). Animals were

housed on a 12-hour reversed light/dark cycle (lights off at 1000 h). Mice had ad libitum food

(Lab Rodent Diet 5001, PMI Nutrition International, Inc., Brentwood, MO) throughout the

experiment. All procedures were approved by the Pennsylvania State University Institutional

Animal Care and Use Committee (Protocol Number: 45610).

2.2. Behavioral paradigm

2.2.1. Baseline. During the baseline period (PND 33–35; Fig 1), mice had 24 h access to

tap water in a single drinking bottle. Body weight and fluid consumption were measured daily.

2.2.2. Nicotine treatment. Mice were randomly assigned into four groups: Water-

Water (WW), Water-Ethanol (WE), Nicotine-Water (NW), or Nicotine-Ethanol (NE). A

WW and NW group were included to control for the effects of nicotine on overall thirst.

There were 10–12 mice per group. During the first six days of the experiment, mice were

exposed to 3 glass drinking bottles filled with water or nicotine for 22 h a day, and a single

water bottle for 2 h each day (Fig 1). For the WW and WE groups, all 3 bottles were filled

with tap water. For the NW and NE groups, all 3 bottles were filled with 200 μg/ml (−)-nico-

tine freebase (Sigma–Aldrich, St. Louis, MO) dissolved in tap water. This concentration of

Fig 1. Experimental timeline.

https://doi.org/10.1371/journal.pone.0198935.g001
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nicotine was chosen because it is voluntary consumed by adolescent mice without adverse

effects [25,41,42] and replicates our prior work [35]. Bottles were placed on the cages at

1500 h and were removed and replaced with the single water bottle at 1300 h the next day.

The three bottles were read and nicotine consumption (mg/kg) was calculated for each

mouse. The 2 h single bottle was weighed and water consumption (ml) was calculated. Leak-

age/evaporation was accounted for by tubes on control cages handled using the same proto-

col, but with no animal present. We subtracted the volume lost in control tubes from

individual drinking values. These procedures continued throughout the experiment. How-

ever, during the last 4 days (PND 42–45) mice were exposed to ethanol via the drinking-in-

the-dark (DID) protocol (see section 2.2.3).

2.2.3. Drinking-in-the-dark (DID) protocol. The DID protocol was performed as previ-

ously reported [40,43]. During experimental days (7–10) nicotine exposure continued as

detailed above (22 h/day), however, at 1300 h, all 3 bottles (nicotine or water) were removed

and replaced with a single 10 ml serological pipette fitted with a ball bearing drinking spout

containing either ethanol or water. Ethanol was prepared from ethyl alcohol (200 proof; Kop-

tec 200) diluted in tap water to produce a 20% v/v solution [43,44]. Mice had 2 h access to a

single bottle of water or ethanol for three days (PND 42–44). On the final day (PND 45), mice

had 4 h access to the ethanol bottle. Leakage/evaporation was accounted for by tubes on con-

trol cages as described above. At the end of the 4 h drinking session on the final day, blood

samples were collected from the tail vein (10μl) and mice were sacrificed via cervical disloca-

tion, whole brains including the cerebellum were dissected and placed into RNAlater1 for

subsequent RNA extraction.

2.3. Blood ethanol concentration (BEC) assessment

BEC were examined with an enzymatic assay [45–47]. This assay links the conversion of etha-

nol to acetaldehyde together with the conversion of NAD to NADH by the addition of alcohol

dehydrogenase (ADH). NADH production was quantified with a spectrophotometer (340nm).

Individual BEC values were determined using a standard curve run in parallel with the samples

[47].

2.4. Statistical analysis of behavioral data

Nicotine, ethanol, and water consumption as well as BEC were dependent variables. Group

and experimental day were used as independent factors. A repeated measure ANOVA was per-

formed to analyze nicotine consumption throughout the experiment, followed by a Tukey’s

post hoc test (day 6 was not analyzed because of missing data). Based on our previous results

[35], a one-tailed t-test was conducted to analyze differences in BEC and ethanol consumption

between groups with alpha set at 0.05 because we predicted that nicotine would increase etha-

nol consumption. These analyses were conducted in Statistical Program for Social Sciences

(SPSS, Chicago, IL) or in R (version 3.2.2, R Core Team, 2015).

2.5. RNA extraction

RNA was extracted from a randomly selected subset of mice (16 total; 4 samples from each

experimental group). Total RNA was extracted with an RNeasy1 Midi Kit (QIAGEN, Valen-

cia, CA). RNA quality was assessed using an Agilent 2100 BioAnalyzer™ (Agilent Technologies,

Santa Clara, CA). RNA Integrity Number (RIN) was on average 8.23 ± 0.26 for all samples,

suggesting high RNA integrity and quality [48].
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2.6. Library preparation RNA-sequencing

An Illumina TruSeq1 Stranded mRNA Library Prep Kit (Illumina, San Diego, CA) was used

for cDNA library preparation following the manufacturers’ protocol [49]. An Agilent 2100

BioAnalyzerTM was used for library sizing, cDNA quantification, and quality measurement.

Finally, libraries were sequenced using an Illumina HiSeq 2500 (Illumina, San Diego, CA). On

average, 43 million, 150 base pair single end reads were generated for each sample and used in

the analysis. Sequencing data are available from the NCBI GEO database (experimental series

accession number: GSE115188).

2.7. Transcript assembly, quantification, and differential expression

analysis

Trimmomatic was used to remove sequencing adapters and low-quality ends [50]. The cleaned

dataset was analyzed with the Tuxedo pipeline. Subsequently, readings were mapped to the

mouse reference genome (Ensembl GRCm38, mm10) using TopHat2 software (http://tophat.

cbcb.umd.edu/). The ‘—library_type’ parameter was set to ‘fr-firststrand’. Default settings

were preserved for all other TopHat2 parameters. The resulting alignments files from TopHat2

(average mapping rate of 87.4%) were used to generate a transcriptome assembly. Gene expres-

sion was calculated for each condition using the Cufflinks (http://cufflinks.cbcb.umd.edu/)

and Cuffmerge utilities. Due to the relatively small sample size of each group (N = 4), Cuffdiff2

with default settings was used to identify transcripts that were differentially expressed between

each treatment group compared to the water only control group. This analysis strategy was

chosen based on a previous research with a similar research design [51]. The significance

threshold was set at q< 0.05 (FDR corrected) [52]. Finally, a Fisher’s exact test was performed

using the GeneOverlap R package to test the significance of DEG overlaps [53].

2.8. Weighted Gene Co-expression Network Analysis (WGCNA)

Gene co-expression networks were identified using the Weighted Gene Co-expression Net-

work Analysis (WGCNA) package [54]. Briefly, genes were removed if at least one value of the

sixteen samples had FPKM <1. The remaining genes were log-transformed using the Log2(X

+1) function. Following this, 12,679 genes were used to build a co-expression similarity matrix

based on Pearson correlations and transformed into a signed adjacency matrix using the soft

thresholding power of β = 18 [54]. Genes were hierarchically clustered, signed gene networks

were built using minModuleSize = 20, deepSplit = 4, and similar modules were merged using

mergeCutHeight = 0.1. The resulting modules were assigned to arbitrary color names. To

identify modules associated with the experimental conditions, one-way ANOVAs were per-

formed using the module eigengene (ME) value for each of the resulting modules. Correction

for multiple testing was applied using false discovery rate (FDR- adjusted q-value < 0.05).

Finally, Tukey’s post hoc test was performed to identify significant differences between experi-

mental groups and the WW group.

2.9. Functional enrichment

To obtain information about possible underlying biological processes pertinent to the study,

the DEG and significant WGCNA module gene lists were uploaded to Ingenuity Pathway

Analysis software (IPA; Ingenuity Systems, Inc, Redwood City, California, USA, http://www.

ingenuity.com). Functional enrichment for pathways restricted to mouse nervous system were

performed, and scores for upstream regulators, mechanistic networks, causal networks, and
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downstream effects were obtained [55]. Each IPA network is scored based on the fit of signifi-

cant genes in each dataset using the Fisher exact test [56].

3. Results

3.1. Behavior

3.1.1. Nicotine phase. Analysis of nicotine consumption (mg/kg) across study days

revealed a significant main effect of day (F 9,180 = 8.02, p<0.01; Fig 2). Post hoc analyses

revealed a significant increase in nicotine consumption on days 2, 4, and 9 (all p<0.05) com-

pared to day 1. No significant main effect or interactions with group were observed. No signifi-

cant main effect of day, nicotine treatment, or day x nicotine treatment interaction were

detected for the 2h water intake between days 1 to 5 in this experimental phase. Further, no

significant differences in body weight were observed between groups.

3.1.2. Drinking in the dark (DID). Mice with access to nicotine during adolescence con-

sumed significantly more ethanol and had higher BEC than mice with access to water only

(Fig 3). For this analysis, we focused on the 4-hour exposure of the last experimental day, com-

monly used as a measure of binge-like ethanol consumption [57–61]. Replicating our prior

results [35], mice exposed to nicotine consumed significantly more ethanol (t 14 = 1.69,

p<0.05; Fig 3A) and had significantly higher BEC (t 14 = 2.89, p<0.05; Fig 3B) than nicotine

naïve mice. No significant differences were found in ethanol consumption on days 7–9

(Mean ± Standard Error of Mean; Day 7: WE = 0.34 ± 0.02, NE = 0.35 ± 0.03; Day 8:

WE = 0.31 ± 0.03, NE = 0.35 ± 0.05; Day 9: WE = 0.41 ± 0.06, NE = 0.42 ± 0.06). Further, no

significant differences in water consumption were detected between the WW and NW groups

Fig 2. Nicotine consumption increased after the first day but remained similar between groups. Data shows 22 h

nicotine consumption (mg/kg) for NW and NE mice on days 1 to 10. � represents significantly (p< 0.05) different than

day 1.

https://doi.org/10.1371/journal.pone.0198935.g002
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on the last day of the experiment (1.05 ± 0.20; 1.50 ± 0.21 respectively), nor were differences in

body weight between groups observed.

3.2. Differentially expressed genes (DEG)

We examined DEG in each of the three drug treatments groups compared to the water only

control group. Sixteen DEG were shared between the NW and WE groups, 17 DEG were

shared between both groups exposed to nicotine, and 86 DEG overlapped between both

groups exposed to ethanol (Fig 4). Twelve DEG were shared across all treatment groups. All

overlapping DEG were significant (p<0.01).

Exposure to only nicotine (NW) resulted in 99 DEG (Fig 4 and S1 Table) at FDR< 0.05, of

which 84 were downregulated and 15 were upregulated. Expression changes ranged from a

logarithmic fold change (LFC) of -4.38 to 3.90 (Fig 5). Among notable genes previously associ-

ated to nicotine consumption we found an upregulation of the Pro-opiomelanocortin (Pomc)
gene which mediates the anorectic effects of nicotine through activation of acetylcholine recep-

tors [62,63] and the vasopressin (Avp) gene, involved in the facilitation of stress-induced neu-

ronal activation and regulation of hypothalamic adrenocorticotropic hormone (ACTH)

release [64]. Additionally, we observed a downregulation of the Activity Regulated Cytoskele-

ton-Associated Protein (Arc) gene, Fos Proto-Oncogene (Fos) gene, and Nuclear Receptor

Fig 3. Nicotine exposure during adolescence increases ethanol consumption and resulting BEC. Data (mean ± SE)

represents (A) 4h ethanol consumption (g/kg) on the final experimental day and (B) Blood Ethanol Concentration

(BEC) in the WE and NE animals. � represents p<0.05.

https://doi.org/10.1371/journal.pone.0198935.g003

Fig 4. The ethanol group showed the highest number of DEG compared to the nicotine only and nicotine-ethanol

groups. Venn diagram of differentially expressed genes (DEG) among three treatment groups compared to water only

(FDR< 0.05) and their overlap. Sixteen DEG were shared between NW and WE groups, 17 DEG between NW and

NE, and 86 DEG between WE and NE. Only 12 genes were shared among all treatment groups.

https://doi.org/10.1371/journal.pone.0198935.g004
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Subfamily 4 Group A Member 1 (Nr4a1) gene. These genes have been previously associated

with neurogenesis, cell proliferation, cell differentiation, and cell transformation [65–68].

Using the NW DEG, IPA identified an enrichment of the corticotrophin releasing hormone

signaling pathway (4 genes, p<0.05: Fig 6). Relevant upstream regulators included the Cortico-

tropin-Releasing Hormone Receptor 1 (Crhr1), CAMP Responsive Element Binding Protein 1

(Creb1), Brain-Derived Neurotrophic Factor (Bdnf), and dopamine release such as Dopamine

Receptor D2 (Drd2) (Table 1). These genes have been associated to nicotine exposure in prior

studies [69–73].

Exposure to only ethanol (WE) resulted in 353 DEG (Fig 4 and S2 Table) of which 268 were

downregulated and 85 were upregulated with an LFC ranging from -1.68 to 4.61. Notable

DEG identified for the ethanol only group were associated with neurogenesis (FosB), voltage-

gated ion channels (Kcnt1 and Kcnb2), immune system (Il16 and Il20rb), and glutamatergic

neurotransmission (Grin2a, Grin2b and Grm3). We observed increased expression of the FBJ

Fig 5. Notable genes differentially expressed between the WW and NW group. (A- C) The Arc, Fos, and Nr4a1 genes showed a

downregulation in the NW group compared to the WW group. (D-E) Inversely, Avp and Pomc genes were upregulated in the NW

group. (F) The log-fold change (LFC) values are presented in the Nicotine-Water table.

https://doi.org/10.1371/journal.pone.0198935.g005
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Murine Osteosarcoma Viral Oncogene Homolog B (FosB), the Potassium Sodium-Activated

Channel Subfamily T Member 1 (Kcnt1), the Interleukin 16 (Il16), and Interleukin-20 receptor

subunit beta precursor (Il20rb) genes, implicated in immune responses and cytokine signaling

Fig 6. IPA network shows the associations of genes affected by nicotine exposure in adolescent C57BL/6J mice. This figure highlights genes enriched for

the stress-related pathways: corticotrophin releasing hormone signaling and glucocorticoid receptor signaling (pink bold nodes corresponding to NW DEG

and upstream regulators). This figure shows a direct effect of the upstream regulator gene Creb1 onNr4a1, Bdnf, Fos, Arc, and Avp genes involved in

neuroplasticity and stress response. Indirect relationships are indicated for Bdnf on Fos, Arc, and Pomc. Up (light red) and down (light green) regulated genes

are shown. Direct (bold arrow) and indirect (dashed arrow) relationships are displayed. IPA functional categories are shown in node key.

https://doi.org/10.1371/journal.pone.0198935.g006
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(Fig 7A–7D). There was decreased expression of the Subfamily B Member 2 (Kcnb2), Gluta-

mate Metabotropic Receptor 3 (Grm3), Glutamate Ionotropic Receptor NMDA-Type Subunit

2A (Grin2a), and Subunit B (Grin2b) genes (Fig 7E–7H). These genes have been previously

reported to be altered by ethanol exposure and involved in ethanol sensitivity [74–80].

The WE DEG were enriched for pathways involved in hepatic stellate cell activation (10

genes, p<0.05) and intrinsic prothrombin activation (3 genes, p<0.05). Relevant upstream

regulators for the WE group were Glutamate Metabotropic Receptor 2 (Grm2),Grin2a,

Serum/Glucocorticoid-Regulated Kinase (Sgk1), Adenylate Cyclase Activating Polypeptide 1

(Adcyap1), Adenylate Cyclase 5 (Adcy5), and Bdnf (Table 2). These genes have been previously

reported to be altered by ethanol [81–84].

Nicotine and ethanol exposure (NE) resulted in 122 DEG (Fig 4 and S3 Table), of which 46

genes were downregulated and 76 upregulated, with an LFC range of -2.44 to 1.40. There was

an upregulation of relevant DEG previously implicated in both nicotine and ethanol consump-

tion such as Avp [85–87] and the Metabotropic glutamate receptor 4 (Grm4) gene [33,74].

Additionally, the Solute Carrier Family 6 (Neurotransmitter Transporter, GABA) Member 13

(Slc6a13) gene was downregulated in this group (Fig 8).

IPA of DEG from the NE group identified enrichment of dendritic cell maturation (6

genes, p<0.05) and synaptic long-term depression (4 genes, p<0.05) pathways. The upstream

regulator genes had similar function to those identified for our nicotine only and ethanol only

groups. These genes were associated with HPA-axis function such as Crhr1 and Corticotro-

phin Releasing Hormone Binding Protein (Crhbp). Moreover, they were implicated in tran-

scription regulation including Transcription Factor 7 Like 2 (Tcf7l2), Neurogenic Locus Notch

Homolog Protein 3 (Notch3), and Notch1. Finally, we observed upstream regulator genes asso-

ciated with immune response such as Interleukin 10 (Il10) and oxidative deamination of dopa-

mine, norepinephrine, and serotonin such as Monoamine Oxidase A (Maoa) gene (Table 3).

3.3. Weighted Gene Co-expressed Network Analysis (WGCNA)

All sixteen samples produced 140 modules in a single WGCNA analysis. The gray module con-

tained 263 unassigned genes. The remaining 139 modules contained between 20 and 957

genes. To identify relevant modules, the ME was calculated for each experimental group. A

one-way ANOVA with multiple testing correction (q<0.05) identified 15 modules signifi-

cantly different between experimental conditions (S5 Table), containing between 23 and 741

genes (S6 Table). Tukey’s post hoc analysis revealed significant differences between specific

groups for each module (S7 Table), with the majority of significant modules significantly dif-

ferent when comparing WE to WW.

Table 1. Upstream regulators of NW DEG identified by IPA.

DEG Nicotine-Water: IPA functional over-representation

Upstream Regulators p-value of overlap Target molecules

Creb1 8.23E-08 " Avp, # Arc, # Fos, # Egr2

Drd2 1.15E-04 " Cshl1, " Pomc, # Fos

Bdnf 4.05E-04 " Pomc, # Fos, # Arc, # Cav2, # Egr2,

# Nr4a1

Crhr1 6.17E-03 " Avp

This table contains the upstream regulators identified using IPA and their target molecules, corresponding to genes

present in the list of DEG following nicotine treatment (" = upregulated; # = downregulated).

https://doi.org/10.1371/journal.pone.0198935.t001
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Functional overrepresentation analysis using IPA found enrichment in our 15 significant

modules (detailed information in S8–S22 Tables). Enriched functional pathways were associ-

ated with synaptic signaling (blue, palevioletred3, lightcyan, paleturquoise, darkred, steelblue,

powderblue, darkgray, salmon and black module), immune response (lighcyan module), tran-

scription and methylation (powederblue, black and antiquewhite1 module), amino acid bio-

synthesis (brown4 and antiquewhite4 module), prothrombin activation pathways (salmon

module), and cell cycle regulation (salmon and black module).

There were three modules (Blue, Midnightblue and Darkred) containing genes previously

associated with addiction and brain development that are described below. The Blue module,

containing 741 genes was significantly different between groups (F(3,12) = 8.16, q<0.05). The

post hoc analysis revealed that the NW group had less expression compared to the WW group

(Fig 9A). This module contained genes such as Gamma-Aminobutyric Acid Type A Receptor

Subunit Beta 2 and Alpha 1 (Gabrb2 and Gabra1), Serotonin 5-HT-2C Receptor (Htr2c), Volt-

age-Sensitive Potassium Channel (Kcnd2) and Insulin-Like Growth Factor 1 (Igf1). GABA sig-

naling-related genes have been identified as susceptibility loci and genes for nicotine

dependence and alcoholism [88]. Functional enrichment using IPA, revealed Ephrin receptor

signaling (p = 0.0003), ERK/MAPK signaling (p = 0.001), TGF-β Signaling (p = 0.002) and,

BMP signaling pathways (p = 0.002). The top network was enriched in genes associated with

pathways involved in neuroinflammation, dopamine receptor signaling, and corticotrophin

releasing hormone (Fig 10).

The Midnightblue module containing 168 genes, was significantly different between groups

(F(3,12) = 22.53, q<0.05). Tukey’s post hoc test revealed an increase in gene expression in both

of the ethanol groups (WE and NE) compared to our control group (WW) (Fig 9B). This mod-

ule contained genes such FBJ Murine Osteosarcoma Viral Oncogene Homolog (Fosb) previ-

ously shown to be induced by ethanol exposure [80]. Sodium/potassium/calcium exchanger

(Slc24a4) and Cysteine-Rich Angiogenic Inducer 61 (Cyr61) involved in cholinergic regulation

of synaptic plasticity [89] were observed here. Furthermore, Adrenoceptor Alpha 1A (Adra1a)

previously reported in animal models of addiction and considered to be directly involved in

substance use and dependence [90, 91] was found in this module. Finally, we observed the

Autism Susceptibility Candidate 2 (Auts2) gene reported to be associated to alcohol sensitivity

[91]. IPA enrichment of functional groups for the Midnightblue module indicated apoptosis

receptor signaling (p = 0.003) pathway.

Finally, the Darkred module containing 119 genes was significantly different between

groups (F(3,12) = 16.22, q<0.05). Post hoc analysis revealed a decrease in WE module eigengene

value compare to the WW group. Relevant genes contained in this module were the Glutamate

Metabotropic Receptor 2 (Grm2) previously reported as a candidate gene in nicotine and etha-

nol exposure [92], RNA Polymerase I Subunit E (Polr1e), and G Protein Subunit Alpha O1

(Gnao1), which have both been shown to be altered by psychostimulants [93] (Fig 9C).

4. Discussion

The current study found that adolescent nicotine exposure alters later drug behavior and the

expression of genes involved in glutamate and GABA neurotransmission, neuroplasticity, and

the HPA-axis stress response. Our results replicate and extend previous findings, showing that

nicotine exposure in adolescent C57BL/6J female mice increases binge-like ethanol consump-

tion and resulting BEC compared to nicotine-naïve mice [35]. Furthermore, our transcriptome

analyses suggest that nicotine and ethanol exposure results in alterations of brain neuroendo-

crine- (e.g. Avp, Pomc, and Crhr1), neuroplasticity- (e.g. Arc, Fos, FosB, Nr4a1 and Bdnf), and

neurotransmitter-related (e.g. Drd2, Grin2a, Grin2b, Grm3, Grm4, and Kcnt1) genes. These
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findings contribute additional evidence on the role of nicotine-induced changes in stress hor-

mone signaling and nicotine-induced neuroadaptations that may lead to increased ethanol

self-administration [32]. Moreover, our WGCNA analysis allowed us to contextualize the

effects of early nicotine or/and ethanol consumption on biological pathways associated to

brain development and function. This research provides information about possible underly-

ing transcriptional changes and biological mechanisms associated with nicotine and/or etha-

nol consumption during adolescence, that should be further examined.

Fig 7. Notable genes differentially expressed between the WW and WE groups. (A-D) The Grin2b, Kcnb2, Grm3 and Grin2a genes were downregulated in the WE

group compared to the WW group. (E-H) Il16,Kcnt1, FosB and Il20rb genes were upregulated in the WE group. (I) The log-fold change (LFC) values are presented in

the Water-Ethanol table.

https://doi.org/10.1371/journal.pone.0198935.g007

Table 2. Upstream regulators of WE DEG identified by IPA.

DEG Water- Ethanol: IPA functional over-representation

Upstream Regulators Overlap p-value Target molecules

Gmr2 1.22E-03 # Grin2a, # Grm3

Adcyap1 2.03E-03 " Col5a1

Adcy5 3.96E03 " Adcy6, " FosB

Sgk1 2.39E-03 # Grin2a, # Grin2b

Bdnf 2.70E-02 # Grin2a

This table contains the upstream regulators identified by IPA and their target molecules, corresponding to genes

differentially expressed following ethanol administration (" = upregulated; # = downregulated).

https://doi.org/10.1371/journal.pone.0198935.t002
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Fig 8. Notable genes differentially expressed between the WW and NE groups. (A-B) The Slc6a13 gene was downregulated in

the NE group compared to the WW group. (C-D)Grm4, Irs2 and Avp genes were upregulated in the NE group. (E) The log-fold

change (LFC) values are presented in the Nicotine-Ethanol table.

https://doi.org/10.1371/journal.pone.0198935.g008

Table 3. Upstream regulators of NE DEG identified by IPA.

DEG Nicotine- Ethanol: IPA functional over-representation

Upstream Regulators Overlap p-value Target molecules

Notch3 7.76E-03 # Fabp7

Notch1 7.76E-03 # Fabp7

Crhr1 7.76E-03 " Avp

Crhbp 1.55E-02 " Avp

Tcf7l2 2.49E-02 #Mal

Maoa 4.57E-02 " Avp

Il10 4.57E-02 #Mrc1

This table contains the upstream regulators identified by IPA and their target molecules, corresponding to genes

differentially expressed after NE treatment (" = upregulated; # = downregulated).

https://doi.org/10.1371/journal.pone.0198935.t003

Nicotine alters ethanol intake and gene expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0198935 June 18, 2018 14 / 30

https://doi.org/10.1371/journal.pone.0198935.g008
https://doi.org/10.1371/journal.pone.0198935.t003
https://doi.org/10.1371/journal.pone.0198935


Nicotine alters ethanol intake and gene expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0198935 June 18, 2018 15 / 30

https://doi.org/10.1371/journal.pone.0198935


We found that nicotine exposure increases binge-like ethanol consumption and BEC in

female adolescent C57BL/6J mice. Further, no significant differences in water consumption

were detected between the NW and WW groups, indicating that nicotine exposure does not

globally increase thirst. Our results are consistent with previous studies that have reported a

significant increase in ethanol consumption after nicotine exposure in adolescent C57BL/6J

male [94,95] and female [35] mice, adult C57BL/6J mice [94], male rats [24,30–32,96–98], and

human smokers [99]. While two studies did not find a relationship between nicotine con-

sumption and ethanol intake [100,101], the preponderance of evidence suggests that this rela-

tionship exists. Our data provides further evidence for this association. One mechanism

proposed to explain the increase in ethanol intake following nicotine exposure is stress-hor-

mone signaling in the mesolimbic dopamine (DA) system. Corticosterone in response to nico-

tine has been shown to increase GABAergic inhibition onto VTA DA neurons leading to

attenuated ethanol-induced DA signaling and augmented ethanol self-administration [32].

Gene expression results observed in this study are consistent with this hypothesis (see Conclu-

sions section).

Genes influenced by nicotine exposure

Among humans, nicotine use usually begins during adolescence [102]. This developmental

period represents a window of time where normal brain development occurs, which may be

altered by nicotine exposure. Alterations to normal neuronal development can increase the

risk of future drug use [32,87,103]. During this time, many systems undergo changes, includ-

ing the mesocorticolimbic DA system [104] and the hypothalamic-pituitary-adrenal (HPA)

axis [105].

Perturbations of HPA axis developmental trajectories may contribute to altered stress-reac-

tivity [105]. Nicotine activates the HPA system which stimulates stress-related hormones

[106], that can modulate synaptic transmission in the mesolimbic DA system [37]. Both the

DA and HPA-axis have been linked to drug use and addiction [107]. Here we showed that nic-

otine exposure in C57BL/6J adolescent females increased the expression of genes involved in

neurotransmission (Pomc) and in neuropeptide activity (Avp) relative to animals that had

access to water; both genes linked to HPA axis activity. Further, Crhr1 gene was identified as

upstream regulator of the NW DEG.

Our results are consistent with previous studies that have identified increased expression of

these genes following nicotine exposure [87,108–110], but opposite results have also been

reported [111,112]. For example, Pomc upregulation has been observed in the arcuate nucleus

of the hypothalamus after chronic nicotine treatment [108,110]. However, a decrease or no

effect in Pomc mRNA expression has been observed in the same brain region after chronic nic-

otine treatment [112,113] and acute nicotine treatment [111,112]. These discrepant findings

may be explained by differences in the nicotine administration protocol. For example, in our

experiment 200 μg/ml (−)nicotine was available in the drinking solution for ten days, com-

pared to one-time [111] or daily [112] injections of nicotine utilized in the experiments report-

ing decreased Pomc expression. Further, we choose to examine whole brain gene expression,

therefore it is possible that brain region-specific expression changes for the Pomc gene [114]

were washed out. Finally, in this work we analyzed the brain transcriptome of C57BL/6J

Fig 9. Nicotine, ethanol and their combination alter module eigengene expression values compared to controls

(WW). (A) The Blue module shows a significant decrease in module eigengene expression in the NW group compared

to the WW group. (B) The Midnightblue module showed a significant increase in the module eigengene for the

ethanol groups (WE and NE) compared to our control group. (C) The Darkred module showed a significant decrease

in WE module eigengene value compare to the WW group. � = p<0.05.

https://doi.org/10.1371/journal.pone.0198935.g009
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adolescent female mice; therefore, our results might not be comparable due to differences in

species, sex or age of animal tested. In contrast to the mixed results with Pomc, Avp was upre-

gulated in our nicotine treated animals, a finding that is consistent with previous literature

[69,87,109]. Together these data suggest that nicotine alters HPA-axis activity through

Fig 10. IPA enrichment of Blue module network shows the relationships of genes involved in neuroinflammation, dopamine receptor signaling, and

corticotrophin hormone release pathways. This figure highlights genes (pink bold nodes) enriched for neuroinflammation signaling pathway (Bdnf, Gabra1,

Gabra2, Tgfb1and Tgfbr1), dopamine receptor signaling (Drd2 and Th), and corticotrophin releasing hormone pathway (Bdnf and Campk4). This figure shows as

main nodes the Bdnf and Adcyap1 (PACAP) genes involved in neurogenesis and mediators of neuroendocrine stress responses, respectively. Indirect relationships

of Bdfn are indicated for Campk4, Th andDrd2.Adcyap1 shows indirect association with Gabra1 on Gabra2 genes. Direct (bold arrow) and indirect (dashed arrow)

relationships are displayed. IPA functional categories are shown in node key.

https://doi.org/10.1371/journal.pone.0198935.g010
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increases in Avp and Pomc gene expression, however the later seems to be susceptible to treat-

ment protocol and/or brain region examined.

In addition to our results which demonstrate that nicotine alters genes associated with HPA

axis activity, we also found that nicotine alters GABAergic transmission. Further, it has been

reported that stress signaling alters GABAergic neurotransmission [103]. This is supported by

the identification of the stress-related gene Crhr1 gene as upstream regulator and a decreased

expression of relevant genes in the Blue module (Gabrb2 and Gabra1) in the NW group.

Therefore, our findings contribute additional evidence to the hypothesis that nicotine utilizes

neuroendocrine mechanisms to influence neurotransmitter activity [32,69].

We observed decreased Arc and Fos expression in the NW group relative to controls. These

genes have been implicated in synaptic plasticity [115] and associated with addiction [113].

Our results are not consistent with previous research that has reported increased Arc and Fos
expression in the prefrontal cortex (PFC) following an acute injection of nicotine in adolescent

male rats [113] and rat pups [116]. It is possible that we observed a different pattern of gene

expression due to the brain region studied. Particularly, Arc and Fos brain region expression

depends on region-specific neuronal activation [117]. On the other hand, these gene expres-

sion patterns could be explained due to treatment protocol (i.e. chronic), or as a result of the

4h nicotine withdrawal on the final experimental day.

A possible explanatory mechanism to our results is that AMPA glutamate receptors activa-

tion have shown to negatively regulate Arc gene expression, through a mechanism involving a

pertussis toxin-sensitive G proteins [118]. Interestingly, nicotine stabilizes ionotropic gluta-

mate receptors leading to increased AMPA function in rats [119,120]. Thus, we could hypothe-

size that decreased Arc expression could be a result of nicotine increasing AMPA receptor

function and resulting in decreased Arc expression. This negative feedback mechanism may

only be apparent with chronic nicotine exposure. Further work measuring Arc gene expression

after acute and chronic nicotine exposure is required to test this hypothesis.

Genes influenced by ethanol exposure

Mice that consumed only ethanol had more DEG compared to any other treatment group.

The DEG found in this group were generally consistent with previous research that examined

genes related to ethanol consumption and/or BEC in C57BL/6J mice utilizing DID. Impor-

tantly this consistency comes with many differences in study design. For example, we used

female mice compared to male mice in previous work. Additionally, we used whole-brain sam-

ples while prior work focused on specific brain regions such as the hippocampus, striatum, cer-

ebellum, frontal cortex [121,122], olfactory bulb, and VTA [123]. Even with these

methodological differences overlap in DEG were observed and these genes (e.g. Cav2,Hbb-b1,

Col6a1 and Col7a1) could represent key drivers of ethanol intake.

Among our notable results, the transcriptome results showed decreased expression of gluta-

mate receptor genes such as Grm3 (encoding the metabotropic receptor subunit mGluR3),

Grin2a, and Grin2b (NMDA type, encoding for GluN2A and GluN2B respectively) compared

to controls. Glutamate is responsible for normal brain function during development [124] and

has an important role in synaptic plasticity and excitatory synaptic neurotransmission [74].

Long-term exposure to ethanol alters the gene expression, the availability and function of glu-

tamate receptors, and its transporters [125]. Further, impairment in glutamate homeostasis

has been associated with alcohol tolerance, dependence, and relapse [75]. Our results are con-

sistent with previous studies in human embryonic stem cells (hESCs) [75] and human post

mortem brain tissue of chronic alcoholics [126]. However, opposite results have been reported

as well. Particularly, the upregulation of the NMDA receptor subunit genes GRIN2A and
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GRIN2B have been reported in the hippocampus of human alcoholics [74], in hESC-derived

cortical neurons [75], in mouse cortex [127], and in rats cortex [128] and amygdala [129] after

long-term ethanol intake. It has been proposed that acute ethanol exposure reduces glutama-

tergic transmission, while prolonged exposure upregulates NMDA receptor function [130]

and transcription [131,132]. Therefore, it is possible that a 4-day DID treatment was not long

enough to observe the switch between reduced transmission and upregulation of NMDA

receptor expression.

We observed that ethanol consumption induced FosB transcription in our experiment. This

gene was found in both the WE DEG and Midnightblue module. FosB has been associated

with addiction-related neural plasticity [133]. Long-lasting induction of FosB is related to

chronic stress [134], drug abuse [78] as well as, ethanol exposure [80,135]. Our results are con-

sistent with previous studies in animal models after chronic voluntary ethanol intake, showing

an upregulation of FosB gene expression [80]. However, opposite results have been reported

regarding FosB differential expression in the striatum and mPFC after forced ethanol exposure

[80,134]. This could suggest that FosB is sensitive to ethanol exposure protocols.

Finally, our WGCNA results revealed that the majority of the significant modules were

related to ethanol exposure (S7 Table). A few of these ethanol-responsive modules had axonal

guidance signaling functionally overrepresented. Disruption of axon outgrowth has been

reported in the developing hippocampus. These changes have been associated altered func-

tional properties of synaptic circuitry, linked to cognitive and behavioral problems [136].

Genes influenced by both nicotine and ethanol exposure

Mice that consumed both nicotine and ethanol showed an upregulation of the stress-related

gene Avp. Nicotine stimulates the HPA-axis by inducing the co-expression of Crf and Avp
[87]. The activation of the stress pathways is mediated by the CHR-R1, CHR-R2 and AVP V1b

receptors [69], located in the amygdala, hypothalamus, anterior pituitary, and hippocampus

[137]. Additionally, AVP has been implicated in ethanol drinking [85] and the AVP V1b

receptor has been shown to modulate ethanol self-administration [137]. Our results are consis-

tent with our DEG results in the NW group and with previous studies reporting an upregula-

tion of Avp mRNA after nicotine exposure [87]. Conversely, no effect of acute ethanol

injection [138] or decreased Avp mRNA levels after chronic ethanol exposure in rats (6 or 10

months) [139], provide evidence of long-term effects of ethanol on Avp gene expression.

Therefore, we hypothesize that nicotine induced Avp gene expression as 4 days of ethanol

exposure might not have been long enough to cause decreased Avp mRNA as reported in pre-

vious studies.

We observed decreased expression of the GABA transporter gene Slc6a13 (encoding for

GAT2) after both nicotine and ethanol exposure. A downregulation of other GABA-related

genes (Gabra1 and Gabrb2) was also observed in our WGCNA results (in the Blue module).

Although there is not much evidence regarding the functional importance of GAT2 in the

brain, it has been suggested to regulate cerebrospinal fluid GABA concentration [140]. A pre-

vious study reported an association between Slc6a13 upregulation in the striatum and ethanol

consumption [141]. Our results are not consistent with this study, however we observed

decrease in Slc6a13mRNA following both nicotine and ethanol exposure. Further research

regarding the function of Slc6a13 in substance use is needed.

The WE group had the highest number of DEG (N = 353) compared to the NW (N = 99)

and NE (N = 122) groups. It has been proposed that nicotine exposure blunts ethanol-induced

synaptic function and excitatory neuron firing through stress hormone signaling [32]. We

hypothesize that the decreased neuronal firing in response to nicotine exposure may also block
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induction of gene expression by ethanol. In such the animals exposed to nicotine would have

less of a physiological response to ethanol, which would explain the significant increase of eth-

anol consumption observed in the NE compared to the WE group. On the other hand, it is

possible that differences in the number of DEG between the NE and WE groups could be a

result of ethanol consumption. However, it is important to highlight that the NE group con-

sumed more ethanol than the WE group, but had fewer DEG.

In the current study, we also found interesting novel genes. For example, an upregulation

of interleukin-like genes (Il16 and Il20rb) and potassium channel genes (Kcnt1 and Kcnb2, up

and downregulated respectively) in the ethanol-only group. These genes could be interesting

new candidate genes because of the suggested role of neuroinflammation in ethanol consump-

tion [77]. Additionally it has been reported that potassium channels are direct targets of etha-

nol [76,77] and a GWAS study has found an association between a Kcnb2 single nucleotide

polymorphism (SNP) and maximum number of drinks in a human population study [76].

Limitations

The limitations of this study were: (1) the use of whole brain tissue for RNA-Seq. This did not

allow us to associate specific transcriptional changes to specific brain regions or cell types.

Therefore, the inferences regarding gene expression changes and associations with behaviors

are limited. Additionally, differences or the absence of DEG previously reported as highly asso-

ciated with nicotine and ethanol consumption (e.g. nAChRs, glucocorticoid receptors, etc.)

might due to complex gene expression patterns (up or downregulation) in different brain

regions. However, it is important to highlight that we have been able to observe relevant DEG

in whole brain tissue demonstrating the importance and extending the relevance of these

genes across brain regions. (2) Only female adolescent C57BL/6J mice were used, due to their

reported increased susceptibility to binge drinking during adolescence. However, future stud-

ies comparing C57BL/6J mice with ethanol avoiding strains could yield valuable insight into

the molecular changes associated with susceptibility to drinking. (3) Ethanol exposure

occurred during the 4 hours prior to brain dissection while no nicotine was present. This

could explain why we observed less DEG in the NW group compared to the WE and NE

groups and why the majority of the WGCNA modules were related to ethanol exposure. Fur-

ther studies could include a nicotine minipump during ethanol exposure to test if the differ-

ences in the number of DEG or WGCNA modules between groups are related to time-

dependent effects or more interestingly, corresponds to different actions of each of these sub-

stances. Finally, it is possible that effects observed in the nicotine group represent genes associ-

ated with withdrawal from nicotine rather than effects of nicotine intake per se. (4) While we

randomly selected the mice for the RNA-Seq analysis, the small sample size in each group

(N = 4), could be prone to sampling bias. Previous work has shown robust results with a simi-

lar samples sizes [142,143]. However, for WGCNA, 16 samples are just above the recom-

mended sample size and could have resulted in noise in the network construction. Further

study and validation of these results is warranted.

5. Conclusions

This study is one of the first to describe the effects of adolescent nicotine exposure on ethanol

intake and the combined effect of both substances on brain gene expression. Here we observed

that nicotine exposure increases ethanol consumption and resulting BEC in female adolescent

C57BL/6J mice. Based on our results, we hypothesize that nicotine-induced upregulation of

stress-related genes (Crhr1, Avp and Pomc) could be affecting GABAergic, DAergic, and gluta-

matergic neurotransmission in the mesolimbic pathway. This would increase glutamatergic
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activity and would reduce the inhibitory control of GABA on DAergic transmission [32],

resulting in increased ethanol consumption observed in the NE group. Nonetheless, mechanis-

tic experiments are required to test this hypothesis. Given the limitations of this study, valida-

tion of these findings is warranted.
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