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The silkworm, Bombyx mori, is an important economic insect for silk production. However, many of the mature peptides relevant
to its various life stages remain unknown. Using RP-HPLC, MALDI-TOF MS, and previously identified peptides from B. mori and
other insects in the transcriptome database, we created peptide profiles showing a total of 6 ion masses that could be assigned to
peptides in eggs, including one previously unidentified peptide. A further 49 peptides were assigned to larval brains. 17 new mature
peptides were identified in isolated masses. 39 peptides were found in pupal brains with 8 unidentified peptides. 48 were found in
adult brains with 12 unidentified peptides. These new unidentified peptides showed highly significant matches in all MS analysis.
These matches were then searched against the National Center for Biotechnology Information (NCBI) database to provide new
annotations for these mature peptides. In total, 59 mature peptides in 19 categories were found in the brains of silkworms at the
larval, pupal, and adult stages. These results demonstrate that peptidomic variation across different developmental stages can be
dramatic. Moreover, the corpora cardiaca-corpora allata (CC-CA) complex was examined during the fifth larval instar. A total of
41 ion masses were assigned to peptides.

1. Introduction

Insect neuropeptides regulate behaviors during growth,
development, metamorphosis, and many other physiological
processes, acting as neurohormones and neuromodulators
[1]. Many B. mori neuropeptides have been purified and their
amino acid sequences have been determined. These include
adipokinetic hormone (AKH), subesophageal ganglion neu-
ropeptides (SGNPs), corazonin, prothoracicostatic peptide
(PTSP), B-myosuppressin (BMS), FMRFamide-related pep-
tides (BRFas), and short neuropeptide F peptides (sNPFs)
[2–7]. The cDNA precursors of some B. mori peptides, such
as allatostatins A (AST-A), allatotropin (AT), and allatostatin
C (AST-C), have been cloned [8–10]. The genome draft
sequence in B. mori has been completed and this may
facilitate the identification of new peptides in B. mori [11].
Recently, using homology searches and cDNA cloning, many
new peptide genes have been annotated in this insect species,
and their peptide precursor sequences have become available
[12].

Neuropeptides have been broadly studied in many insect
species, such as Locusta migratoria, Apis mellifera, and

Manduca sexta [16, 17]. However, most peptide studies focus
on a specific developmental stage, either at larval or adult,
which limits appreciation of the peptidomic variations that
take place across different growth stages. The aim of the
present study is to profile peptide complements in eggs and
in the brains of silkworms at larval, pupal, and adult stages.

2. Materials and Methods

2.1. Insects. Silkworms from strain P50 (Dazao) were
obtained from the Institute of Sericulture in Jiangsu
province. They were reared on mulberry leaves at 26◦C at
80% relative humidity and a 16L:8D photoperiod. For the
experiments, eggs from day 3 were analyzed, and brains on
day 4-5 of larvae, day 3 of pupae, and day 3 of male and
female adults were separately dissected and analyzed.

2.2. Tissue Extraction and Liquid Chromatography. One hun-
dred eggs were collected and incorporated into a sample, and
three thus independent biological replicates (samples) were
separately collected and analyzed. Similarly, one hundred of
larval brains, one hundred of pupal brains, and one hundred
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of adult brains of B. mori, as well as one hundred pairs
of the corpora cardiaca-corpora allata (CC-CA) complex
from the fifth instar larvae, were dissected and incorporated
into an independent sample, respectively, and three thus
independent biological replicates were also collected and
analyzed, respectively. All operations were performed on ice.
Each sample was placed in a tube containing ice-cold extrac-
tion medium (methanol: water: acetic acid, 90 : 9 : 1, v/v/v),
homogenized, and centrifuged at 12,000×g at 4◦C for 15
minutes. The pellet was re extracted twice. All supernatants
were pooled, the organic solvent was evaporated by vacuum
centrifugation, and the residue was dissolved in 0.1% (v/v)
trifluoroacetic acid (TFA).

The samples were fractionated on an Agilent 1100 HPLC
system (Agilent, USA) using a ZORBAX StableBond C18
column (4.6 mm × 250 mm, 5 μm, 300 Å; Agilent, USA).
The column was first eluted with 3% acetonitrile in 0.1%
trifluoroacetic acid (TFA) for 10 minutes. Then acetonitrile
was increased to 21% over 10 minutes. This was followed
by a linear gradient of 21–60% acetonitrile/0.1% TFA over
30 minutes at a flow rate of 1 mL/min. Fractions were col-
lected manually every minute and concentrated by the vac-
uum desiccator (LNG-T88, Huamei Biochemical Company,
P.R.China) to about 5 μL for mass spectrometry analysis.

2.3. MALDI-TOF Mass Spectrometry. MALDI-TOF MS
analysis was performed on an autoflex II TOF/TOF instru-
ment (Bruker Daltonics, Germany). The matrix used in the
analysis was a saturated solution of recrystallized α-cyano-4-
hydroxycinnamic acid (CHCA; Bruker Daltonics) dissolved
in 70% acetonitrile containing 0.1% (v/v) TFA. Samples of
0.5 μL were added to the MALDI plate, followed by 0.5 μL
of matrix solution. They were mixed and left to dry at room
temperature. The spectra were obtained using an accelerating
voltage of 19 KV in the reflection mode with a mass range
m/z 700–3000. Laser power was adjusted to provide optimal
signal-to-noise ratio. The measured monoisotopic masses
[M + H]+ were compared to the calculated values of known
or predicted peptides. Masses were calculated using Protein
Prospector (University of California, San Francisco, CA,
U.S.) [1]. MALDI-TOF-TOF mass spectra were acquired
on an autoflex II TOF/TOF instrument (Bruker Daltonics,
Germany). Ion fragmentation data were analyzed using
FlexAnalysis software (version 3.0) from Bruker Daltonics.
The mature peptide in B. mori from our MS/MS results were
identified and confirmed by either previous publications
[3–6, 8, 12–15], or the EST from the NCBI database
(http://www.ncbi.nlm.nih.gov/) and silkworm database
(http://silkworm.genomics.org.cn/) [18], or the NeuroPred
tool SignalP 3.0 (http://www.cbs.dtu.dk/services/SignalP/).

3. Results

3.1. Peptidomics in Different Organs and Developmental
Stages of B. Mori. In this study, over 100 ion peaks were
obtained by MS profiling from analysis of eggs and all
postembryonic stages. The mature peptides were evaluated
by comparison of measured monoisotopic masses [M + H]+

against combination of bioinformatics and identified

peptides in Lepidopteran insects and the predicted peptides
from genome databases, such as calculated masses, score,
queries matched, and sequence coverage. In total, 19 new-
found and 40 previously reported mature brain peptides
were identified in B. mori.

3.1.1. Peptides in Eggs. Only six peptides, AKH1(Q1),
AKH2(Q1), AKH3(Q1), CAPA-PVK-2, allatostatin-5, and α-
SGNP, were detected in eggs. Of these, the new-found CAPA-
PVK-2 is a mature peptide (Table 1 marked with star).

3.1.2. Peptides in Larval Brains. A total of 49 sequences
were assigned to peptides in larval brains with 17 of them
unidentified mature peptides (Table 1 marked with star).
These peptides mainly include AKHs (AKH1(Q1),
AKH2(Q1), and AKH3(Q1)), allatostatin A (allatostatin-1,
-2, -4, -5, -7, -8, -8(Q1)), bommo-AT, bommoAST-C (AST,
AST(Q1)), BRFa (BRFa-1, -2, -3, -4), BMS (BMS, BMS(Q1)),
CAPA/CAP2b (CAPA-PVK-1, CAPA-PVK-2, CAPA-PK,
CAPA-PVK-2(Q1)), CCAP, corazonin (corazonin(Q1)),
diapause hormone (DH), leucokinin (leucokinin-2, -3),
the mature peptides of the NPLP-1 precursor (AYLamide,
LLHamide, NSYamide, SAMamide, and YRMamide), orco-
kinin (orcokinin-3, -4), PTST (PTST-3, -5, -6), SGNP
(α-SGNP, β-SGNP, γ-SGNP), sNPF (sNPF-1, -2, -3), SIF-
amide, sulfakinin, and tachykinin (tachykinin-3, -4, 5,
and -6), in which CAPA-PVK-1, CAPA-PVK-2, CAPA-PK,
CAPA-PVK-2(Q1), leucokinin-2, -3, AYLamide, LLHamide,
NSYamide, SAMamide, and YRMamide, SIFamid(SIF),
sulfakinin, and tachykinin-3, -4, -5, and -6 are new-found
mature peptides. More mature peptides were detected at this
developmental stage than any other stage.

3.1.3. Peptides in Pupal Brains. 39 ion masses were assigned
to peptides in pupal brains, in which 8 of them are
unidentified peptides in B. mori (Table 1 marked with
star). These peptides mainly include AKHs (AKH1(Q1),
AKH2(Q1), AKH3(Q1)), allatostatin A (allatostatin-3, -4, -5,
-8, -8(Q1)), bommo-AT, BRFa (BRFa-1, 2, 3), B-myosup-
pressin (BMS, BM S (Q1)), CCAP, corazonin, diapause
hormone (DH), the mature peptides of the NPLP-1
precursor (LLHamide, NIAALARNGLLH-NH2; NSYamide,
NIATLAKNGYLRNSGANSY-NH2), Orcokinin (Orcokinin-
4, -5), PTST (PTST-1, -2, -3, -4, -5, -6), SGNP(α-SGNP,
β-SGNP, γ-SGNP), sNPF (sNPF-1, -2, -3), SIFamide,
sulfakinin, and tachykinin (tachykinin-1, -3, -4). Of these,
LLHamide, NSYamide, orcokinin-5, SIFamid(SIF), sulfaki-
nin, tachykinin-1, tachykinin-3, and tachykinin-4 are new-
found and unidentified mature peptides.

3.1.4. Peptides in Adult Brains. 48 ion masses were assigned
to peptides in adult brains with 12 unidentified new peptides
in B. mori (Table 1 marked with star). These peptides
mainly include AKHs (AKH1(Q1), AKH2(Q1), AKH3,
AKH3(Q1)), allatostatin A (allatostatin-3, -4, -5, -7, -8,
-8(Q1)), Bommo-AT, BRFa (BRFa-1, -2, 3, -4), B-myo-
suppress-in (BMS, BMS(Q1)), CAPA/CAP2b (CAPA-
PVK-1, CAPA-PVK-2(Q1)), CCAP, corazonin (corazonin,
corazonin(Q1)), diapause hormone (DH), NPLP-1
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Figure 1: MALDI-TOF mass spectrum from separate fraction 30 of CC-CA in the fifth instar of B. mori.

(AYLamide, SALGPENDYAVLKDFEDNAYL-NH2; LLH-
amide, NIAALARNGLLH-NH2, NSYamide, NIATLAKN-
GYLRNSGANSY-NH2), Orcokinin (Orcokinin-3, -4, -5),
PTST (PTST-1, -2, -4, -5, -6), SGNP (α-SGNP, β-SGNP,
γ-SGNP), sNPF (sNPF-1, -2, -3), SIFamide, sulfakinin,
and tachykinin (tachykinin-1, -3, -4, -5, -6). Of these,
CAPA-PVK-1, CAPA-PVK-2(Q1), LLHamide, NSYamide,
orcokinin-5, SIFamide, sulfakinin, tachykinin-1, -3, -4, -5,
and -6 are unidentified mature peptides.

3.1.5. Peptides in the CC-CA Complex of 5th-Instar Larvae.
CC-CA complexes sampled on days 4-5 of the fifth larval
instar were analyzed for peptide profiles. A total of 41
ion peaks in these CC-CA complexes were assigned to
peptides listed in Table 2. These peptides mainly include
AKHs (AKH1(Q1), AKH2(Q1), AKH3(Q1)), allatostatin
A (allatostatin-2, -3, -4, -5, -6, -8, -8(Q1)), bommo-
AT, bommoAST-C (AST(Q1)), BRFa (BRFa-1, -2, -3, -
4), B-myosuppressin (BMS, BMS (Q1)), CAPA/CAP2b
(CAPA-PVK-1, CAPA-PVK-2, CAPA-PVK-2(Q1)), CCAP,
corazonin (corazonin, corazonin(Q1)), NPLP-1 (LLHamide,
NSYamide), orcokinin (orcokinin-5), PTST (PTST-3, -5, -6),
SGNP (α-SGNP, β-SGNP, γ-SGNP), sNPF (sNPF-1, -2, -3),
sulfakinin, and tachykinin (tachykinin-1, -3, -4, -6). Of these,
CAPA-PVK-1, CAPA-PVK-2, CAPA-PVK-2(Q1), LLHamide,
NSYamide, orcokinin-5, sulfakinin, tachykinin-1, -3, -4, and
-6 are unidenfied mature peptides.

Both the MALDI-TOF mass spectra of HPLC separation
fractions from different developmental stages of silkworm
brains and CC-CA extracts of the fifth instar larvae and the
MALDI-TOF-TOF fragmentation spectra of the precursor
ion at m/z were analyzed and identified. A number of b-type
and y-type ions were labeled (Figures 1–3). Some of them are
pGluat of the N-terminal.

4. Discussion

Peptides in insects are very important to regulate many
physiological activities involved in feeding, ecdysis and meta-
morphosis, reproduction, energy homeostasis, circadian
rhythm, anxiety, seizure, contraction of muscle, learning
and memory, and so on [19–22]. Especially, variation of

peptidomics at different developmental stages is huge, in
which each different stage has characteristic peptides. In
this study, we mapped peptides from important neuroen-
docrine organs, the CC-CA complex, and the brains of
silkworms at different stages of growth. The aim of this
study was exploring peptidomic composition at different
stages because different development stages express specific
physiological requirements.

Our results demonstrate that peptidomic variations
during different developmental stages are profound in silk-
worms. In eggs, only few mature peptides were detected; we
infer that developmental regulation is operates on a different
physiological basis during the egg stage. ACP and AKHs are
involved in mobilization of lipids and carbohydrates from
fat bodies and ovaries [23]. Besides, allatostatin is involved
in inhibition of JH and SGNP in diapause [24]. Compared
to larval brains, pupal and adult brains lacked 3 categories
(CAPA/CAP2b, NPLP-1, and Leucokinin) and 2 categories
(NPLP-1, and Leucokinin), respectively. Of these 3 cate-
gories, the CAPA/CAP2b peptides have cardioacceleratory
properties and increased heart rate [25–27]. The NPLP-1 was
found to play a role in ecdysis behavior in D. melanogaster [1,
28, 29], and leucokinin is a neurohormone that participates
in the regulation of water and ion homeostasis, especially the
control of ion transport in the stellate cells of the insect’s
Malpighian tubules [1].

The peptidomic variation across organs between the
brain and the CC-CA complex in larvae was also different.
Compared to larval brains, CC-CA complex lacked 3 cate-
gories (diapause hormone, SIFamide and leucokinin). The
SIFamide has been found to be responsible for courtship.
Four SIFamidergic neurons and arborizations play an impor-
tant function in the neuronal circuitry controlling sexual
behavior in Drosophila [28, 29]. In addition, SIFamide may
play a role in processing or transmitting tactile, olfactory, and
visual stimuli, which is also important for courtship behavior
and partner selection [30]. But the function of SIFamide in
B. mori and other moths still maintains unclear.

Nowadays, SIFamide, tachykinin (TK), CCAP, CAPA-
PVK, sulfakinin, and neuropeptide-like precursor 1 (NPLP
1) were predicted by the B. mori genomic database [12]. MIP
is another Lepidoptera peptide previously identified from
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Figure 2: MALDI-TOF mass spectrum from separate fraction 30 of CC-CA in the fifth instar of B. mori.
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Figure 3: MALDI-TOF mass spectrum from separate fraction 29 of CC-CA in the fifth instar of B. mori.

Manduca sexta [31]. It was found to have the similar peptide
precursor named as B. mori PTST [2–7]. Many neuropeptide
precursors undergo a series of enzymatic processes, causing
the production of mature, bioactive amidated neuropeptides.
Each mature peptide may display a different potential
function on the cellular level [32]. The AT/AST has functions
in stimulating/inhibiting JH synthesis [33, 34]. The sNPF
and tachykinins regulate food intake and consumption but
sulfakinin inhibits food intake [35–37]. Corazonin may be
the key factor in the formation of colors during the larval
stage or reduction of spinning in the pupal stage [38, 39].
The orcokinins, BRFas, and PTSPs are all involved in the
regulation of insect development in ecdysteroid biosynthesis,
in which orcokinins have a clear prothoracicotropic activity,
in contrast with BRFas [14]. While PTSPs inhibit ecdysteroid
biosynthesis in the PG [15]. Again, our results indicate
that peptidomics can vary greatly between different organs
and developmental stages. The present study adds valuable
information to the knowledge of neuropeptidomes.

In this study, all HPLC fractions were collected and ana-
lyzed by MALDI-TOF MS, and high-intensity signal peaks
consistent with B. mori neuropeptides were fragmented by
TOF-TOF for peptide identification. However, the apparatus
has a limited ability to hit and break ions by TOF-TOF, which
is weaker than the ion-trap mass spectrum for some peptides
to be not fragmented.
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