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Pentatricopeptide repeat (PPR) proteins are a large family of
proteins that act primarily at different posttranscriptional steps
of organellar gene expression.We have previously found that the
Schizosaccharomyces pombe PPR protein mpal10 interacts with
mitochondrial translational activator Mpa1, and both are
essential for mitochondrial protein synthesis. However, it is
unclear how these two proteins function in mitochondrial pro-
tein synthesis in S. pombe. In this study, we further investigated
the role of Ppr10 and Mpa1 in mitochondrial protein synthesis.
Mitochondrial translational initiation requires two initiation
factors, Mti2 and Mti3, which bind to the small subunit of the
mitochondrial ribosome (mt-SSU) during the formation of the
mitochondrial translational initiation complex. Using sucrose
gradient sedimentation analysis, we found that disruption of
ppr10,mpa1, or the PPRmotifs in Ppr10 impairs the association
of Mti2 and Mti3 with the mt-SSU, suggesting that both Ppr10
and Mpa1 may be required for the interaction of Mti2 and Mti3
with the mt-SSU during the assembly of mitochondrial trans-
lational initiation complex. Loss of Ppr10 perturbs the associa-
tion of mitochondrially encoded cytochrome b (cob1) and
cytochrome c oxidase subunit 1 (cox1) mRNAs with assembled
mitochondrial ribosomes. Proteomic analysis revealed that a
fraction of Ppr10 and Mpa1 copurified with a subset of mitor-
ibosomal proteins. The PPRmotifs of Ppr10 are necessary for its
interaction with Mpa1 and that disruption of these PPR motifs
impairs mitochondrial protein synthesis. Our results suggest
that Ppr10 and Mpa1 function together to mediate mitochon-
drial translational initiation.

Mitochondria provide the cellular energy currency ATP
through oxidative phosphorylation (OXPHOS) (1). They are
also involved in metabolism of nucleotides, amino acids, and
lipids and synthesis of heme and iron–sulfur clusters, which
are two iron-containing prosthetic groups involved in many
important physiological processes (1, 2). In mammals,
mitochondria also function as a signaling organelle that
control cellular processes such as apoptosis and immune
responses (1, 3).

Mitochondria carry their own genome (mtDNA) primarily
encoding the key components of the OXPHOS system, as well
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as tRNAs and rRNAs required for mitochondrial protein
synthesis. In Saccharomyces cerevisiae and Schizosacchar-
omyces pombe, the mitochondrial genes cob1 and cox1 contain
introns, some of which encode maturases required for their
own splicing (4). Mitochondrial translation is necessary for the
removal of mitochondrial introns.

Regulation of mtDNA expression occurs primarily at the
posttranscriptional level (5, 6). Studies on S. cerevisiae and
S. pombe reveal that mitochondrial translation is controlled by
nuclearly encoded RNA-binding proteins (RBPs) (7–9), which
are believed to act on the 50-untranslated region (50-UTR) of
target transcripts. However, the exact mechanism by which
these factors control mitochondrial translation remains to be
determined. In contrast, mammalian mtDNA-encoded
mRNAs (mt-mRNAs) do not have 50-UTR, and thus it has
been suggested that mammals use different mechanisms to
regulate mitochondrial translation (10, 11). Indeed, in contrast
to many translational activators in yeast, only two translational
activators, TACO1 and leucine-rich pentatricopeptide repeat
(PPR)-containing protein (LRPPRC), have so far been found
in mammals. TACO1 is the COX1-specific translational acti-
vator that binds the COX1 mRNA at multiple distinct regions
(10). In contrast, LRPPRC and its binding partner, SLIRP
function together as an RNA chaperone to enhance stabiliza-
tion, polyadenylation, and translation efficiency of mt-mRNAs
(12–16).

PPR proteins constitute a large family of proteins specialized
to control nearly every stage of the posttranscriptional regu-
lation of organellar genes, including RNA 50-end maturation,
intron splicing, RNA editing in plant organelles, RNA stabili-
zation, and translational activation (17–22). PPR proteins are
found only in eukaryotes and are most abundant in higher
plants (23). Higher plants require large numbers of PPR pro-
teins because their organellar RNAs undergo extensive post-
transcriptional RNA editing, mostly C to U, to increase
transcriptomic diversity (24).

The PPR motif is a degenerate ~35-amino acid (aa)
sequence often arranged in tandem. Structural studies reveal
that PPR motifs fold into solenoid structures containing a pair
of antiparallel α-helices and consecutive repeats that are
twisted into a right-handed superhelix (25–29). PPR motifs are
involved in sequence-specific RNA-binding (26). In addition,
they also participate in protein–protein interactions in
humans (30).
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Regulation of mitochondrial translation
Ten PPR proteins have so far been identified in S. pombe
(8, 9). There was no sequence homology between any of the
proteins. S. pombe PPR proteins contain 2–18 PPR motifs.
These PPR proteins are involved in mitochondrial RNA
metabolism, including RNA stability and translation. Among
them, Ppr2 and Ppr10 are general translational activators, as
deletion of ppr2 or ppr10 dramatically impairs synthesis of all
mtDNA-encoded OXPHOS subunits, resulting in defective
mitochondrial respiration (8, 9).

PPR proteins have been found to interact with each or with
non-PPR proteins. In humans and mice, LRPPRC and SLIRP
form a complex and depend on each other for stability (31).
However, stabilization of LRPPRC by deletion of the gene
encoding the mitochondrial matrix protease LONP1, which is
involved in the degradation of LRPPRC, cannot rescue mt-
mRNA stability in the absence of SLIRP, suggesting that
SLIRP is also required for the stability of mt-mRNAs (31). In
S. cerevisiae, PPR protein Pet309, a COX1 mRNA-specific
translational activator, interacts with the DEAD-box helicase
Mss116, and the Pet309-Mss116 interaction is required for
Pet309 stability (32). In plants, PPR proteins are found to
physically interact with each other to form a functional edi-
tosome (33, 34).

We have shown that in S. pombe, Ppr10 associates with
Mpa1, and both act as mitochondrial translational activators
(9). In this study, we further explore the roles of Ppr10 and
Mpa1 in mitochondrial translation. We show that the PPR
motifs in Ppr10 are essential for the mitochondrial function of
S. pombe. We further show that the Ppr10-Mpa1 complex may
facilitate the association of mitochondrial translational initia-
tion factors Mti2 and Mti3 with the small subunit of mito-
chondrial ribosome (mt-SSU).

Results

The PPR motifs of Ppr10 are essential for the binding of Ppr10
to Mpa1

The S. pombe Ppr10 contains two highly degenerate PPR
motifs (9). We first tested potential interaction of Ppr10 lacking
PPR motifs (Ppr10ΔPPR) and Mpa1 (Fig. 1A) by coimmuno-
precipitation from whole-cell extracts. We did not examine the
interaction in vitro due to difficulties in obtaining recombinant
full-length and mutant Ppr10 proteins. To do so, we generated
strains expressing C-terminal c-Myc-tagged full-length Ppr10
or Ppr10ΔPPR under the control of its own promoter. A C-
terminal c-Myc tag does not affect the function of Ppr10, as
assayed by growth on YES medium containing either glucose or
glycerol (9). The level of Ppr10ΔPPR-Myc is reduced compared
with that of WT protein (Fig. 1B). We found that only the full-
length Ppr10-Myc coimmunoprecipitated with Mpa1 from
whole-cell extract, whereas the mutant Ppr10 did not (Fig. 1C).

Next we examined the effect of disruption of the
Ppr10-Mpa1 interaction on production of mtDNA-encoded
proteins. We determined the steady-state levels of mtDNA-
encoded proteins in wild-type (WT), Δppr10 and ppr10ΔPPR
strains grown to exponential phase. Similar to the results seen
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in the Δppr10 strain, deletion of PPR motifs in Ppr10 severely
reduced the steady-state levels of Cob1 (subunit of the cyto-
chrome bc 1 complex), the core subunits of cytochrome c
oxidase (Cox1, Cox2, Cox3), and Atp6 (subunit of ATP syn-
thase) (Fig. 1D).

The WT, Δppr10, and ppr10ΔPPR strains were examined
for their ability to grow on YES-rich media containing glucose
as fermentable carbon source or glycerol as nonfermentable
carbon source. On nonfermentable source, S. pombe cells rely
on the capacity of mitochondria to generate energy. Deletion
of the PPR motifs in Ppr10 moderately affected the growth of
S. pombe cells on glucose-containing media but severely
impaired the growth on glycerol-containing media (Fig. 1E),
similar to the ppr10 knockout phenotypes. Taken together,
these data reveal that the PPR motifs in Ppr10 are critical for
the Ppr10-Mpa1 interaction and that disruption of the PPR
motifs in Ppr10 impairs mitochondrial protein synthesis and,
consequently, respiratory growth of S. pombe cells.

Ppr10, Mpa1, and the PPR motifs of Ppr10 are required for
association of Mti2 and Mti3 with the mt-SSU

Because Ppr10 and Mpa1 function as activators of mito-
chondrial translation (9), we tested whether disruption of
ppr10, mpa1, or the PPR motifs in Ppr10 would affect mitor-
ibosome assembly by using sucrose gradient sedimentation
followed by western blotting. Mitochondrial extracts from
WT, Δppr10, Δmpa1, ppr10ΔPPR cells were sedimented
through sucrose gradient under conditions that maintained the
intact mitoribosomes. The sedimentation profile of the small
and large mitoribosomal subunits and the fully assembled
mitoribosomes were determined by measuring the levels of the
mt-SSU and the large mitoribosomal subunit (mt-LSU) pro-
teins. For reasons that are not clear, mitochondrial polysomes
cannot be separated from monosomes under the experimental
conditions used here. Similar observations have been made in
other species including S. cerevisiae (35, 36) and humans
(37–39). Thus, we did not consider polysomes in our analysis.
Disruption of ppr10, mpa1, or the PPR motifs of Ppr10 did not
impair the assembly of mitoribosomes or their subunits (Fig. 2,
A–D) and did not affect the steady-state levels of the protein
subunits of the mt-SSU and mt-LSU (Fig. 2E).

Next, we examined whether disruption of ppr10, mpa1,
or the PPR motifs of Ppr10 would affect the association of
mitochondrial translational initiation factors with mitor-
ibosomes. In the WT cells, the majority of Ppr10 remains at
the upper fractions, comigrating with Mpa1 and a small
fraction of Ppr10 and Mpa1 are associated with assembled
mitoribosomes (Fig. 2A). In contrast, most of Mti2 and
Mti3 were found associated with the mt-SSU and a minor
fraction of these two proteins cosedimented with assembled
mitoribosomes (Fig. 2A). We consistently found that
disruption of ppr10, mpa1, or the PPR motifs of Ppr10
resulted in dissociation of Mti2 and Mti3 from the mt-SSU
and reduced the association of Mti2 and Mti3 with mitor-
ibosomes (Fig. 2, B–D).



Regulation of mitochondrial translation
Loss of Ppr10 perturbs association of cob1 and cox1 mRNAs
with assembled mitoribosomes

We examined whether loss of ppr10 affects the association
of mitoribosomes with cob1 and cox1 mRNAs encoding the
most energetically central components of OXPHOS III and
OXPHOS IV, respectively. To do so, we performed sucrose
gradient sedimentation of mitochondrial extracts from the P3
strain (WT[Δi]) devoid of mtDNA introns (40) and its isogenic
Δppr10 mutant (Δppr10[Δi]). We chose these two strains
because we have previously shown that the levels of the mature
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Regulation of mitochondrial translation
mitoribosomal markers (Mrp5 and Mrpl16). The cob1 and
cox1 mRNAs sedimented in two peaks, one comigrating with
assembled mitoribosomes (fractions 9–11) and the other
cosedimenting with the mt-SSU (fractions 4–8) (Fig. 3). The
association of cob1 and cox1 mRNAs with assembled mitor-
ibosomes was reduced by ppr10 deletion, whereas their asso-
ciation with the mt-SSU was increased (Fig. 3). These results
suggest that Ppr10 may have a role in mt-mRNA recruitment
to the mitoribosome.
Ppr10 and Mpa1 copurify with a subset of mitoribosomal
proteins

To identify additional proteins associated with Ppr10, we
performed tandem affinity purification (TAP) using extracts
4 J. Biol. Chem. (2021) 297(1) 100869
from strains expressing untagged Ppr10 or TAP-tagged
Ppr10 under the control of its own promoter. The TAP
tag does not affect the function of Ppr10, as assayed by
growth on YES medium containing either glucose or glyc-
erol (9). Mass spectrometry (MS) analysis of Ppr10-
copurified proteins revealed that some proteins were spe-
cifically detected in the Ppr10-TAP preparation, albeit at
low levels. These proteins included mt-SSU proteins
(Nam9, Mrps28, Mrp4, and Mrps9), mt-LSU proteins
(Aco2-Mrpl49, Mrpl7, and Yml6), SPAC750.08c (a putative
NAD-dependent malic enzyme), SPBP4H10.18c (a Schizo-
saccharomyces specific protein of unknown function), and
Anc1 (a mitochondrial ADP/ATP carrier) (Fig. 4A and
Table S2). The Aco2-Mrpl49 is a fusion protein of aconitase
and a putative mitochondrial ribosomal (mitoribosomal)
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protein Mrpl49, which is essential for mitochondrial
translation (41).

To confirm the interaction of Ppr10 and Mpa1 with
mitoribosomal proteins, we performed coimmunoprecipi-
tation assays with extracts prepared from cells expressing
FLAG-tagged Aco2-Mrpl49 and Myc-tagged Ppr10 or un-
tagged Aco2-Mrpl49 and Myc-tagged Ppr10 from their
native promoters. Proteins associated with anti-FLAG im-
munoprecipitates were analyzed by immunoblotting with
the corresponding antibodies. Western blot analysis
demonstrated that a fraction of Ppr10-Myc and Mpa1 was
coimmunoprecipitated with Aco2-Mrpl49-FLAG, but not
with untagged Aco2-Mrpl49 (Fig. 4B). As expected, two
mitochondrial large ribosomal subunit proteins Mrpl40 and
Mrpl16 were also coimmunoprecipitated with Aco2-
Mrpl49-FLAG (Fig. 4B). We also performed reciprocal
coimmunoprecipitation assays using extracts prepared from
cells expressing FLAG-tagged Aco2-Mrpl49 and untagged
Ppr10 or FLAG-tagged Aco2-Mrpl49 and Myc-tagged
Ppr10 from their native promoters. As expected, Mpa1 is
coimmunoprecipitated with Ppr10-Myc. Consistent with
above immunoprecipitation results, we found that Aco2-
Mrpl49-FLAG coimmunoprecipitated weakly with Ppr10-
Myc (Fig. 4C). Altogether, these results suggest that a
fraction of Ppr10-Mpa1 interacts with a subset of mitor-
ibosomal proteins.

Discussion

The data reported herein demonstrate that disruption of
ppr10, mpa1, or the PPR motifs in Ppr10 affects the associa-
tion of Mti2 and Mti3 with the mt-SSU. We propose that
Ppr10 and Mpa1 function cooperatively to facilitate the asso-
ciation of Mti2-Mti3 with the mt-SSU during the initiation of
mitochondrial translation. To our knowledge, this is the first
report showing that the association of mitochondrial trans-
lational initiation factors can be affected by translational ac-
tivators. Because we have shown previously that loss of Mti2
results in dissociation of Mti3 from the mt-SSU (42), dissoci-
ation of Mti3 from the mt-SSU in the absence of Ppr10, Mpa1,
or the PPR motifs of Ppr10 could be caused by dissociation of
Mti2 from the mt-SSU. Studies on S. cerevisiae (43), S. pombe
(42), and cultured human cells (44) reveal that only mito-
chondrial translational initiation factor 2 (mtIF2), which as-
sumes the role of both bacterial initiation factors IF1 and IF2,
is absolutely required for mitochondrial protein synthesis,
whereas mitochondrial translational initiation factor 3 (mtIF3)
is dispensable for protein synthesis, indicating that mtIF2 plays
a more important role than mtIF3 in mitochondrial
J. Biol. Chem. (2021) 297(1) 100869 5



M un
ta

gg
ed

 P
pr

10
Pp

r1
0-

TA
P

Aco2-Mrp149

Ppr10-CBP

Nam9/SPBP4H10.18c
Mrps28/Anc1
Mrpl7/Yml6

100

kDa

70
55

40

35

25

180
130

SPAC750.08c
Mrp4/Mrps9

Mpa1

Aco2-Mrp149-FLAG

Mrp140

Mrp116

Ppr10-Myc

Mpa1

In InIP IP

Aco2-Mrpl49
-FLAG

Ppr10-MycPpr10-Myc

A

B

C

In InIP IP

Aco2-Mrpl49
-FLAG

Ppr10-Myc
Aco2-Mrpl49

-FLAG

Ppr10-Myc

Mpa1

Aco2-Mrp149-FLAG

*

*

130
100

100

43

26
34

100

43

130

100

kDa

kDa

Figure 4. Ppr10 and Mpa1 associate with a subset of mitoribosomal
proteins. A, TAP purification and MS analysis of proteins associated with
Ppr10. TAP purification was performed by using whole-cell extracts. Proteins
associated with Ppr10-TAP were TAP-purified, separated by SDS/PAGE, and
stained with Coomassie blue. Protein bands that were only present in the
Ppr10 purified fraction were excised and identified by MS. The molecular
weight of the protein markers is indicated on the left. Mock purification was
performed with extracts expressing untagged Ppr10. The band (indicated
by the asterisk) was not identified. B, coimmunoprecipitation of Aco2-
Mrpl49 with Ppr10-Myc and Mpa1. Whole-cell extracts (In) from cells
expressing Ppr10-Myc (control) or Ppr10-Myc and Aco2-Mrpl49-FLAG were
immunoprecipitated (IP) with anti-FLAG beads. Coimmunoprecipitated

Regulation of mitochondrial translation

6 J. Biol. Chem. (2021) 297(1) 100869
translation. Because mitochondrial translational initiation
factors function in mitochondrial translation via their associ-
ation with the mt-SSU, the reduced association between Mti2-
Mti3 and the mt-SSU may compromise the function of Mti2
and Mti3 and could explain impaired translation in cells
lacking Ppr10, Mpa1, or the PPR motifs of Ppr10.

It remains unclear how Ppr10 and Mpa1 facilitate the as-
sociation of Mti2 and Mti3 with the mt-SSU. One possible
explanation is that Ppr10 and Mpa1 may exert their effect
through their direct interaction with Mti2. This is supported
by our previous finding that Ppr10 interacts weakly with Mti2
but not with Mti3 in vivo and in vitro (9).

Our results revealed that a very small fraction of Ppr10 and
Mpa1 cosedimented with mitoribosome and that Ppr10 and
Mpa1 copurified, albeit in substoichiometric amounts, with a
subset of mitoribosomal proteins. Disruption of the Ppr10-
Mpa1 interaction by deleting the PPR motifs of Ppr10 does
not appear to affect the association of Ppr10 with mitor-
ibosomal proteins (Fig. S1), suggesting that the Ppr10-Mpa1
interaction is not required for this association. These results
also suggest that Ppr10-Mpa1 may have a role beyond the Mti2
and Mti3 association with the mt-SSU. It is likely that Ppr10-
Mpa1 may also function through interaction with
mitoribosome.

Disruption of ppr10 perturbs the association of cob1 and
cox1 with the assembled mitoribosomes and increases the
association of cob1 and cox1 with the mt-SSU. One possible
explanation is that the mt-mRNAs can bind to both the mt-
SSU and the assembled mitoribosomes, and the absence of
Ppr10 favors the binding of mt-mRNAs to the mt-SSU. This
explanation is supported by the finding that in the absence of
auxiliary initiation factors, mammalian mt-mRNAs can bind to
the mt-SSU in a sequence-independent manner (45). Future
studies will be required to elucidate the mechanism by which
Ppr10 facilitates the binding of mt-mRNAs to assembled
mitoribosomes.

Unexpectedly, we observed that the association of Mti2 and
Mti3 with the mt-SSU is significantly affected in cells lacking
Ppr10, Mpa1, or the PPR motifs of Ppr10, but the formation of
assembled mitoribosomes does not appear to be significantly
affected. One possible explanation for this is that the impaired
interaction between Mti2-Mti3 and the mt-SSU in the absence
of Ppr10, Mpa1, or the PPR motifs of Ppr10 leads to aberrant
mitoribosome assembly and consequently, to defective
translation.

Unlike bacterial translation initiation, mitochondrial trans-
lational initiation requires activators (46). The requirement for
activators for mitochondrial translational initiation varies
greatly among eukaryotic organisms (47). In S. cerevisiae,
proteins were detected by western blotting by using anti-c-Myc Ab (for
Ppr10-Myc), and Abs against Mpa1 and mitochondrial large ribosomal
subunit proteins Mrpl40 and Mrpl16. The asterisk indicates a nonspecific
band. C, reciprocal coimmunoprecipitation of Ppr10-Myc and Mpa1 with
Aco2-Mrpl49-FLAG. Whole-cell extracts (In) from cells expressing Aco2-
Mrpl49-FLAG (control) or Aco2-Mrpl49-FLAG and Ppr10-Myc were immu-
noprecipitated (IP) with anti-c-Myc beads. The immunoprecipitates were
analyzed by western blotting using the Abs indicated.



Table 1
Strains used in the present study

Strain Genotype Source

yHL6381 h+ his3-D1 leu1-32 ura4-D18 ade6-M210 H. Levin
yHH1 h+ his3-D1 leul-32 ura4-D18 ade6-M210

Δppr10::kanMX6
(9)

yZQ1 h+ his3-D1 leul-32 ura4-D18 ade6-M210
Δmpa1::kanMX6

(9)

P3 h+ ade7-50 rho+ (no mitochondrial introns) (45)
yXW1 h+ ade7-50 rho+ (no mitochondrial introns)

Δppr10::kanMX6
(4)

yZL1 h+ his3-D1 leul-32 ura4-D18 ade6-M210
Δppr10::kanMX6 leu1-32::[ppr10–13Myc-
leu1-hphMX6]

This report

yZL2 h+ his3-D1 leul-32 ura4-D18 ade6-M210
Δppr10::kanMX6 leu1-32::[ppr10ΔPPR-
13Myc-leu1-hphMX6]

This report

yYJ1 h+ leu1-32 his3-D1 ura4-D18 ade6-M210
ppr10::[ppr10–13Myc-kanMX6]

(9)

yWQ1 h+ leu1-32 his3-D1 ura4-D18 ade6-M210
aco2-mrpl49::[aco2-mrpl49-2FLAG-ura4]

This report

yWQ2 h+ leu1-32 his3-D1 ura4-D18 ade6-M210
ppr10::[ppr10–13Myc-kanMX6] aco2-
mrpl49::[aco2-mrpl49-2FLAG-ura4]

This report

yWY1 h+ leu1-32 his3-D1 ura4-D18 ade6-M210
Δppr10::kanMX6 leu1-32::[ppr10–13Myc-
leu1-hphMX6]
aco2-mrpl49::[aco2-mrpl49-3HA-natMX6]

This report

yWY2 h+ leu1-32 his3-D1 ura4-D18 ade6-M210
Δppr10::kanMX6
leu1-32::[ppr10ΔPPR-13Myc-leu1-hphMX6]
aco2-mrpl49::[aco2-mrpl49-3HA-natMX6]

This report

Regulation of mitochondrial translation
mitochondrial translational initiation is governed by mt-
mRNA-specific translational activators, and in some cases,
multiple activators are required for the synthesis of one pro-
tein (48). These translational activators function through in-
teractions with 50-UTRs of mt-mRNAs or with proteins of the
mitoribosome. In S. pombe, mitochondrial translational initi-
ation appears to require both specific and general translational
activators (8, 9). Mammalian mitochondrial mRNAs generally
lack 50-UTRs, suggesting that different mechanisms to regulate
mitochondrial translational initiation may be used in mammals
(44). So far, TACO1 (10, 49) and LRPPRC (13, 16, 31) are the
only two mitochondrial translational activators that have been
identified in mammals. But their exact role in mitochondrial
translational initiation has not been established. The general
translational activators Ppr10 and Mpa1 described herein
appear to be fission yeast-specific. Nevertheless, our findings
suggest a possible mechanism for the global regulation of
mitochondrial translational initiation, which has not been re-
ported so far.

Our findings reveal that the PPR motifs in Ppr10 are
required for the Ppr10-Mpa1 interaction. The involvement of
PPR motifs in protein–protein interactions has been
previously reported. Spahr et al. (30) reported that three
neighbouring PPR motifs in LRPPRC contribute to the
LRPPRC-SLIRP interaction. Our results also show that
disruption of PPR motifs in Ppr10 results in phenotypes
similar to those of Δppr10 cells, indicating that PPR motifs in
Ppr10 are essential for the function of the protein. It is very
likely that the PPR motifs in Ppr10 exert their effects through
mediating the Ppr10-Mpa1 interaction. However, we could not
rule out the possibility that effects of disruption of the PPR
motifs in Ppr10 may be independent of their role in mediating
the Ppr10-Mpa1 interaction. Further study is needed to
directly discern the impact of the Ppr10-Mpa1 interaction on
mitochondrial translation. Nevertheless, the findings of this
paper further support the notion that Ppr10 and Mpa1 func-
tion together in mitochondrial translational initiation by
facilitating the association of Mti2 and Mti3 with the mt-SSU.

Experimental procedures

Yeast strains, plasmids, media, genetic manipulation, and
primers

S. pombe strains used in this study are listed in Table 1.
Strains deleted for ppr10 ormpa1 and strains expressing Ppr10
tagged with TAP (Ppr10-TAP) or c-Myc-tagged (Ppr10-Myc)
from its endogenous promoter and native locus were con-
structed as described (4, 9). Strain yWQ1 expressing FLAG-
tagged Aco2-Mrpl49 (Aco2-Mrpl49-FLAG) from its endoge-
nous promoter and native locus was constructed in the same
way as yYJ12 expressing FLAG-tagged Mti2 (9). Strain yWQ2
expressing Aco2-Mrpl49-FLAG and Ppr10-Myc was con-
structed by integrating the aco2-mrpl49::[aco2-mrpl49-FLAG-
ura4] integration cassette into the endogenous aco2-mrpl49
locus of strain yYJ1.

Strains expressing HA-tagged Aco2-Mrpl49 (Aco2-Mrpl49-
HA) and c-Myc-tagged WT Ppr10 (Ppr10-Myc) or Ppr10
lacking PPR motifs (Ppr10ΔPPR-Myc) under the control of
their respective endogenous promoters was constructed as
follows. The DNA fragment for HA tagging at the C-terminus
of Aco2-Mrpl49 was obtained by overlap PCR as follows. The
first DNA fragment containing 547 bp of sequence upstream
of the Aco2-Mrpl49 stop codon was amplified by PCR using
the S. pombe genomic DNA as template. The second DNA
fragment containing 3XHA epitopes, the ADH1 transcriptional
terminator, and the natMX6 cassette conferring nourseo-
thricin resistance was amplified from plasmid pZH1. The third
DNA fragment containing 579 bp of sequence downstream of
the Aco2-Mrpl49 stop was amplified by PCR using the
S. pombe genomic DNA as template. These three fragments
were then fused by PCR and the PCR product was transformed
into strains yZL1 and yZL2, yielding the yWY1 and yWY2
strains, respectively.

Strains expressing C-terminally c-Myc-tagged WT Ppr10 or
Ppr10ΔPPR under the control of the ppr10 promoter and in-
tegrated at the leu1-32 locus were constructed as follows.
Because S. pombe cells lacking functional Ppr10 protein failed
to grow in minimal medium, we first constructed a vector that
contains the hygromycin resistance cassette (hphMX6) as a
selectable marker, which allows selection of transformants in
rich medium. To this end, an integrative plasmid carrying the
c-Myc tag, the ADH1 transcriptional terminator, and hphMX6
was constructed by overlap PCR as follows. The first DNA
fragment containing the 13 c-Myc epitopes followed by the
ADH1 transcriptional terminator was amplified from plasmid
pFA6A-13Myc-kanMX6 (50). The second DNA fragment
containing the hphMX6 cassette was amplified from plasmid
pFA6a-hphMX6 (9). These two fragments were then fused by
PCR and the fused product was digested with Sma I and Sal I
J. Biol. Chem. (2021) 297(1) 100869 7
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and ligated into the Sma I and Sal I sites of pJK148 (51) to give
plasmid pZL1. The promoter sequence and the coding
sequence of ppr10 were amplified by PCR using the S. pombe
genomic DNA as template. The resulting PCR product was
digested with BamH I and Sma I and ligated into the BamH I
and Sma I sites of pZL1 to give pZL2. pZL2 is linearized with
Nru I and was integrated at leu1-32 in the Δppr10 strain,
generating strain yZL1 expressing full-length Ppr10 tagged
with the c-Myc at C-terminus and under control of its own
promoter. The sequences of gene encoding Ppr10ΔPPR and its
promoter were generated by overlapping PCR using pZL2 as
template and two sets of PCR primers including overlapping
primer pairs spanning the deleted region. The PCR product
was digested with BamH I and Sma I, and cloned into the
BamH I and Sma I sites of pZL1. The resulting plasmid was
integrated into the Δppr10 strain, generating strain yZL2
expressing Ppr10ΔPPR tagged with the c-Myc at C-terminus
and under control of its own promoter. PCR primer sequences
are provided in Table S1.

S. pombe cells were grown in rich media (YES, 0.5% yeast
extract, and supplements) supplemented with 3% glucose for
fermentative growth or 3% glycerol and 0.1% glucose for res-
piratory growth (52, 53). Standard media and protocols for
genetic manipulation of fission yeast were used as described
previously (52).

Affinity purification, coimmunoprecipitation, and western blot
analyses

Preparation of protein extracts, protein affinity purification,
coimmunoprecipitation, and western blot analyses were per-
formed as described previously (9). Antibodies (Abs) against
Ppr10 and Mpa1, rabbit HSP60, and the c-Myc epitope (9) and
Abs against Mrp5, Mrpl16, Mti2, and Mti3 were described
previously (42). Other Abs were generated as follows: synthetic
peptides corresponding to amino acid (aa) residues 239–258 of
Rsm24 or 32–50 of Mrpl40 were used to immunize rabbits and
antibodies were affinity purified on peptide columns (Bio-
world). Anti-β-actin Ab was used to detect S. pombe actin
(Act1) (Proteintech, 60008-1-Ig).
Sucrose density-gradient analysis of mt-RNAs

Mitochondrial extracts were prepared and fractionated by
sucrose gradient sedimentation as described previously (42)
except that 200 u/ul of RNaseOUT RNase inhibitor (Invi-
trogen) was included in the mitochondrial lysis buffer to
prevent degradation of RNA. In brief, about 2 mg of
mitochondrial proteins dissolved in 300 μl of lysis buffer
was loaded onto a 10–34% linear sucrose gradient (4 ml
total volume). Gradients were centrifuged for 3 h at 4oC in
SW 60Ti (Beckman Coulter, USA). Twelve equal fractions
were collected. Total RNA was purified from one-third of
each fraction as described (54). After treatment with DNase
I to remove genomic DNA, RNA in each fraction was
reverse-transcribed into cDNA using HiScriptIIQ RT
SuperMix (Vazyme, China). Quantitative Real-Time RT-
PCR (qRT-PCR) was performed using AceQ qPCR SYBR
8 J. Biol. Chem. (2021) 297(1) 100869
Green Master Mix (Vazyme) with primers specific for rns,
rnl, cob1, and cox1. PCR primer sequences were previously
described (9). All reactions were performed in triplicate.
Data analysis was performed by StepOne software. The
abundance of rns, rnl, cob1, and cox1 in each fraction was
calculated by using the 2-ΔCt method and expressed as
percentage of the summed amount of each transcript in all
fractions. The remaining two-thirds of each fraction were
precipitated with trichloracetic acid, and proteins were
separated by SDS-PAGE and immunoblotted with anti-
Mrp5 and anti-Mrpl16 Abs.

Data availability

The mass spectrometry proteomics data have been depos-
ited to the ProteomeXchange Consortium via the PRIDE (55)
partner repository with the dataset identifier PXD025862. All
data that support the findings of this study are contained
within the article and its supporting information.
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information.
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