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Abstract

Motivation: Analyzing groups of functionally coupled genes or proteins in the context of global interaction networks has
become an important aspect of bioinformatic investigations. Assessing the statistical significance of crosstalk enrichment
between or within groups of genes can be a valuable tool for functional annotation of experimental gene sets.

Results: Here we present CrossTalkZ, a statistical method and software to assess the significance of crosstalk enrichment
between pairs of gene or protein groups in large biological networks. We demonstrate that the standard z-score is generally
an appropriate and unbiased statistic. We further evaluate the ability of four different methods to reliably recover crosstalk
within known biological pathways. We conclude that the methods preserving the second-order topological network
properties perform best. Finally, we show how CrossTalkZ can be used to annotate experimental gene sets using known
pathway annotations and that its performance at this task is superior to gene enrichment analysis (GEA).

Availability and Implementation: CrossTalkZ (available at http://sonnhammer.sbc.su.se/download/software/CrossTalkZ/) is
implemented in C++, easy to use, fast, accepts various input file formats, and produces a number of statistics. These include
z-score, p-value, false discovery rate, and a test of normality for the null distributions.
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Introduction

Gene interaction networks are widely used in biological

research. Some popular applications include: inference of

function for previously unannotated genes [1], extension of

GO terms and pathways [2], finding novel disease genes [3],

and prioritization of disease gene candidates [4]. However, as

always in computational and high-throughput biology, the

problems of statistical significance and false discovery need to

be properly addressed [5,6].

When studying statistical properties in biological networks by

randomization techniques, a good null model is indispensable. The

model should accurately reflect the structure of the original

network as well as the conditions that led to its emergence [7].

Various models have been proposed in recent years to model

biological networks, in particular PPI networks. Network types

include random [8], random geometric [9], and scale free [10]. In

all cases, a good null model is a prerequisite for producing reliable

predictions that can help to guide experimental studies, while an

incorrect model might lead to erroneous conclusions.

We define crosstalk enrichment in biological networks as the

extent of connectivity between (inter) or within (intra) biological

groups (see Figure 1). An experimental gene set, a known

functional module, or a pathway are all examples of biological

groupings. To draw statistically sound conclusions about crosstalk

enrichment or depletion, a probabilistic estimate is crucial.

A probabilistic estimate is produced by comparing an observa-

tion to a reference. The reference is determined by the null model

hypothesis, which must express a distribution of the number of

observations expected by chance. In network analysis, an

observation is typically the number of links found within a certain

network structure, e.g. inside of a network module or between two

modules. Given the scale-free property of most biological

networks, it does not make sense to compare the properties of

network hubs to those of sparsely connected genes without such a

reference. For instance, a hub gene may have a few links to genes

of a certain module simply by chance, whereas for a gene with a

modest number of connections, the same number of links would

indicate an important biological pattern. If a null distribution is

available, then both the expected number of links and the

respective variance can be estimated.

In simple cases, the number of links expected by chance can be

estimated analytically for scale-free networks, for instance, from

the hyper-geometric distribution [11]. However, analytical meth-

ods are not feasible for more complex cases, such as when gene

groups share members, which is likely to exaggerate the number of

links between them. For example, when Li, Y. et al. [12] built a

network of pathways by computing the crosstalk between pathway
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pairs using the Fisher Exact test, they had to limit their analysis to

only non-overlapping pathway pairs.

An alternative way to estimate the null model distribution, or

the links expected by chance, is to perform numerical simulations.

Huttenhower et al., analyzed crosstalk between gene groups

within biological processes by estimating z-scores using a null

model for group size combinations [13]. Because this approach is

based on regression across gene group sizes within each process, it

is not flexible enough for application to any pair of gene groups.

Early work on comparing the real network to its randomized

version in the context of biological networks was done by Maslov

and Sneppen [14]. They applied the classical switch randomiza-

tion algorithm [15], which randomly rewires the original network

such that the connectivity, or degree, of every node is preserved.

This method was also used by Milo et al. to find small network

motifs occurring significantly more often in biological networks

than expected in corresponding randomized networks [16].

Kuchaiev et al. used a geometric graph model for assessing

confidence levels of known interactions in PPI networks and for

predicting novel ones [17]. Although the literature on network

randomization theory is large, this has so far not been applied to

estimate the statistical significance of the connectivity within or

between gene groups in gene networks.

For such crosstalk analysis, we found that the distribution of the

expected number of links approaches normal if the network

pattern of interest has sufficiently many links in a series of random

instances. In this case, the standard z-score can be computed by

dividing the difference between observed and expected number of

links with the expected links’ standard deviation. Z-scores can

trivially be transformed into p-values, which are useful since they

can readily be adjusted for multiple testing. This statistical

approach has been applied to analyze crosstalk between co-

mutated genes in cancers and between candidate disease genes

[4,18,19].

Maslov and Sneppen also discussed the existence of second-

order non-random patterns [14]. For instance, two networks with

identical node degree distributions can have different patterns of

connectivity between hubs and non-hubs. Network assortativity

describes the preference of nodes to connect to nodes of similar or

dissimilar node degree [20]. In biological networks, Newman

detected negative assortativity, i.e. the tendency of hubs to avoid

each other and instead preferentially attach to low degree nodes.

An alternative to assortativity is to sum the product of connected

nodes degrees for all links in the network, termed the s-metric [21].

If either of these metrics change during randomization, then the

second-order structure of the network has been altered. In the case

of crosstalk analysis, it is desirable to ensure that they stay as

constant as possible when generating null models [22].

When analyzing high-throughput data, one of the key interests

is to shed light on the underlying biology. The most common

strategy to functionally annotate gene groups is to perform gene-

set enrichment analysis (GEA) [23–25], i.e. to look for functional

annotations that are statistically over-represented within a group of

genes. Despite being popular, GEA approaches are limited in that

they entirely depend on the completeness and quality of collected

functional annotations. At present, many genes still lack functional

Figure 1. An example of three different cases (enrichment, depletion and no change) of crosstalk. The upper graph shows links in the
original network between and within predefined groups (A, B, C) and the lower graph shows an example of the links between groups in a
randomized version. Note that only a subset of the networks representing the three groups are shown; all node degrees remain constant after
randomization. In this example, groups A and B have fewer links between them than in the random case (inter-group depletion) while B and C have
more links (inter-group enrichment). Also seen in this example is that group B and C have intra-group enrichment while group A has the same
number of links in the original as in the random network (no enrichment or depletion).
doi:10.1371/journal.pone.0054945.g001
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annotations, for example in form of Gene Ontology (GO) terms

[26] or KEGG pathways [27]. GEA methods further fail to

identify pathway annotations that are strongly linked to a gene

group, but only have a few shared genes.

Here we compare the suitability of four different network

randomization algorithms for statistical crosstalk enrichment

analysis [15,28]. The methods are evaluated with respect to their

true and false positive rates, conservation of topological properties,

the null model distribution quality, and the computational speed

under different conditions. Furthermore, we show that crosstalk

enrichment analysis can be a valuable tool for functional

annotation of gene groups. We compare crosstalk enrichment

analysis GEA and demonstrate that its performance is superior to

GEA when annotating experimental gene groups from MsigDB

[24] using know pathway annotations from KEGG [27].

We also present CrossTalkZ, a software package that imple-

ments the four randomization techniques and quantifies the

connectivity between gene groups of interest. The package is freely

available and includes several statistical tests to allow the user to

draw solid statistically supported conclusions.

Results

In undirected networks, crosstalk between (inter) or within

(intra) gene groups is defined as the extent of connectivity between

the genes in the groups (see Figure 1). To assess the significance of

crosstalk enrichment, we compare the observed connectivity with

the connectivity expected from a null model distribution. The

expected connectivity between groups is obtained by tallying the

links between genes of the two groups after randomizing the

network multiple times. We first show that if the distribution of

expected links is normal, the standard z-score is an appropriate

and unbiased statistic to estimate the significance of crosstalk

enrichment and that other statistics such as a p-value and false

discovery rate (FDR) [29] can readily be calculated. We then

compare four different network randomization algorithms with

respect to their suitability for crosstalk analysis. Finally, we

exemplify how crosstalk enrichment analysis can be used to

annotate experimentally derived gene groups and that it performs

favorably compared to gene set enrichment analysis (GEA).

Network Randomization Methods
There are many different ways to randomize networks. We pose

a minimum requirement that the degree distribution is preserved.

In many cases it is also important to preserve second-order

topological patterns of the original network to best represent the

system under study. We tested four different randomization

methods, each with varying degrees of topological conservation,

for their ability to discover crosstalk. The methods are referred to

as link permutation (LP), node permutation (NP), link assignment

(LA), and link assignment+second-order conservation (LA+S). The

LP method, randomly swaps links in a network. NP permutes node

labels between nodes that have similar degree. LA implements a

variant of the matching algorithm [15] or configuration model

[28] by adding an extra step to resolve the problem of self-links or

multiple links between nodes. It starts with an unconnected

network and randomly adds links between nodes until the original

node degrees are recovered. LA+S is a variant of LA that also

preserves the second-order topology. All of the methods preserve

the network degree sequence (distribution) of the original network.

Estimating the Significance of Crosstalk Enrichment
The estimation of the significance of crosstalk enrichment, i.e.

the extent to which the connectivity between or within functional

groups exceeds what is expected by chance, is a crucial aspect of

crosstalk analysis. The converse of enrichment is depletion, and

corresponds to observing less connectivity than expected by

chance.

There are two common alternatives for significance estimation.

The first is to use a permutation test where a p-value can be

calculated as the fraction of null cases (i.e. observations in

randomized network instances) that contained more links than

observed in the real network. An alternative is to use standard z-

scores, which for the normal distribution, is the number of

standard deviations away from the mean that an observation point

lies. The z-score can readily be transformed into a p-value. One of

the crucial differences between the two methods is that the z-score

converges after relatively few randomizations, while a high

precision indirect p-value estimation using a permutation test

requires a very large number of permutations to converge.

Because, the full permutation test is computationally expensive,

we opted for the z-score alternative. Another advantage of using

the z-score is that it is easily interpreted as crosstalk enrichment or

depletion, where positive values indicate enrichment and negative

values indicate depletion.

In order for the z-score and p-value to be meaningful, the null

model distribution needs to fulfill the normality criterion. To

assure that the assumption of normality is fulfilled, a reduced chi-

squared statistic is calculated. We generated 100 sets of

randomized KEGG pathways to test for this. Every node in each

pathway was replaced with a random node from the entire

FunCoup network of similar degree. In this way, each pathway

contains new random genes while approximately conserving its

original degree sequence. Figure 2 shows the reduced chi-squared

statistic versus the number of expected links for all four methods

for this test. We found that the normality assumption is generally

only violated if the number of expected links is small. For the set of

randomized KEGG pathways we found for example that when

averaged over all four methods, only 4.761.5% of the cases had

expected number of links below 5 and fit a normal distribution, i.e.

reduced chi-squared , = 1 [30]. On the other hand, for the cases

with expected links above 5, 97.660.8% had reduced chi-squared

, = 1. One should note, however, that reduced chi-squared = 1

can potentially be an overly stringent criterion if the expected

number of links is small, leading to false negatives.

For the analysis to be unbiased, the central limit theorem

suggests that the distribution of z-scores between random groups

should be standard normal and therefore give a uniform

distribution of p-values. For the randomized KEGG pathways

these distributions are shown in Figure 3, along with some quality

metrics. When considering only test cases that passed the expected

links normality criterion, all four methods generated approxi-

mately standard normal z-score distributions. However, LA+S was

clearly the best and LP the worst when looking at skewness, mean,

standard deviation, and p-value bias. A bias in the p-value

distribution can be seen by looking at the ratio of the number of

points with p-value in the range [0, 0.05] to the average number of

points in equally sized bins for p-value . = 0.05. The least biased

method was LA+S with a ratio of 0.996, while LP was the worst

with almost 50% more significant p-values than the mean in

insignificant bins.

Preservation of Second-order Network Topology
We tested to which degree the different methods preserve the

topology of the original network by calculating two different

measures: assortativity [20] and the s-metric [21]. The network

assortativity is the correlation between the degrees of the two

nodes connected by a link, while the s-metric is simply the sum of

Gene Group Crosstalk
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the product of node degrees that are connected by a link. The

human FunCoup network had an assortativity of r = 0.2,

indicating that high degree nodes are more frequently connected

to high degree nodes than to low degree nodes. We observed the

same trend for the human STRING [31] network (cutoff .0.5,

r = 0.32). This is opposite to what Newman reported for biological

networks (r = 20.15) [20]. Independently, Maslov and Sneppen

found biological networks to be disassortative (r ,0), i.e. that high

degree nodes have a preference to connect to low degree nodes

[14]. However, the networks used in their studies were relatively

small yeast networks, purely based on physical protein interac-

tions.

The average assortativity, s-metric ratio, and percent identity

for each of the four methods are shown in Table 1. By percent

Figure 2. Normality test of the null model distribution. Values of the reduced chi-squared test of normality are plotted against the expected
number of links for all four methods using randomized KEGG pathways. The normality criterion is generally only violated for low numbers of expected
links. The horizontal line represents the threshold used for normality (chi-squared = 1), and the vertical line is at expected number of links = 5. The
number of points is indicated by the density, lighter colors are lower density.
doi:10.1371/journal.pone.0054945.g002

Gene Group Crosstalk

PLOS ONE | www.plosone.org 4 January 2013 | Volume 8 | Issue 1 | e54945



identity we mean the fraction of links shared between the original

and the randomized networks. A method with higher percent

identity can be considered more conservative than one with a

lower percent identity. As expected, NP preserved the assortativity

and s-metric of the original network, simply because it did not

change the network topology. The other methods altered these

metrics to varying degrees. The effect for the LA+S method was

marginal, as it aimed to connect nodes that have same degree as in

Figure 3. Comparison of the p-value and z-score distributions for all four methods. The analysis were performed on a set of randomized
KEGG pathways. All results were filtered for reduced chi-squared , = 1.0. According to the central limit theorem the distribution of z-scores between
random groups should be standard normal and therefore give a uniform distribution of p-values. For each p-value distribution we report the ratio
between the number of p-values ,0.05 and the average number in equally sized bins with p-value . = 0.05. An unbiased distribution should give a
ratio of 1. For each z-score distribution we report skewness, mean and standard deviation. For each method 150 rando-mizations were performed.
doi:10.1371/journal.pone.0054945.g003
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the original network. For the less conservative methods LP and

LA, the assortativity turned negative and the s-metric was

substantially lower than for NP and LA+S. Depending on the

null hypotheses tested, conclusions based on the expected number

of links might be biased if the network randomization does not

account for second-order topological features of the original

network. Both LA+S and NP should generate a null distribution

that preserves the second-order topology of the original network

and are therefore preferable for crosstalk analysis.

Estimation of False Positive Rate
To analyze the false positive rate of the four algorithms we used

the same dataset of sets of randomized KEGG pathways

previously used for analyzing distribution properties (Figure 2,

3), as a source of crosstalk statistics between pathways that should

not have crosstalk. In a first test we used a simple cutoff such that a

crosstalk enrichment measurement was considered a false positive

if its p-value ,0.05 and it had a reduced chi-squared value

, = 1.0. The least conservative method, LP, gave the highest

fraction, 4.7%. LA+S gave the lowest fraction, 3.2%, slightly lower

than NP and LA, at 3.5% and 3.6%, respectively.

In a second, more comprehensive test, we analyzed the false

positive rate for each method across a range of p-values (Figure 4).

This also shows that the LP method is clearly less conservative

than the other methods, and that the LA+S method is most

conservative.

Estimation of False Negative Rate
Hundreds of signaling, metabolic and other functional gene

groups are known from the literature and found curated in

databases, such as GO [26] or KEGG [27]. Li et al. demonstrated

that GO terms and pathways (HumanCyc and BioCarta) are often

enriched in internal network connections [12]. Based on the

assumption that pathways are functionally coherent groups, we

analysed intra-crosstalk within KEGG pathways mapped to

FunCoup as a positive control, to estimate the false negative rate

of the methods.

At FDR ,0.05 and reduced chi-squared , = 1.0, all four

methods found 100% of the pathways to be significant for this test.

However, at higher stringency the differences between the

methods are more apparent. To show this, we plotted the fraction

of significant internal crosstalk as a function of the z-score

(Figure 5, solid curves). We used the z-score here to maximize the

range of sensitivity. Consistent with the fact that the LP method

previously showed the highest false positive rate (Figure 4), it also

showed the lowest false negative rate here (i.e. the highest recovery

rate). Although the LA+S method previously showed the lowest

false positive rate, it did not have the highest false negative rate. In

fact, around a z-score cutoff of 15 it is the best method. Overall

LA+S thus appears to be the best compromise between false and

negative rates.

A variation of this test involves splitting each pathway

approximately in half resulting in two pathways. In this test we

look at the ability of the methods to re-discover the crosstalk

between the pathway halves. Since we observed strong intra-

crosstalk enrichment in the original KEGG pathways, we expect

that splitting these pathways in random halves should result in

strong inter-crosstalk enrichment between the halves. At FDR

,0.05 and reduced chi-squared , = 1.0, all methods recovered at

least 99.1% of the pathways. The dotted lines in Figure 5 represent

the results of the split pathway test. Again, the LP method showed

the lowest false negative rate here, while the LA+S and NP

methods performed about equally, showing the highest false

negative rates.

The main outcome of both the negative and positive controls

is that LP performs strikingly less conservative than the other

methods as it estimates higher z-scores. The other three

methods perform similarly, but the two methods that preserve

second-order topology well, LA+S and NP are more conserva-

tive in most tests.

Pathway Analysis
An important goal of analyzing high-throughput data, such as

lists of differentially expressed genes, is to study the underlying

biology. A commonly applied approach is to perform gene

enrichment analysis (GEA), i.e. to look for functional annotations

that are statistically over-represented within a group of genes [32].

While GEA approaches are popular and easy to implement, they

are limited in certain ways [23]. They entirely depend on the

completeness and quality of pathway annotations, both of which

are low at present. In contrast, crosstalk enrichment analysis by

CrossTalkZ looks for enrichment in network connections between

two groups of genes. Because it employs the network, it can detect

pathways that are strongly associated to a gene group, even when

GEA can not detect this because of few shared genes. It may also

detect associations to relevant up- or downstream pathways if the

crosstalk is sufficiently strong.

To compare these approaches, we applied both CrossTalkZ and

GEA to search for associations between 2392 experimental gene

groups from MsigDB [24] and 236 KEGG pathways. GEA found

3370 unique, i.e. only found by GEA, gene group to pathway

associations that were significant. CrossTalkZ using the FunCoup

network found 49225 unique significant associations while 9707

significant associations were found by both methods. In other

Table 1. Shown are the means and standard deviations for one primary (column two) and two secondary (column three and four)
topology conservation metrics for the four different network randomization methods.

Method
Percent identity of links between
randomized and original Randomized assortativity (original r = 0.20) s-metric ratio (randomized/original)

LP 7.3860.04 20.0960.00 0.8060.00

NP 12.1260.11 0.2060.00 1.0060.00

LA 10.4760.21 20.1560.02 0.7660.01

LA+S 14.7960.07 0.1460.01 0.9660.00

The average percent identity is the fraction of links the randomized network had in common with the original network. The assortativity represents the correlation
between degrees of connected nodes. A positive assortativity indicates that nodes tend to be connected to nodes of similar degree, while a negative assortativity
indicates that they tend to connect to nodes with different degrees. The s-metric is another link degree correlation measure; the ratios shown are the randomized
network’s s-metric divided by the original network’s s-metric. All results shown were generated from 50 iterations for each method using the human FunCoup network.
doi:10.1371/journal.pone.0054945.t001
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words, CrossTalkZ provides a very substantial increase in pathway

annotations compared to GEA, yet finds most GEA annotations.

To illustrate the usefulness of CrossTalkZ, we briefly discuss two

examples from this screen.

Setlur et al. [33] presented a gene signature of 63 genes up-

regulated in prostate cancer. The GEA approach failed to identify

any significant KEGG pathway associations (see Table 2). In

contrast, CrossTalkZ identified 9 significant KEGG pathway

associations that reflect the functional dynamics of the signature.

We found significant associations to pathways ‘‘Prostate cancer’’

and ‘‘Pathways in cancer’’. We further found strong links to the

TGF-beta signaling pathway which plays a well-studied role in

tumorigenesis and cancer progression [34], as well as the Notch

signaling pathway which has been linked more recently to prostate

cancer as one of the key regulators of prostate cancer progression

[35].

A signature of 389 genes up-regulated in a sub-cluster of bladder

cancers dominated by G2 tumors was presented by Lindgren et al.

[36]. CrossTalkZ identified 81 significant pathway associations of

which 55 were not found by the GEA approach. Among the

pathways identified by both methods were various pathways

related to cellular functions as cell migration, differentiation,

proliferation, and apoptosis. Pathway associations only found by

CrossTalkZ included: the KEGG bladder cancer pathway, TGF-

beta signaling pathway, Wnt signaling pathway, ErbB signaling

pathway as well as many other cancer-related pathways (see Table

S1).

Software Performance
We tested the performance of each of the four methods on

random scale free networks that were obtained using the

Barabási–Albert scale free model [10]. Figure 6 shows the

performance of the methods for 150 randomizations when either

a) keeping the number of nodes constant and varying the number

of links or b) keeping the number of links constant and varying the

number of nodes. The node permutation method is the fastest in

all test cases and its speed depends only on the number of nodes in

the network. Conversely, the link permutation method depends

only on the number of links, but is orders of magnitude slower on

the test set. The link assignment methods have a more complex

performance curves, but still randomize a network of 10̂4 nodes

and 10̂6 links in approximately 10 seconds. All benchmarks were

conducted on a 2 GHz processor with 4GB of memory.

Discussion

We created CrossTalkZ, a method and software to assess the

significance of crosstalk, which we define as the extent of

connectivity between or within gene groups in biological networks.

We first showed that the significance of the crosstalk enrichment

can be assessed with the standard z-score, which compares the

number of links observed between gene groups in the original

network to the number of expected links. The expected number of

links under the null model is estimated by generating a series of

randomized instances of the original network. Second, we

compared four different randomization methods with regard to

Figure 4. Comparison of the false positive rate for the four different methods. A result was considered false positive if it passed the
normality criterion (reduced chi-squared , = 1) and had a p-value below a certain cutoff. Shown is the false positive rate as a function of the p-value.
The test was performed using randomized KEGG pathways mapped to the FunCoup network.
doi:10.1371/journal.pone.0054945.g004
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their suitability for crosstalk enrichment analysis. Third, we

showed that crosstalk analysis performed favorably to gene-set

enrichment analysis (GEA) when annotating experimental gene

groups from MsigDB.

CrossTalkZ implements four network randomization algo-

rithms. The algorithms conserve the scale-free topology (degree

distribution) of the original network and differ mostly by the extent

to which they conserve second-order topological properties. Link

permutation attempts to swap all links in the original network and

therefore generates random networks that have the least links in

common with the original network. As a result, it is potentially

underestimating the number of links between groups expected by

Figure 5. Comparison of the false negative rate for the four different methods. Shown is the percentage of correctly recovered pathways
(i.e. 1– false negative rate) as a function of the z-score. Solid lines represent internal crosstalk enrichment detection rates while dashed lines represent
inter-crosstalk enrichment detection rates for KEGG pathways that were split into random halves. The test was performed using KEGG pathways
mapped to the FunCoup network.
doi:10.1371/journal.pone.0054945.g005

Table 2. KEGG pathway associations to a 63 gene signature of genes up-regulated in prostate cancer.

KEEG pathway associations with prostate cancer signature by Setlur et al.

Z-score CrossTalkZ ChiSqr CrossTalkZ FDR CrossTalkZ FDR GEA

TGF-beta signaling pathway 4.58 0.02 5.31E206 0.19

Basal transcription factors 4.55 0.05 5.95E206 1.00

Notch signaling pathway 4.01 0.32 7.20E205 0.50

Ubiquitin mediated proteolysis 3.26 0.01 1.41E203 0.85

Pathways in cancer 3.11 0.03 2.34E203 1.00

Prostate cancer 2.98 0.10 3.71E203 1.00

Proteasome 2.59 0.04 1.30E202 0.49

Cell cycle 2.44 0.02 2.06E202 0.26

Bladder cancer 2.26 0.36 3.46E202 1.00

Shown are the z-score, the reduced chi-squared, and the FDR for CrossTalkZ as well as the FDR for the GEA approach. CrossTalkZ identified 9 significant pathway
associations while GEA failed to identify any significant pathway associations.
doi:10.1371/journal.pone.0054945.t002
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chance, giving overall higher fractions of significant crosstalk

enrichment. Link assignment provides random networks that have

links between nodes drawn uniformly from the whole network, a

result of which is disassortative mixing (high degree nodes prefer

low degree nodes). The more conservative methods LA+S and NP

have restricted sets of links or nodes, respectively, to choose from

when randomizing and therefore potentially over estimate the

number of links between groups expected by chance, resulting in

lower fractions of significant crosstalk enrichment.

We compared the algorithms with respect to their ability to

produce high-quality random networks in order to provide

unbiased null distributions for the estimation of the expected

number of links. Overall, we found that the methods LA+S and

NP maximally preserved the topological properties of the original

network and gave the lowest fraction of both true and false

positives, as expected. Interestingly, the LA+S method minimized

the fraction of false positives while preserving second-order

properties to a similar degree as NP. Furthermore, it produces

the least biased z-score and p-value distributions of all the methods

and is therefore the default method in the CrossTalkZ software

package. Conversely, the least conservative methods LP and LA

resulted in higher fractions of both true and false positives and

produced more biased p-value distributions.

Gene enrichment analysis is often applied for pathway

annotation of gene groups, for example, sets of differentially

expressed genes. However, it often fails because of the incomplete

state of current pathway databases. Methods that employ

connections in a comprehensive interaction network are more

likely to identify pathway associations. We exemplified how

CrossTalkZ using the FunCoup network can be a valuable

addition to classical gene enrichment analysis and that it can

uniquely find many relevant pathway associations.

Since our statistics rely on a normal distribution of the expected

number of links, our method gives completely unbiased p-value

estimates only on groups with a sufficient number of expected links

in the randomized networks. In general, the reliability of the

statistics can always be assessed by the reduced chi-squared

statistic, which conveys the degree of deviation from normality.

Potentially (in a future software version), this bottleneck could be

circumvented by directly estimating the false positive rate for a

given case by a permutation test.

Methods

Network Randomization Algorithms
Link permutation (LP). This method swaps links between

nodes while conserving their node degree. In order to swap links,

two links are chosen randomly from the network. Then, if the links

do not share common nodes and if swapping the links forms two

new links in the network, the links are swapped. This process is

repeated until all the links in the original network have been

swapped or no additional swapping can occur. Since swapping

links leaves the degree of each node involved unchanged, the

randomized network conserves degree sequence.

Node permutation (NP). In this method, network topology

is completely conserved because only the nodes are permuted

randomly. In our implementation, a given node may only swap

with a node that belongs to the same connectivity bin, so as to

approximately conserve its connectivity. Bin borders were

dynamically established using a natural log scale where a node

with degree d falls into bin B(d) = round(ln(d)+1).

Link assignment (LA). This method begins by removing all

the links from the network while keeping track of each node’s

degree. Links are assigned between randomly chosen nodes until

the original degrees are restored or no more nodes satisfy the

connection constraints. These connection constraints are as

follows: no self-loops or multiple edges are allowed, and the

degree of both nodes must be less than or equal to their respective

original degree after link assignment. Once a node recovers its

original degree, it is removed from the set of available nodes. Since

Figure 6. Software performance for 150 randomizations for each of the four methods. a) Computational performance with increasing
number of links and constant number of nodes. The node permutation method is independent of the number of links and only depends on the
number of nodes. b) Computational performance with increasing number of nodes and constant number of links. The link permutation method is
independent of the number of nodes and only depends on the number of links.
doi:10.1371/journal.pone.0054945.g006
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it is possible that some nodes will not recover their original degree

due to connection constraints, a final test and degree fix by

swapping procedure is applied to those nodes (see Text S1).

Link assignment+second-order conservation

(LA+S). The ‘‘neighbor degree sequence’’ describes the associ-

ation between a given node’s degree to the degree of nodes

connected to it. With this in mind, we introduce a variation of our

link assignment method termed link assignment+second-order

conservation. This method uses the same basic approach as LA,

but for a given node, instead of choosing any node available in the

network to connect to, the available nodes are restricted to a set of

nodes that fall into the same log connectivity-bin as nodes it was

connected to in the original network. After randomization, the

degree sequence is conserved and each node has a similar

neighbor degree sequence as in the original network.

Statistics
After generating a normally distributed null model, a standard

z-score can be calculated as follows: Zij = (Nobsij2Nexpij)/SDij

where Nexpij is the mean number of links between groups i and j

found after N randomizations of the network, Nobsij is the number

of links found between groups i and j in the original network, and

SDij is the standard deviation of the number of links between the

two groups after N randomizations. The z-score is further

transformed into a p-value and adjusted for multiple testing using

the false discovery rate (FDR) with the procedure of Benjamini

and Hochberg [29]. When applying CrossTalkZ in research one

should always use FDR as a criterion for the significance of cross-

talk. However, for illustrative purposes we use p-values or z-scores

in Figures 4 and 5 as it makes differences between the methods

more apparent. P-value adjustment is conducted separately for

inter- and intra- crosstalk as they are considered as two

independent tests. As a measure of how well the distribution of

expected links for each pair of gene groups fits a normal

distribution, a reduced chi-squared statistic is calculated [30]. The

reduced chi-squared normalizes for the number of degrees of

freedom in a statistical calculation, which in this implementation is

d = N2c, with N the same as above and c = 3 the number of

constraints (mean, standard deviation, and N). Taylor suggested

that for reduced chi-squared of order one or less the observed

distribution fits the theoretical distribution well [30]. Therefore, in

our analysis we only used results with reduced chi-squared , = 1

to ensure the z-scores calculated are valid.

Interaction Network
The FunCoup database provides global interaction networks for

a variety of species and combines different types of evidence:

protein-protein interactions, mRNA co-expression, sub-cellular

co-localization, phylogenetic profile similarity, co-targeting by

either miRNA or transcription factors, protein co-expression, and

domain-domain interactions. It further transfers evidence from

other eukaryotic species via orthologs. For this study we used the

human FunCoup v1.1 network. All links with a confidence cutoff

of 0.5 or higher were included. We earlier demonstrated that this

network possesses the scale-free property [18], which is typically

associated with biological networks. The whole network included

10885 unique genes with 230589 links between them. The highest

and most rare node degree was 957 while the lowest and most

frequent node degree was 1. From this point, all references to the

FunCoup network will be referring to the network described here.

Pathway Data
We collected all human pathway annotations from the KEGG

database (as of February 2010) [27]. All pathways containing less

than 10 genes present in the interaction network were excluded,

since they are likely to have a low number of expected links

between them and would therefore not fulfill the normality

criterion. In total we included 66 metabolic and 33 signaling

human KEGG pathways, covering 2004 unique genes. Out of the

original 2650 unique KEGG genes, 587 were not represented in

the interaction network. From this point, all references to KEGG

pathways will be referring to the pathway set described here.

Random Pathways
To assess the false positive rate of the different randomization

methods, we created random pathways that resemble the original

KEGG pathways in both the number of genes as well as the degree

distribution. For each original pathway we generated 100 random

pathway instances. To preserve the degree distribution of the

original pathway, each gene was replaced with a gene from the

network that had similar connectivity; i.e. the node degree had to

fall into the same log connectivity-bin. Swapping of genes was

further restricted by two conditions: the new gene could not be in

the original pathway and no duplicate genes were allowed in a

pathway. Thus, each random pathway instance contained the

same number of genes randomly drawn from the full set of

network nodes while approximately preserving its original degree

distribution.

Pathway Analysis
We performed a large scale screen between gene signatures

from MsigDB [24] and KEGG pathways. In total we considered

2392 gene signatures from the category C2: chemical and genetic

perturbations. The KEGG pathway set was comprised of 236

metabolic, signaling, and disease pathways from KEGG. Signif-

icance of signature-pathway associations was assessed by Cross-

TalkZ using the FunCoup network as well as gene enrichment

analysis.

GEA was performed by calculating the probability of the

overlap between gene signatures from MsigDB and KEGG

pathways using the hypergeometric probability distribution:

P(X = k) = C(m, k) * C(N2m, n2k)/C(N, n). Where C(x) is the

binomial coefficient, N is the total number of unique genes found

both in MsigDB and KEGG, m is the KEGG pathway size, n is the

gene signature size, and k is the number of successes i.e. the

number signature genes that are part of a respective KEGG

pathway. All p-values were adjusted for multiple testing using the

false discovery rate (FDR) with the procedure of Benjamini and

Hochberg [29].

A pathway-signature association was considered significant if it

had an FDR ,0.05 and in the case of crosstalk analysis also had a

reduced chi-squared ,1 and a z-score .0.

Implementation
All four methods have been implemented in a single package

called CrossTalkZ. The package was written in C++ and used the

Libxml2 (xmlsoft.org) and Boost graph libraries (boost.org).

CrossTalkZ requires two files as input: a network file and one or

two group file(s). If one group file is given, statistics for all pairwise

permutations of groups are calculated. If two group files are given,

statistics for the first set of groups versus the second set of groups

are calculated. For more details see Text S2.

When counting links between groups in either the random or

the original network, the question of how to treat links between

groups that have common genes must be addressed. Therefore,

two different link counting modes are implemented in CrossTalkZ.

For inter-crosstalk, the default link counting mode does not tally a

link that has either of its nodes in both of the groups. The alternate
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mode is to not tally a link that has both of its nodes in both groups.

Intra-crosstalk links are always tallied.

Supporting Information
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(PDF)
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(PDF)

Text S2 Implementation Details.

(PDF)
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