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As next-generation sequencing technology advances and the cost decreases, whole genome sequencing (WGS)
has become the preferred platform for the identification of somatic copy number alteration (CNA) events in can-
cer genomes. To more effectively decipher these massive sequencing data, we developed a software program
named SEG, shortened from the word “segment”. SEG utilizes mapped read or fragment density for CNA discov-
ery. To reduce CNA artifacts arisen from sequencing and mapping biases, SEG first normalizes the data by taking
the log2-ratio of each tumor density against itsmatching normal density. SEG then uses dynamic programming to
find change-points among a contiguous log2-ratio data series along a chromosome, dividing the chromosome
into different segments. SEG finally identifies those segments having CNA. Our analyses with both simulated
and real sequencing data indicate that SEG finds more small CNAs than other published software tools.

© 2018 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Copynumber alteration (CNA) is oneof themost prominent changes
found in cancer genomes [1–9], some of which contribute to cancer de-
velopment and progression, e.g., deletion of tumor suppressors such as
PTEN and amplification of oncogenes such as MYC.Genome wide CNA
discovery is achieved via array-based technology traditionally
[5,10,11] and next-generation sequencing (NGS) strategies recently
[1,12–15].Because of the high resolution and decreasing cost, NGS be-
comes the increasingly preferred platform for CNA-discovery [16–18].
For example, the cost of whole genome sequencing (WGS) of a 30× cov-
erage has already decreased to below $1000 per genome, which is
actually cheaper than high density arrays considering its comprehen-
siveness (finding CNAs, structural rearrangements and sequence muta-
tions) and high resolution (covering N90% of the genome).
istry and Molecular Biology,
4B Life Sciences Building, 120

.V. on behalf of Research Network o
nses/by-nc-nd/4.0/).
For effective CNA-discovery, WGS of a ≥ 10× coverage is typically
performed (WGS depth can be approximated by the Poisson distribu-
tion, and a ≥ 10× coverage yields a Poisson distribution that is increas-
ingly more normal-appearing).Such sequencing generates
substantially more data than even the highest density arrays currently
available, such as the Affymetrix genome-wide human SNP array 6.0
that have approximately 2 million probes and have been used for
CNA-finding in many projects of the cancer genome atlas (TCGA)
[5,19,20].Importantly, while WGS can cover every base of the genome
and could potentially identify every CNA in a cancer genome, it also pre-
sents newdata analysis challenges.For example, because of the vast het-
erogeneity of a mammalian genome [21,22], some genomic regions
(e.g.,GC-rich) are sequenced better than others, creating artificial
CNAs.Moreover, mammalian genomes are very repeats-rich (e.g.,a sub-
stantial portion of the genome consists of repetitive sequences with
≥90% identities) [21,22], resulting in at least 10% of sequence reads
that are unable to be mapped onto the genome unambiguously and
are essentially unusable.This also leads to CNA artifacts.

A number of software tools have been developed in recent years for
CNA-discovery from WGS data [13,15,23–27].However, substantial is-
sues still exist.For example, a study has compared a total of 10 such
tools with simulated and real cancer sequencing data, and has
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concluded that the software BICseq15 outperforms the others18 .
However, for detecting small CNAs of b1 kb, the sensitivity is 0.33
even with BICseq and ranges 0.0\\0.35 for the other algorithms.
Hence, these tools have not fully realized the great potential of WGS
identifying CNA events18 .To address the challenges, we have developed
a software tool called SEG and evaluated its performance as described
below.

2. Materials and methods

2.1.1. The algorithm of SEG
SEG consists of three major steps: 1)data normalization; 2)

change-point finding; and 3)CNA identification, as illustrated in Fig. 1
and detailed below.

2.1.2. Data Normalization
To identify CNAs, SEG analyzes mapped read, for single-

endsequencing, or fragment, for paired-end sequencing, density calcu-
lated based on continuous and non-overlapping tiling windows along
a chromosome.The window size varies with the sequencing coverage,
e.g.,100 bp for 20-30× coverage based on a previous publication13 . To
reduce CNA artifacts arisen from sequencing and mapping biases, we

first normalize the density data by log2
ðdi=dÞtumor

ðdi=dÞnormal

, where diis themapped

read or fragment density of the ithwindow of either the tumor genome
or the matching normal genome, and d is the corresponding genome-
wide average density.

2.1.3. Change-Point Finding
Wehave used the same change-point concept defined previously by

the popular software tool CBS23 for change-point finding.Briefly, let x1,
x2, …, xn be the log2-ratiosof a chromosome, as defined in the section
above, which are also assumed to be random variables.An index
sequence of A = (a1,a2,⋯,av), where 1 ≤ v b n, would be called
achange-point sequence if meeting the following requirements.A
change-pointai(1 ≤ i ≤ v) divides variables xai−1+1, xai−1+2, ⋯, xai

, xai+1,
Fig. 1. The algorithm of SEG. SEG will: 1)normalize the data and exclude the log2-ratio
outliers (smooth data); 2)identify change-points; and 3)find CNAs (label segments).For
change-point detection, SEG first depends upon the user's input to assign initial change-
points, and then loops through the SSE (sum of squared error) to remove insignificant
change-points using dynamic programming (see text).The program is implemented in C
and can be downloaded from GitHub at https://github.com/ZhaoS-Lab/SEG.
xai+2,⋯, xai+1
into two neighboring the ith and (i+1)th segments.Impor-

tantly, the variables xai−1+1, xai−1+2,⋯, xai
of the ith segment have a com-

mon distribution function Fi.Similarly, the variables xai+1, xai+2, ⋯, xai+1

of the (i+1)th segment also share a common distribution function Fi+1.
However, Fi differs from Fi+1.

Based on this definition, SEG finds change-points by: 1)minimizing
variations of the log2-ratios within the same segment (such that these
variables share a common distribution function); and 2)ensuring that
the log2-ratio means between any two neighboring segments are
significantly different (such that their variable distribution functions
differ).To implement this algorithm, SEG adapts a bottom-up approach
via dynamic programming for change-point identification, which differs
from CBS where a top-down strategy is used23 , as illustrated below.

2.1.4. Assign the Average Segment Size
First, SEG requires the user to input an estimated initial average seg-

ment size,w, which is the total number of log2-ratios within a segment
and must be ≥2.Because w determines the upper-limit of the total
change-points for which SEG can identify, it is important to have an ap-
propriate value for w.We recommend settingw= s+1, where s is the
minimal number of continuous log2-ratios that needs to be considered
collectively for CNA identification.

2.1.5. Shift change-points via minimizing the sum of squared error (SSE)
using dynamic programming

The user-inputtedw divides the log2-ratiosx1, x2, x3…, xn of a chro-
mosome into t ¼ intðnwÞ segments with a preassigned change-
pointsequence of A = a1, a2, …, at−1.To find the true values of A, we
first define the SSE as: let xi be the mean of the ith segment containing

variables xai
, xai+1, xai+2, …, xai+1−1, SSEðiÞ ¼

Paiþ1−ai
j¼0 ðxaiþ j−xiÞ2.Then,

SEG scans through the chromosome via a one-segment-overlapping
sliding window of a total k (2 ≤ k ≤ t), a user-defined value, consecutive
segments at a time to identify the correct positions for the subset of
change-point sequence of Au = (au,au+1…,au+k−1).To do this,
SEGutilizes dynamic programing to shift each change-point rightward

orleftward until the sum of SSE of the k segments, given by f ðau;…;

auþk−1Þ ¼
Pk

j¼1 SSEðauþ j−1; auþ jÞ; is minimized, whereSSE(au+j−1, au
+j) represents SSE of the segment flanked by change-pointsau+j−1and
au+j.SEG begins with au = 1 and determines the first k − 1 change-
points; then repeats the process by resetting au = k − 1 and so on
until the entire chromosome is examined.Note that if w × k ≥ n or k=
t, dynamic programming will be applied to the whole chromosome
and the entire change-point set A= a1, a2, …, at−1 will be determined
at one time.

2.1.6. CNA Finding (Segment-Labeling)
The change-points identified through the procedure described

above divide a chromosome into different segments.To determine
which segments are significantly amplified or deleted, we use a false
discovery rate (FDR) controlling procedure as follows.Let xi and l be
the mean and total number of log2-ratios of a segment, SEG first calcu-
lates the p-value of each segment of the genome by using z-test given

by z ¼ ðxi−μÞ
ffi
l

p
σ , where μ and σare the genome-wide mean and standard

deviation.Then, the Benjamini and Hochberg step-up method [28] is
used for CNA identification by controlling the FDR at a certain desired
value.We call this step as “segment-labeling” (Fig. 1), because amplified,
deleted, and unchanged segments are respectively labeledwith+1,−1,
and 0 in the final output file.

In current implementation of SEG, two additional cutoffs can be used
to make the selected segments biologically significant.First, to avoid
segments with a very small xi but a very large l (which are unlikely to
be CNA) being selected, a cutoff valuem is used to select only those seg-
ments with their log2-ratio mean xi satisfying j�xij≥m.Similarly, another

https://github.com/ZhaoS-Lab/SEG


Fig. 2. CNAs identified by SEG, BICseq, FREEC and CBS in 10 simulated samples of chromosome 22.A.Amplifications and deletions of ground truth, and those identified by SEG or other
software tools drew as described18 for one simulated sample. B. Heatmaps showing the overall sensitivity and specificity of CNA detection in each of the 10 simulated samples by SEG
or other software tools. C. Heatmaps showing the overall sensitivity of CNA detection based on the size by SEG or other software tools. D. Heatmaps showing the overall sensitivity of
CNA detection for each category indicated by SEG or other software tools.
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cutoff s is used to select those segments having a total log2-ratio number
l meeting l ≥ s.

2.1.7. Log2-Ratio Data Smoothing
We followed the same data smoothing procedure described by

Olshen etal. [23] to exclude the log2-ratio outliers.Briefly, let x1, x2, …,
xn be the log2-ratios of a chromosome, and xi and xj (j ≠ i) be the maxi-
mum (or minimum) and the next maximum (or minimum) log2-ratios
in the region of xi−R,…, xi,…, xi+Rwhere Rwas a small integer (we set R
=2as suggested23 ), respectively.If |xi − xj| ≥ Lσ, we replaced xi bym+
Mσ (if xi is the maximum) orm−Mσ(if xi is the minimum), where σ is
the genome-wide log2-ratio standard deviation and m is the median of
xi−R, …, xi,…, xi+R.M and L are constants, and we set L = 4, M= 2, as
described23 .This process modified ≤0.1% of the log2-ratios of a genome
for those analyzed.

2.1.8. Simulated Data and Real Cancer Data Used to Evaluate the
Performance of SEG

Both simulated and real data were used to evaluate SEG.For simu-
lated data, we followed the same procedures as described18 to generate
10 samples of human chromosome 22.Briefly, for each sample, a total of
5 heterozygous deletions, 5 homozygous deletions, and 10 amplifica-
tions with copy number randomly choosing between three and eight
were introduced to human chromosome 22.The size of these CNA
events were sampled from a uniform distribution ranged between
100 bp to 10Mb as described18 .

For the real genomic sequencing data, we chose to use three canine
mammary cancer cases, of which both the tumor and matching ge-
nomes were sequenced to 12-17× coverage4 .These cancers were also
subjected to 385 K array comparative genome hybridization (aCGH)
analyses, which indicate that they represent CNA-extensive, −moder-
rate, and -sparse genomes4 .aCGH studies were conducted as previously
described4 using the 385 K canine CGH array chips from Roche
NimbleGen Systems, Inc.The log2-ratio value of each probe was col-
lected and normalized following manufacturer's instruction.

2.1.9. Other Software Tools
BICseq and FREEC were run as described by Alkodsi etal. [18]. CBS

was run with default parameters via DNAcopy from bioconductor.org/
packages/release/bioc/html/DNAcopy.html, and CNAs were identified
with the same log2-ratio cutoff as SEG.

3. Results

3.1.1. SEG Identifies more Small CNAs of b1 Kb than BICseq in Simulated
Data

Alkodsi etal.18 compared a total of 10 published software tools, and
concluded that BICseq15 is the best-performed among them in both
sensitivity and specificity for detecting somatic CNAs from cancer ge-
nome sequencing data.We hence focused on comparing SEG to BICseq
to evaluate the performance of SEG, using simulated data of ten test
samples of chromosome 22 harboring twenty CNAs generated as de-
scribed by Alkodsi etal.18 (see Materials and Methods).To run SEG, we
first divided the chromosome into tiling windows of 100 bp, because
of the 30× sequence coverage, and calculated the averagemapped frag-
ment density for each window.Then, we computed the log2-ratio of the
density of a test chromosome 22 (with CNAs) against the reference
chromosome 22 (without CNAs) for each window.Windows with no
reads mapped to them and hence with zero density in either the test
or reference chromosome are excluded from further analysis.Among

http://bioconductor.org/packages/release/bioc/html/DNAcopy.html
http://bioconductor.org/packages/release/bioc/html/DNAcopy.html


Fig. 3. Data normalization in the three canine mammary cancer genomes. A.The distribution of average mapped fragment density, di, of 100 bp tilting window of the tumor and normal
genome of the cancer cases with ID indicated. B. The distribution of the normalized density against its genome wide average by. C. The distribution of the final normalized density of the
tumor against the matching normal data by (equation).
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these windows, those with zero density in the test chromosome and
with density in the reference chromosome reaching the top 2.5% of its
density distribution are considered as homozygous deletions, the re-
verse ofwhich are considered as high level amplifications (in real cancer
data, thesewindows should be rarer due to reasons such as contaminat-
ing non-tumor or tumor cells in the tumor or normal sample
respectively).

For change-point identification, we tested SEG by settingw (the ini-
tial segment size, i.e.,the number of log2-ratio) and k (the number of
segments for dynamic programming) to various values, and found the
results are largely consistent.The analysis described below was per-
formed by setting w=5 and k=1001.For CNA-finding, we set FDR ≤
0.05, s=1 and m= σ, where s and m represent the minimum cutoffs
of the log2-ratio number and mean respectively of a segment with
CNA, while σ is the genome-wide standard deviation of log2-ratios.
These parameters and cutoffs are mostly the default setting ofSEG.

Each of the 10 simulated human chromosome 22 samples harbors
10 deletions and 10 amplifications with size ranged from 100 bp
to10 Mb, with 2 amplifications and 2 deletions falling in each bin of
100bp-1 kb, 1 kb–10 kb, 10 kb–100 kb, 100 kb-1 Mb, and 1 Mb–10Mb.
Overall, SEG detects these CNA events with approximately the same
sensitivities, ranging from 0.90 to 0.97, and specificities, ranging from
0.95 to 0.98, as BICseq in these samples (Fig. 2A and B).However, for de-
tecting small CNAs of 100 bp-1 kb, our analyses indicate that SEG signif-
icantly outperformed BICseq, with the sensitivity ranging from 0.72 to
1.00 with an average of 0.91, compared to a 0.28–0.44 range and a
0.34 average for BICseq18 (Fig. 2C).

For large CNAs of N1 Mb, BICseq performed better than SEG, with an
average sensitivity of 1.00 for BICseq versus 0.91 for SEG(Fig. 2C).This is
especially so for detecting 1-copy gain event of N1Mb (Fig. 2D), with an
average sensitivity of 0.90 for BICseq and 0.74 for SEG.
To further evaluate SEG, we compared SEG to two additional soft-
ware tools that use different segmentation strategies. One is FREEC
[26], a well-cited tool for copy number and allele content determination
and ranked the 2nd best performed (after BICseq) by Alkodsi etal. [18].
The other is CBS [23], the most cited CNA tool as of today to our knowl-
edge and used by TCGA [5,19,20] and numerous others (although orig-
inally designed for themicroarray platform, CBS can be applied onWGS
data, e.g.,it has been used to segment theWGS data of TCGA).Moreover,
as described previously, SEG utilizes the same change-point concept as
CBS. Our comparison reached the same conclusion as described above–
SEG is more sensitive in discovering small CNAs than either FREEC or
CBS(Fig. 2C). Consistent with the evaluation by Alkodsi etal. [18], our
analysis also indicates that the sensitivity of FREEC is very high for
large (N10Kb) CNA discovery but very low for small CNA detection
(Fig. 2). CBS is underperformed than SEG in nearly every aspect exam-
ined (Fig. 2).

3.1.2. SEG Identifies both Large and Small CNAs from Real CancerWGSData
We applied SEG on three canine mammary cancer cases (IDed

32,510, 76 and 406,434), each with its tumor and matching normal ge-
nomes undergone paired-endWGS of 12-17× sequence coverage and
20-32× fragment coverage4 .In addition, aCGH analyses find very differ-
ent CNA landscapes among the three cancer genomes, with tumor
32,510 having hardly any CNAs detected, tumor 76 harboring two
large amplicons of N4 Mb, and tumor 406,434 having more extensive
CNAs and with whole chromosome gain4 .Hence, the three tumors pro-
vide a nice dataset to test the performance of SEG.

We first divided each of the 39 canine chromosomes into 100 bp
window, because of N20× fragment coverage, and calculated the frag-
ment density in each window (Fig. 3A).We then normalized each den-
sity against its genome-wide average to correct for the difference in



Fig. 4. Large CNAs identified withWGS (A)and aCGH (B)by SEG.Each line represents a dog chromosomewith its chromosome number indicated on the left.Red (amplifications) and blue
(deletions) vertical lines shown above the chromosomes are drew as previously described4 .Only CNAs of N8.5 kb were plotted, as 8.5 kb is the minimal size of CNAs found by aCGH.
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sequencing/fragment coverage among the genomes (Fig. 3B).After-
wards, we further normalized each corrected tumor density against its
counterpart from the matching normal genome (Fig. 3C), as described
in Materials and Methods.As shown in Fig. 3, the distribution of final
tumor against normal density log2-ratios is significantly more normal-
looking than the original density distribution for each tumor, indicating
that this approach is valid.

We then ran SEG on these normalized data for the three tumors and
examined the identified CNA events to evaluate the SEG performance.
First, SEG identified many CNAs from WGS among those found by
aCGH.These include the two large amplicons of N4Mb on chromosomes
12 and 16 of tumor 76, as well as the whole chromosome amplification
of chromosome 13 and numerous deletions in tumor 406,434 (Fig. 4).

SEG also identified many additional small CNAs (Table 1).In tumor
32,510 (of which aCCH found very few CNAs), these CNAs are allbelow
3 kb, averaged 418 bp and 443 bp and totaling to 9 Mb and 13 Mb for
amplifications and deletions respectively (Table1).These small CNAs
are significantly increased in tumors 76 and 406,434 (Table1), which
also harbor large CNAs averaged N10 kb in size (Table 2).

To better understand these small CNAs identified by SEG, we per-
formed several analyses. First, to evaluate whether they are false results
created by SEG, we examined the distributions of their mapped frag-
ment densities. We found that significantly more/fewer fragments
were mapped to those amplified/deleted regions in the tumor samples
than in the normal samples (Fig.S1). Hence, these small CNAs are indeed
amplification/deletion events, not false results created by SEG. Second,
to evaluatewhether these small CNAs are sequencing/mapping artifacts
(i.e.,better or worse sequenced/mapped than an average genomic re-
gion) or play a role in cancer, we examined their GC, repetitive sequence
and gene contents. For GC and repeat contents, we found no clear and
consistent differences between small and big CNAs (Tables1 and 2).
Our analysis revealed, however, that these small CNAs harbor more
genes, compared to large CNAs or an average genomic region. Specifi-
cally, the average exon density is one per 5-10 kb for small CNAs, com-
pared to one per 8-18 kb for big CNAs and one per 12 kb genome-wide
(Tables1 and 2). Furthermore, the genes harbored by small CNAs are
more enriched in cell cycle and other cancer-related functions, com-
pared to those of large CNAs. These analyses indicate that thesesmall
CNAs may have a role in cancer development and progression.

3.1.3. SEG Performance
Because of dynamic programming, SEG runs fast.Using a PC with

2GB RAM,SEG takes a few minutes to process a sample of canine 384
K aCGH [7] or human 2 M SNP array19 studies.WGS has significantly
more log2-ratios, and the speed depends on the user input for k, the
number of segments on which dynamic programming is applied at a



Table 1
Small CNAs of ≤3 kb identified by SEG from WGS data.

Tumor ID Amplification Deletion

Total Amount Average size Exon contenta GC contenta Repeats contenta Total Amount Average size Exon content GC content Repeats content

32,510 8.7 Mb 418 bp 1/4.9kbb 47.0% 28.7% 12.7 Mb 443 bp 1/8.5 kb 40.8% 36.40%
76 36.2 Mb 308 bp 1/6.9 kb 42.4% 33.0% 44.5 Mb 318 bp 1/5.5 kb 44.6% 27.5%
406,434 32.1 Mb 621 bp 1/7.3 kb 40.0% 33.9% 56.6 Mb 673 bp 1/10.5 kb 40.0% 32.7%

a The calculations are based on the canFam2 genome assembly, Ensembl gene annotation release-65 (exon content), and RepeatMasker 4.0.5 with repeats database Dfam_2.0.
b One exon every 4.5 kb on average. Genome wide: 1/11.7 kb.
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time.If setting k= 101, this will take less than half an hour to finish a
30×WGS genome using a PC with 2GB RAM.We have compared the re-
sults of having small k (101) and large k (covering the entire chromo-
some), the results agree N90%.SEG can be obtained from the GitHub at
https://github.com/ZhaoS-Lab/SEG.

4. Discussion

Unlike microarrays that are restricted by the probes, deep WGS can
cover every single base of the genome and has the potential to identify
somatic CNAs of all size in a cancer genome.However, current published
software tools examined have a low sensitivity (b0.35) detecting small
CNAs of b1kb18 , unable to realize the full potential of deepWGS in find-
ing smaller CNAs.To address this issue, we have developed a software
tool, SEG.Based on simulated data, SEG is able to detect CNAs of b1 kb
with N0.9 sensitivities, outperforming other software tools compared18 .

The core algorithm of SEG is change-point detection among the data
series along a chromosome.We have used the same change-point defi-
nition as the popular software CBS23 .However, unlike CBS23 which
uses a top-down approach for change-point detection, SEG uses a bot-
tom-up approach, with the upper limit of the total change-
pointsdetermined by the user and utilizing dynamic programming for
change-point discovery.These differences allow SEG to more accurately
determine small CNAs.

SEG identifies substantial amount of small CNAs of b3 kb in WGS
data of the three cancer genomes which are not found by aCGH.Our
analysis indicates that these small CNAs are not false events created
by SEG. Instead, these small CNAs could be cancer drivers (because of
their higher gene content and enrichment in cancer-related functions)
or passengers (e.g.,arising from increased cancer genomic instability
and defective DNA repair), or simply artifacts due to sequencing or
mapping biases (e.g.,GC-rich regions or repetitive sequences such as
Alu, LINEs, etc.).

Sequencing/mapping originated artifact CNAs vary with the se-
quencing depth, as well as the window size chosen to calculate the
log2-ratios (see Materials and Methods). Except for a publication that
suggests using 100 bp windows for 20-30× sequence coverage for
germline copy number variation discovery13 , we have not yet found a
study that discusses the appropriate window size for cancer CNA find-
ing. We will try to develop a statistical model that determines the win-
dow size based on sequencing depth tominimize artifact CNAs. Second,
even though SEG normalizes the tumor data against the matching nor-
mal data to reduce artificial CNAs arising from sequencing andmapping
Table 2
Large CNAs of N3 kb identified by SEG from WGS data.

Tumor ID Amplification

Total Amount Average size Exon content GC content Repeatsconte

32,510 None
76 9.2 Mb 74,656 bp 1/8.0 kb 43.5% 35.6%
406,434 67.5 Mb 13,575 1/13.2 kb 40.3% 35.3%
biases, substantial issues remain, especially for low coverage WGS.Data
normalization remains a significant challenge and better normalization
strategies need to be developed.Third, the results of SEG vary with sev-
eral user-input values, including initial segment size as well as cutoffs
on minimal log2-ratio number and mean. Choosing appropriate values
will also reduce artifact CNAs.

To narrow down small CNAs that are more likely cancer-associated,
wefirst plan to add a new function to SEG to identify small CNAs that are
clustered in the genome.These CNA clusters should bemore cancer-rel-
evant, compared to random small CNAs.Second, we will modify SEG to
give users the option to exclude copy number variations identified
among normal individuals.Third, many genomic sites are already
known to be recurrently amplified/deleted in human cancers (e.g.,
from TCGA studies [5,19,20]). Small CNAs that locatewithin those geno-
mic regions have a higher probability to be cancer-associated event.
Moreover, small CNAs that harbor known cancer genes or genes with
cancer-related functions (e.g.,cell proliferation, apoptosis, invasion,
etc.) are more likely to be cancer drivers. Finally, we note again that
small CNAs identified by SEG contain more genes, especially those
with cancer-related functions. More studies are required to understand
the significance of these small CNAs in cancer development and
progression.

For detection of N1 Mb large gains and losses, SEG has a lower sensi-
tivity compared to BICseq18 and FREEC [26].Hence, SEG needs further
improvement in this aspect.For current CNA discovery, we recommend
using SEG for more sensitive detection of small CNAs, and in combina-
tion with another program (e.g.,BICseq, FREEC, etc.) for large CNA dis-
covery. Finally, we emphasize once again that SEG requires several
user inputs, the values of which will influence the outcome of SEG.
Hence, for new datasets, users may need to try different input values
and choose the most appropriate ones.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.csbj.2018.09.001.
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B.Heatmaps showing the overall sensitivity and specificity of CNA

detection in each of the 10 simulated samples by SEG or other software
tools.

C.Heatmaps showing the overall sensitivity of CNA detection based
on the size by SEG or other software tools.

D.Heatmaps showing the overall sensitivity of CNA detection for
each category indicated by SEG or other software tools.

B.The distribution of the normalized densitydi against its genome
wide average di by log2

di

d
.

C.The distribution of the final normalized density of the tumor
against the matching normal data by log2

ðdi=dÞtumor

ðdi=dÞnormal

.
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