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Our previous research has demonstrated that miR-146a-5p is down-regu-

lated in hepatocellular carcinoma (HCC) and might play a tumor-suppres-

sive role. In this study, we sought to validate the decreased expression with

a larger cohort and to explore potential molecular mechanisms. GEO and

TCGA databases were used to gather miR-146a-5p expression data in

HCC, which included 762 HCC and 454 noncancerous liver tissues. A

meta-analysis of the GEO-based microarrays, TCGA-based RNA-seq data,

and additional qRT-PCR data validated the down-regulation of miR-146a-

5p in HCC and no publication bias was observed. Integrated genes were

generated by overlapping miR-146a-5p-related genes from predicted and

formerly reported HCC-related genes using natural language processing.

The overlaps were comprehensively analyzed to discover the potential gene

signatures, regulatory pathways, and networks of miR-146a-5p in HCC. A

total of 251 miR-146a-5p potential target genes were predicted by bioinfor-

matics platforms and 104 genes were considered as both HCC- and miR-

146a-5p-related overlaps. RAC1 was the most connected hub gene for

miR-146a-5p and four pathways with high enrichment (VEGF signaling

pathway, adherens junction, toll-like receptor signaling pathway, and neu-

rotrophin signaling pathway) were denoted for the overlapped genes. The

down-regulation of miR-146a-5p in HCC has been validated with the most

complete data possible. The potential gene signatures, regulatory pathways,

and networks identified for miR-146a-5p in HCC could prove useful for

molecular-targeted diagnostics and therapeutics.

Hepatocellular carcinoma (HCC) is considered to be

the fifth most frequent cancer globally and takes the

third place for cancer-related mortality [1,2]. However,

many patients are diagnosed at advanced stages, and

recurrence and metastasis remain the main challenge

for HCC treatment [3]. Therefore, it is of utmost

urgency to find novel diagnostic and prognostic

biomarkers for HCC.

MicroRNAs (miRs) are an ample variety of short,

noncoding RNA molecules of 18–25 nucleotides,

which mediate numerous cellular processes, such as

cell proliferation, migration, and apoptosis [4,5].

Among them is miR-146a-5p, which locates on human

chromosome 5q34 and is thought to be actively

involved in multiple oncological processes of HCC,

such as antitumor immune suppression [6], metastasis

Abbreviations

AUC, area under the curve; EMT, epithelial mesenchymal transition; FCs, fold changes; GEO, gene expression omnibus; HCC,

hepatocellular carcinoma; KEGG, Kyoto Encyclopedia of Genes and Genomes; miRs, microRNAs; NLP, natural language processing; ROC,

receiver operator characteristic; TCGA, The Cancer Genome Atlas.

504 FEBS Open Bio 7 (2017) 504–521 ª 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0001-8561-6928
http://orcid.org/0000-0001-8561-6928
http://orcid.org/0000-0001-8561-6928


[7], and angiogenesis [8]. Our previous work [9] has

demonstrated that the down-regulated miR-146a-5p

expression is associated with the carcinogenesis and

deterioration of HCC and that miR-146a-5p might be

a tumor-suppressive microRNA of HCC. Nevertheless,

the precise molecular mechanisms of miR-146a-5p in

HCC remain largely unknown and obscure.

Believed to be promising in cancer diagnostics and

prognosis predicting, gene signatures help to provide

the molecular backgrounds, regulatory pathways, and

networks of cellular activities in HCC [10]. Cases in

point are resources and techniques as follows: Gene

Expression Omnibus (GEO) Database stores public

array- and sequence-based functional genomics data,

which allows users’ query and downloading of experi-

ments and gene expression profiles [11]. Meanwhile,

The Cancer Genome Atlas (TCGA) is one prominent

example of the renowned public databases which con-

tains the genetic information of various cancers. Fur-

thermore, natural language processing (NLP) is a

booming technique which teaches computers to com-

prehend and to sort out natural language by algo-

rithms and programs, enabling researchers to retrieve

papers on certain topics of interest and to analyze data

automatically [12].

A succession of resources and techniques in bioin-

formatics and computational biology were applied in

the study, which includes GEO and TCGA data aggre-

gation, comprehensive meta-analyses, NLP analysis,

target genes prediction, analytic integration, and bioin-

formatics analyses. We aimed to validate the

down-regulation of miR-146a-5p in HCC with the

most complete data currently available and to present

the audience with the intriguing gene signatures,

regulatory pathways, and networks of miR-146a-5p in

the carcinogenesis, metastasis, prognosis, recurrence,

survival, and drug-resistance (sorafenib and beva-

cizumab) of HCC.

Materials and methods

The present study consists of several processes sequentially

(Fig. 1), that is, GEO-based clinical values verification,

TCGA-based RNA-seq data aggregation, comprehensive

meta-analyses based on GEO, TCGA and literature data,

and multiple bioinformatics analyses.

Clinical value verification of miR-146a-5p

expression in HCC based on GEO datasets

All the functional genomics data of miR-146a-5p were

requested and assembled from the GEO Database (http://

www.ncbi.nlm.nih.gov/geo/) with the closing date of 10

September 2016. The search strategy formulated in the

GEO datasets (http://www.ncbi.nlm.nih.gov/gds/) was as

follows: (malignan* OR cancer OR tumor OR tumour OR

neoplas* OR carcinoma) AND (hepatocellular OR liver

OR hepatic OR HCC). Inclusion criteria were listed below:

(a) HCC tissues were included in each dataset with each

group containing more than two samples, regardless of the

inclusion of adjacent noncancerous tissues (or healthy liver

tissues); (b) the dataset sample organism was Homo sapi-

ens; (c) the expression data of miR-146a (hsa-miR-146a or

hsa-miR-146a-5p) from the experimental and control

groups could be provided or calculated. Meanwhile, the

following conditions might cause the exclusion of related

datasets: (a) datasets without information on miR-146a-5p;

(b) datasets without complete data for analysis; (c) samples

based on cell lines; (d) not all the subjects of the included

Fig. 1. General flow chart. The present study is composed of several procedures sequentially; that is, GEO-based verification of clinical

values, TCGA-based data aggregation of RNA-seq, comprehensive meta-analyses, and multiple bioinformatics analyses.
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studies were human; or (e) miR-146a-5p was determined in

the HCC patients without a comparison. Expression values

of miR-146a-5p and sample size in both test and control

groups were calculated. Moreover, means and standard

deviations of these values were extracted to estimate the

different levels of miR-146a-5p in case and control groups

by using Review Manager 5.3 with random-effects model.

The chi-square test and the I2 statistics were applied to

evaluate the heterogeneity across studies. It was considered

to be heterogeneous when the P value <0.05 or I2 > 50%.

Furthermore, SMD and its 95% CI were pooled to assess

the stability of the analysis. It was considered to be statisti-

cally significant if the corresponding 95% CI for the pooled

SMD did not overlap 1 or -1. Additionally, sensitivity anal-

ysis was conducted by eliminating each study to evaluate

the source of heterogeneity.

RNA-seq data aggregation based on TCGA

database

From the TCGA (http://cancergenome.nih.gov/), we down-

loaded and extracted the data of miR-146a-5p expression

from miRNASeqV2 (level 3), on 15 July 2016, through

bulk download mode. MiR-146a-5p expression data were

presented as upper quartile normalized Expectation-Maxi-

mization (RSEM) count estimates [13,14] by using the

‘rsem.gene.normalized_results’ file type. Related data were

processed without further transformation, except that some

values were rounded off to integers. The expression data

between HCC and adjacent normal liver tissues were com-

pared by limma package in R. Fold changes (FCs) were

calculated as HCC vs. normal liver tissue. It would be con-

sidered as statistically significant if a FC value was <0.5 or

>2 and with the P value <0.05 in Student’s t-test.

Comprehensive meta-analysis based on GEO,

TCGA, and literature data

Comprehensive meta-analyses were performed based on the

data gathered from GEO, TCGA, and relevant literature.

Related studies were selected by comprehensively searching

through the online databases PubMed, Embase, Web of

Science, Wiley Online Library, Cochrane Library, Science

Direct, Chinese WanFang Database, Chinese VIP Database,

Chinese Biomedical Literature Database, and Chinese

CNKI Database up to 15 July 2016, independently. The fol-

lowing combination of keywords and entry words was

employed: (a) (miR-146a OR miRNA-146a OR microRNA-

146a OR miR146a OR miRNA146a OR microRNA146a

OR ‘miR 146a’ OR ‘miRNA 146a’ OR ‘microRNA

146a’OR miR-146a-5p OR miRNA-146a-5p OR micro-

RNA-146a-5p); (b) (hepatocellular OR liver OR hepatic OR

HCC); (c) (‘cancer’ OR ‘tumor’ OR ‘tumour’ OR ‘neoplas*’
OR ‘carcinoma’ OR ‘sarcoma’ OR ‘malignan*’). In

addition, some references of relevant articles were manually

searched for further studies. Whichever articles fulfilled all

the following criteria were considered to be included: (a)

There was no language restriction of the publications. (b)

Patients with HCC were included. (c) The difference of

miR-146a-5p expression between HCC and noncancerous

controls was estimated. (d) If the study of the same patient

cohort was published twice or more, only the most complete

and recently published one would be included. Listed below

were situations which caused the exclusion of related arti-

cles: (a) Reviews, letters, comments, case reports, editorials,

expert opinions, and conference abstracts without original

data were excluded. (b) Articles of experimental in vitro or

in vivo studies were excluded. (c) We also excluded the stud-

ies with no information on the difference of miR-146a-5p

between HCC and controls. (d) Since we had downloaded

and evaluated TCGA data by ourselves, those studies based

on TCGA data were excluded for the meta-analysis based

on literature.

The statistics were analyzed using SPSS 22.0 software

(Armonk, NY, USA). The final data after calculation were

presented as the means � SD. Student’s t-test was used for a

comparative analysis of two independent groups. To differ-

entiate the expression data between controls and HCC tis-

sues, the diagnostic value was identified using a receiver

operator characteristic (ROC) curve. Any P value <0.05
denoted statistical significance. The meta-analysis was per-

formed using REVMAN 5.3 (London, UK) 5.3. A standard

mean difference (SMD) and a 95% confidence interval (CI)

were utilized to measure continuous outcomes. Fixed or ran-

dom-effects models were applied to pool the effect sizes.

Cochrane’s Q test (Chi-square test; Chi2) and inconsistency

(I²) test were conducted to assess heterogeneity. A P < 0.05

or I² > 50% indicated significant heterogeneity, and a ran-

dom-effects model was applied. Otherwise, the fixed effects

model would be selected. A funnel plot was generated to

evaluate publication bias. A P value <0.05 was considered to

indicate statistical significance.

Bioinformatics analyses of miR-146a-5p and HCC

Generally, the bioinformatics analyses were conducted as

formerly described [15], which included NLP procedure of

HCC, prediction of miR-146a-5p target genes, and compre-

hensive analyses of the integrated genes.

NLP procedure of HCC

First of all, we conducted the document mining in PubMed,

which included all related articles published between 1

January 1980 and 25 May 2015. The combination of key-

words used was as listed: (hepatocellular carcinoma) AND

(resistance OR prognosis OR metastasis OR recurrence OR

survival OR carcinogenesis OR sorafenib OR bevacizumab)
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and (‘1980/01/01’ [PDAT]: ‘2015/05/25’ [PDAT]). A detailed

list of relevant proteins and genes was created afterwards.

Later on, obtained data went through multiple processes;

that is, gene mention tagging and conjunction resolution by

ABNER (http://pages.cs.wisc.edu/~bsettles/abner/) as well

as gene name normalization according to Entrez Database

developed by NCBI [16,17]. Finally came the statistical

analysis featured by the hypergeometric distribution

formulae shown, that is, p ¼ 1�Pk�1
i¼0 pðijn;m;NÞ and

pðijn;m;NÞ ¼ ðn!ðN� nÞ!m!ðN�mÞ!Þ=ððn� iÞ!i!ðn�mÞ!ðN�
n�mþ iÞ!N!Þ. N was defined as the total number of articles

in PubMed. The letters m and n stood for the occurrence fre-

quencies of relevant genes and HCC in PubMed, respec-

tively. K was denoted as the co-occurrence frequency of a

certain gene and HCC at the same time in actual cases.

Thus, we could calculate the probability of cocitation occur-

rence frequency greater than k under completely randomized

conditions. The frequency of occurrence was output for each

gene respectively: the higher frequency a certain gene

demonstrated, the greater opportunity the gene harbored to

be HCC-related. The above methods for NLP procedure

and corresponding results for HCC have been reported in

our previous research article [15].

Prediction of miR-146a-5p target genes

A combination of 11 gene prediction platforms were used

to predict the potential miR-146a-5p target genes; that is,

TargetScan/TargetScanS [18], MirTarget2 [19], DIANA-

microT [20], PicTar [21], PITA [22], MicroInspector [23],

miRanda [24], RNA22 [25], miTarget [26], RNAhybrid

[27], and NBmiRTar [28]. A predicted target gene would

only be considered when nominated by at least four gene

prediction platforms.

Comprehensive integration

We comprehensively analyzed HCC-related genes from

NLP procedure and potential miR-146a-5p target genes

from prediction platforms and later generated the integra-

tion of the corresponding overlaps.

Enrichment pathway

We both mapped relevant genes into the Kyoto Encyclope-

dia of Genes and Genomes (KEGG) Pathway Database

and calculated the enrichment P values of each pathway

using GENMAPP v2.1 [29].

Gene connectivity

The gene connectivity was calculated as a quantitative

index to demonstrate the degree of interactions among

genes and proteins.

Regulatory network

There were three different types of interaction relationships

to construct the regulatory networks: (a) Available data from

KEGG Database: we achieved the relevant data from

KEGG Pathway Database and ported them into R (https://

www.r-project.org/) with the KEGGSOAP package (http://www.

bioconductor.org/packages/2.4/bioc/html/KEGGSOAP.html)

undergoing a genome-wide interaction analysis (enzyme–en-
zyme relation, protein–protein interaction, and gene expression

interaction). (b) Data from high-throughput experiments: the

MIPS Mammalian Protein–Protein Interaction Database

(http://mips.helmholtz-muenchen.de/proj/ppi/) were employed

for the protein–protein interactions data. (c) Existing data

regarding gene interactions: data were processed with the

hypergeometric distribution algorithm.

All the above factors and data were analyzed compre-

hensively and visualized by the MEDUSA software (Cam-

bridge, UK) in form of networks.

Results

GEO dataset verification of down-regulated miR-

146a-5p expression in HCC

A total of 2705 microarrays were identified during the

primary searching, among which 22 were later down-

loaded from the GEO database (http://www.ncbi.nlm.

nih.gov/geo/) after relevant assessments and evalua-

tion. Eventually, nine microarrays were included in

this part (GSE69580, GSE54751, GSE41874,

GSE40744, GSE21362, GSE22058, GSE12717,

GSE57555, and GSE10694, Fig. 2) after screening and

inspection in accordance with the aforementioned

inclusion criteria. Three microarrays (GSE41874,

GSE21362, and GSE22058) demonstrated that the

miR-146a-5p expression was significantly lower in

HCC tissues than that in noncancerous tissues. Two

microarrays (GSE21362 and GSE22058) (Fig. 3) dis-

played the significant diagnostic value of miR-146a-5p

in HCC (AUC = 0.749, 95% CI: 0.669–0.830,
P < 0.001; AUC = 0.801, 95% CI: 0.731–0.872,
P < 0.001, respectively). The detailed information of

the included studies for the meta-analysis was summa-

rized in Table 1 and the flowchart of this meta-analy-

sis was shown in Fig. 4. In short, 319 HCC and 315

nontumor liver tissues in GEO database were included

for the later meta-analysis. The pooled SMD of miR-

146a-5p was �0.470 (95% CI: �0.902 to �0.038),

P = 0.033, Fig. 5A) by the random-effects model and

the P value of the heterogeneity test was <0.001
(I2 = 79%). The funnel plot shown in Fig. 5B did not

imply significant publication bias (Begg’s test:

P = 0.917; Egger’s test: P = 0.760).
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Fig. 2. The expression data of miR-146a-5p in HCC in multiple microarrays from GEO. Nine microarrays were included in the analysis,

among which three (GSE41874, GSE21362, GSE22058) proved it to be statistically significant that the miR-146a-5p expression was

decreased in HCC tissues as compared to noncancerous tissues.

Fig. 3. The ROC curve of miR-146a-5p for HCC in two microarrays. Two microarrays (GSE21362 and GSE22058) demonstrated the

significant diagnostic value of miR-146a-5p in HCC. (A) GSE21362; AUC=0.749, 95% CI: 0.669–0.830, P < 0.001. (B) GSE22058;

AUC=0.801, 95% CI: 0.731–0.872, P < 0.001.
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TCGA RNA-seq datasets

For the RNA-seq data, 377 randomized HCC tissues

and 50 normal tissues were retrieved from the TCGA

database (http://cancergenome.nih.gov/publications/

publicationguidelines). The non-HCC samples or samples

with data deficiency were excluded; and 354 HCC patients

were finally included in this study. Besides, the data of 50

normal liver tissues were retrieved for comparison. The

Table 1. Summary of the included studies in the meta-analysis.

Study HCC (n)

MiR-146a-5p

expression

Nontumor (n)

MiR-146a-5p

expression

t PMean SD Mean SD

GSE69580 5 9.8928 13.2138 5 3.4452 1.3785 1.085 0.309

GSE54751 10 0.1380 0.1312 10 0.1882 0.1004 �0.959 0.35

GSE41874 3 0.8520 0.1265 3 1.7150 0.2703 �5.008 0.007

GSE40744 39 9.9121 1.3010 18 9.8072 0.4518 0.448 0.656

GSE21362 73 6.4679 1.5814 73 7.5048 0.9066 �4.86 <0.001

GSE22058 96 0.9892 0.3288 96 1.26766 0.1114 �7.858 <0.001

GSE12717 10 10.7535 1.3380 6 10.7052 0.3907 0.085 0.933

GSE57555 5 �0.0419 0.0056 16 �0.0211 0.0253 �0.991 0.323

GSE10694 78 11.0580 0.5132 88 11.1343 0.4773 �1.796 0.088

Our combined data(2016) 89 0.7302 0.5142 89 1.3015 0.6934 �7.911 <0.001

TCGA(2016) 354 8.0304 1.6810 50 8.9665 0.8451 �6.274 <0.001

Fig. 4. The flow chart of the meta-analysis. We included a union of 762 HCC and 454 nontumor liver tissues for the meta-analysis, which is

from GEO database, TCGA dataset, our previous research article, and newly added samples and stands for the most complete data

available.
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expression of miR-146a-5p in HCC was down-regulated

(8.0304 � 1.6810), as compared to its expression in nor-

mal liver tissues (8.9665 � 0.8451, t = �6.274, P < 0.001,

Fig. 6A). Moreover, a moderate diagnostic value of miR-

146a-5p was identified via the receiver operator character-

istic (ROC) curve and the area under the curve (AUC)

was 0.686 (95% CI: 0.628–0.744, P < 0.001, Fig. 6B).

Comprehensive meta-analysis

After the search of electronic literature records, only one

paper [9] formerly published by the current research

group was found to be qualified according to the

inclusion criteria. As previously reported [9], 85 HCC tis-

sues with 85 corresponding adjacent nontumor liver tis-

sues were investigated. In the current study, four new

pairs of HCC and corresponding noncancerous tissues

were included for the detection of miR-146a-5p expres-

sion with methods described previously [9]. As can be

expected, a lower level of miR-146-5p was observed in

HCC tissues (0.7302 � 0.5142) when compared with that

in adjacent noncancerous liver tissues (1.3015 � 0.6934,

t = �7.911, P < 0.001, Fig. 7A). The AUC of miR-146a-

5p in ROC was 0.787 (95% CI: 0.720–0.854, P < 0.001,

Fig. 7B). The larger sample size of 89 tissue pairs was

used for the following meta-analysis.

Fig. 5. The forest plot and Begg’s funnel plot of miR-146a-5p expression data in microarrays from GEO database. (A) The miR-146a-5p

expression data of 319 HCC and 315 noncancerous liver tissues from GEO database were included. The pooled SMD of miR-146a-5p was

�0.470 (95% CI:�0.902 to �0.038), P = 0.033) by the random-effects model and the P value of the heterogeneity test was <0.001

(I2 = 79%). (B) No publication bias was observed in the funnel plot (Begg’s test: P = 0.917; Egger’s test: P = 0.760).

Fig. 6. The miR-146a-5p expression data in HCC from TCGA datasets. (A) As for data gathered from the TCGA datasets, the miR-146a-5p

expression in HCC was significantly decreased as compared to that in noncancerous liver tissues (8.0304 � 1.6810 vs 8.9665 � 0.8451,

t = �6.274, P < 0.001). (B) The moderate diagnostic power of miR-146a-5p was identified from the receiver operator characteristic (ROC)

curve based on TCGA data (AUC: 0.686, 95% CI: 0.628–0.744, P < 0.001).
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The combination of 762 HCC and 454 noncancer-

ous liver tissues was included for the meta-analysis,

which was from the various recourses such as GEO

database, TCGA dataset, the previous article [9] and

newly added samples and represents the most complete

data available. The pooled SMD of miR-146a-5p was

�0.554 (95% CI: �0.866 to �0.241), P = 0.001,

Fig. 8A) by the random-effects model and the P value

of the heterogeneity test was <0.001 (I2 = 76%). The

funnel plot shown in Fig. 8B did not indicate publica-

tion bias (Begg’s test: P = 0.876; Egger’s test:

P = 0.460). In summary, the current meta-analysis fur-

ther confirmed the down-regulation of miR-146a-5p in

HCC.

Gene signatures of miR-146a-5p and HCC from

the perspective of bioinformatics

NLP procedure of HCC

As formerly reported [15], a complete list of 64 577

entries of HCC-related titles and abstracts was gener-

ated based on the literature from PubMed. The ensu-

ing hypergeometric distribution algorithm featured

1800 HCC-related genes [15].

Prediction of miR-146a-5p target genes

The prediction of miR-146a-5p target genes was per-

formed with a union of 11 bioinformatics platforms as

Fig. 7. The miR-146a-5p expression data in HCC from qRT-PCR. (A) The qRT-PCR expression data, from our previous research with four

newly added pairs, demonstrated that miR-146a-5p was significantly down-regulated when compared to that in nontumor liver tissues

(0.7302 � 0.5142 vs 1.3015 � 0.6934, t = �7.911, P < 0.001). (B) The AUC of miR-146a-5p here in ROC was 0.787 (95% CI: 0.720–0.854,

P < 0.001).

Fig. 8. The forest plot and Begg’s funnel plot of miR-146a-5p expression data from the most complete combination available of GEO

database, TCGA dataset, our previous research article and four newly added pairs. (A) The miR-146a-5p expression data of 762 HCC and

454 noncancerous liver tissues from multiple resources were included. The pooled SMD of miR-146a-5p was �0.554 (95% CI: �0.866 to

�0.241), P = 0.001) by the random-effects model and the P value of the heterogeneity test was <0.001 (I2 = 76%). (B) No publication bias

was observed in the funnel plot (Begg’s test: P = 0.876; Egger’s test: P = 0.460).
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described. A certain gene would only be included if

nominated by at least four prediction solutions.

Accordingly, 251 genes were deemed eligible as poten-

tial miR-146a-5p target genes for the succeeding

analyses.

Comprehensive integration

The comprehensive integration yielded a total of 104

genes (Table 2) by overlapping HCC-related genes

from NLP and miR-146a-5p potential target genes

from prediction platforms.

Pathway enrichment analysis

Pathway enrichment analyses were performed for both

miR-146a-5p predicted target genes and HCC-related

genes. For miR-146a-5p predicted target genes, a panel

of 59 pathways (Table 3) was identified, among which

four were deemed both statistically significant (P ≤ 0.05)

and scientifically valuable, namely neurotrophin signal-

ing pathway (count = 5; P = 0.000627; IRAK1, NRAS,

RAC1, SORT1, TRAF6), adherens junction (count=4;
P = 0.001949; RAC1, SMAD4, YES1, IQGAP1),

VEGF signaling pathway (count=3; P = 0.025301;

NRAS, PTGS2, RAC1), and toll-like receptor (TLR)

signaling pathway (count = 3; P = 0.043766; IRAK1,

RAC1, TRAF6). As to HCC-related genes obtained

from NLP procedure, 24 statistically significant path-

ways (P ≤ 0.05) were reported previously [15].

Gene connectivity

The gene connectivity analysis provided us with a

quantitative interface to understand the interacting

degree of related genes and proteins. As to miR-146a-

5p predicted target genes, the gene connectivity of

RAC1 ranked top (z-test, P = 0.007305, Fig. 9,

Table 4) among all the 20 hub genes of miR-146a-5p,

interacting with 10 different genes in total (ERBB4,

IQGAP1, NRAS, PARK2, PTGS2, RACGAP1,

ROBO1, SMAD4, TRAF6, YES1). For HCC-related

genes, the gene connectivity results were reported in

our previous article [15].

Regulatory network

Regulatory networks were constructed for miR-146a-5p

predicted target genes (Fig. 10), HCC-related genes [15],

and the overlapping genes (Fig. 11), respectively. With

regard to the overlapping genes, which are considered to

be both miR-146a-5p and HCC-related, miR-132 might

interact with RAC1, PTGS2, and NRAS via VEGF

signaling pathway and mediate biological processes with

SMAD4, YES1, and IQGAP1 via adherens junction.

SORT1 might be associated with miR-146a-5p via neu-

rotrophin signaling pathway and TLR signaling path-

way could be in charge for the interactions and

regulations between miR-146a-5p and TRAF6 and

IRAK1. The rest of genes might interact with miR-

146a-5p via various pathways.

Discussion

Hepatocellular carcinoma takes the third place for

cancer-related deaths and is the fifth most frequent

type of cancer internationally [1,2]. To make things

worse, delayed diagnosis, recurrence, and metastasis

shatter the treatment opportunities for HCC patients

[3]. miRs are considered to be actively involved in

numerous oncological processes [4,5], and the conspic-

uous miR-146a-5p [6–8] is one of them.

It has been reported in our previous article [9] that

miR-146a-5p is decreased and might play a tumor-sup-

pressive role in HCC. However, we believed that it

would be of great merit to validate the down-expres-

sion of miR-146a-5p in HCC with a larger cohort and

that the potential molecular mechanisms and regula-

tory networks should be unveiled, which led to the

current study.

In the present study, we took great advantage of the

GEO and TCGA databases to gather massive data of

miR-146a-5p expression in HCC and later performed

a meta-analysis with the GEO-based microarrays,

TCGA-based RNA-seq data, previous research [9],

and four newly added tissue pairs in order to validate

the miR-146a-5p down-expression and to explore its

diagnostic values in HCC. Furthermore, miR-146a-5p

potential target genes were predicted on 11 bioinfor-

matics solutions. With the formerly reported HCC-

related genes from NLP, we were able to develop the

HCC- and miR-146a-5p-related overlaps analytically.

Last but not least, comprehensive analyses were con-

ducted for the above genes in an attempt to discover

the gene signatures and potential regulatory pathways

and networks of miR-146a-5p in HCC.

In relation to the data acquisition, we employed the

collaboration of GEO, TCGA, and reported qRT-PCR

as well as newly included pairs. In GEO Database, we

included nine microarrays with 319 HCC and 315 non-

cancerous liver tissues (GSE69580, GSE54751,

GSE41874, GSE40744, GSE21362, GSE22058,

GSE12717, GSE57555, and GSE10694) after rigorous

screening procedures. Three microarrays (GSE41874,

GSE21362, and GSE22058) presented statistically sig-

nificant results that the miR-146a-5p expression was
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Table 2. The comprehensive integration generated a total of 104 genes by overlapping HCC-related genes from NLP and miR-146a-5p

potential target genes from prediction platforms.

Gene P value Gene description

ABCA1 0.022421 ATP-binding cassette, subfamily A (ABC1), member 1

ABCC10 0.02059 ATP-binding cassette, subfamily C (CFTR/MRP), member 10

ABCC11 0.03274 ATP-binding cassette, subfamily C (CFTR/MRP), member 11

AFAP1L2 0.014458 Actin filament-associated protein 1-like 2

ANG 0.00060774 Angiogenin, ribonuclease, RNase A family, 5

APEX1 0.0010269 APEX nuclease (multifunctional DNA repair enzyme) 1

ARAF 0.074089 v-raf murine sarcoma 3611 viral oncogene homolog

ATP7B 0.26196 ATPase, Cu++ transporting, beta polypeptide

BMP7 0.00080754 Bone morphogenetic protein 7

BNIP3 0.0047602 BCL2/adenovirus E1B 19 kDa interacting protein 3

BRCA1 0.65001 Breast cancer 1, early onset

BTG2 0.0035189 BTG family, member 2

C1ORF43 0.014458 Chromosome 1 open reading frame 43

CARD10 0.026684 Caspase recruitment domain family, member 10

CCL3 0.033443 Chemokine (C-C motif) ligand 3

CCNA2 <1.00E-08 Cyclin A2

CCNE2 0.00033179 Cyclin E2

CCT3 0.036756 Chaperonin containing TCP1, subunit 3 (gamma)

CD40LG 3.70E-07 CD40 ligand

CDKN3 0.03475 Cyclin-dependent kinase inhibitor 3

CFH 0.40925 Complement factor H

CHD1L <1.00E-08 Chromodomain helicase DNA-binding protein 1-like

CHEK1 0.00042545 CHK1 checkpoint homolog (S. pombe)

CHFR 0.076014 Checkpoint with forkhead and ring finger domains

CKAP4 0.00080042 Cytoskeleton-associated protein 4

CNDP2 0.012405 CNDP dipeptidase 2 (metallopeptidase M20 family)

COMMD7 0.012405 COMM domain containing 7

COPS8 0.044739 COP9 constitutive photomorphogenic homolog subunit 8 (Arabidopsis)

CRY1 0.00097051 Cryptochrome 1 (photolyase-like)

CTTN <1.00E-08 Cortactin

CYP2E1 0.005351 Cytochrome P450, family 2, subfamily E, polypeptide 1

DENND2D 0.010348 DENN/MADD domain containing 2D

EGFR <1.00E-08 Epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b) oncogene homolog, avian)

EIF5A2 3.16E-06 Eukaryotic translation initiation factor 5A2

EPHA5 0.00097051 EPH receptor A5

ERBB4 0.19289 v-erb-a erythroblastic leukemia viral oncogene homolog 4 (avian)

FADD <1.00E-08 Fas (TNFRSF6)-associated via death domain

FAS 2.16E-08 Fas (TNF receptor superfamily, member 6)

FBXO8 0.01855 F-box protein 8

FGB 0.35531 Fibrinogen beta chain

GALNT10 0.012405 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase

10 (GalNAc-T10)

GNB2L1 0.0013975 Guanine nucleotide-binding protein (G protein), beta polypeptide 2-like 1

GPX3 0.0021848 Glutathione peroxidase 3 (plasma)

GTF2I 0.093154 General transcription factor II, i

HAS2 0.048705 Hyaluronan synthase 2

HNRNPD 0.11919 Heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA-binding protein 1, 37 kDa)

IFI6 0.028707 Interferon, alpha-inducible protein 6

IL3 0.13011 Interleukin 3 (colony-stimulating factor, multiple)

IRAK1 0.17076 Interleukin-1 receptor-associated kinase 1

JMJD1A 0.016506 Jumonji domain containing 1A

KIF18A 0.030725 Kinesin family member 18A

KISS1 5.77E-08 KiSS-1 metastasis-suppressor

KRT23 0.02059 Keratin 23 (histone deacetylase inducible)
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decreased in HCC tissues as compared to the non-

cancerous counterparts. Two microarrays (GSE21362

and GSE22058) demonstrated the significant diagnostic

value of miR-146a-5p in HCC (AUC = 0.749, 95% CI:

0.669–0.830, P < 0.001; AUC = 0.801, 95% CI: 0.731–
0.872, P < 0.001, respectively). Meanwhile, in TCGA

Table 2. (Continued).

Gene P value Gene description

LAMA2 0.076014 Laminin, alpha 2

LCK 0.47203 Lymphocyte-specific protein tyrosine kinase

LIN28 <1.00E-08 lin-28 homolog (Caenorhabditis elegans)

LYZ 0.10626 Lysozyme (renal amyloidosis)

MARK2 0.0025961 MAP/microtubule affinity-regulating kinase 2

MCPH1 0.054624 Microcephalin 1

MMP11 2.83E-05 Matrix metallopeptidase 11 (stromelysin 3)

MST1R 0.093154 Macrophage-stimulating 1 receptor (c-met-related tyrosine kinase)

MTA2 0.056589 Metastasis-associated 1 family, member 2

MVD 0.01855 Mevalonate (diphospho) decarboxylase

NFE2 0.046724 Nuclear factor (erythroid-derived 2), 45 kDa

NME1 <1.00E-08 Nonmetastatic cells 1, protein (NM23A) expressed in

NODAL 0.042749 Nodal homolog (mouse)

NOX4 0.0053453 NADPH oxidase 4

NP 0.074089 Nucleoside phosphorylase

PA2G4 7.75E-05 Proliferation-associated 2G4, 38 kDa

PBLD 0.014458 Phenazine biosynthesis-like protein domain containing

PDGFRB 1.82E-06 Platelet-derived growth factor receptor, beta polypeptide

PER3 3.49E-05 Period homolog 3 (Drosophila)

PFTK1 0.024657 PFTAIRE protein kinase 1

PIWIL4 0.016506 piwi-like 4 (Drosophila)

PLAUR <1.00E-08 Plasminogen activator, urokinase receptor

PLK2 0.036756 Polo-like kinase 2 (Drosophila)

PMS1 0.0014645 PMS1 postmeiotic segregation increased 1 (Saccharomyces cerevisiae)

PPP2R4 <1.00E-08 Protein phosphatase 2A activator, regulatory subunit 4

PRDX4 0.00038652 Peroxiredoxin 4

PSMD10 4.63E-06 Proteasome (prosome, macropain) 26S subunit, non-ATPase, 10

RAC2 0.0053453 ras-related C3 botulinum toxin substrate 2 (rho family, small GTP-binding protein Rac2)

ROCK1 3.31E-07 Rho-associated, coiled-coil containing protein kinase 1

SLC1A5 0.052655 Solute carrier family 1 (neutral amino acid transporter), member 5

SMAD4 <1.00E-08 SMAD family member 4

SNRPE 6.08E-05 Small nuclear ribonucleoprotein polypeptide E

SORT1 0.077934 Sortilin 1

TFF3 0.0047602 Trefoil factor 3 (intestinal)

TGIF1 0.076014 TGFB-induced factor homeobox 1

TLR3 4.45E-07 Toll-like receptor 3

TNFRSF13B 7.17E-05 Tumor necrosis factor receptor superfamily, member 13B

TPT1 0.0035189 Tumor protein, translationally controlled 1

TRAF2 0.046769 TNF receptor-associated factor 2

TRAF6 0.037075 TNF receptor-associated factor 6

TRAV10 0.0020783 T-cell receptor alpha variable 10

TSPAN1 <1.00E-08 Tetraspanin 1

UHRF1 0.052655 Ubiquitin-like with PHD and ring finger domains 1

VIM <1.00E-08 Vimentin

VWCE 6.44E-05 von Willebrand factor C and EGF domains

WASF2 0.07985 WAS protein family, member 2

WNT3 0.00088342 Wingless-type MMTV integration site family, member 3

XPC 0.0035853 Xeroderma pigmentosum, complementation group C

XRCC1 <1.00E-08 X-ray repair complementing defective repair in Chinese hamster cells 1

ZDHHC2 9.00E-05 Zinc finger, DHHC-type containing 2

ZNF23 0.01855 Zinc finger protein 23 (KOX 16)
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Table 3. A panel of 59 pathways was identified for miR-146a-5p predicted target genes.

Term Count P value Genes

hsa04722: Neurotrophin signaling pathway 5 6.27E-04 IRAK1, NRAS, RAC1, SORT1, TRAF6

hsa04520: Adherens junction 4 0.001949 RAC1, SMAD4, YES1, IQGAP1

hsa05200: Pathways in cancer 5 0.020692 NRAS, PTGS2, RAC1, SMAD4, TRAF6

hsa04370: VEGF signaling pathway 3 0.025301 NRAS, PTGS2, RAC1

hsa04620: Toll-like receptor signaling pathway 3 0.043766 IRAK1, RAC1, TRAF6

hsa04360: Axon guidance 3 0.067759 NRAS, ROBO1, RAC1

hsa04810: Regulation of actin cytoskeleton 3 0.159939 NRAS, RAC1, IQGAP1

hsa05211: Renal cell carcinoma 2 0.210236 NRAS, RAC1

hsa05212: Pancreatic cancer 2 0.215582 RAC1, SMAD4

hsa04662: B cell receptor signaling pathway 2 0.223537 NRAS, RAC1

hsa05220: Chronic myeloid leukemia 2 0.223537 NRAS, SMAD4

hsa04010: MAPK signaling pathway 3 0.223547 NRAS, RAC1, TRAF6

hsa04664: Fc epsilon RI signaling pathway 2 0.231416 NRAS, RAC1

hsa05210: Colorectal cancer 2 0.246948 RAC1, SMAD4

hsa05222: Small cell lung cancer 2 0.246948 PTGS2, TRAF6

hsa04012: ErbB signaling pathway 2 0.254603 NRAS, ERBB4

hsa04650: Natural killer cell mediated cytotoxicity 2 0.363187 NRAS, RAC1

hsa04530: Tight junction 2 0.365373 NRAS, YES1

hsa04120: Ubiquitin-mediated proteolysis 2 0.371889 PARK2, TRAF6

hsa04310: Wnt signaling pathway 2 0.401474 RAC1, SMAD4

hsa04144: Endocytosis 2 0.466104 ERBB4, TRAF6

hsa04062: Chemokine signaling pathway 2 0.471642 NRAS, RAC1

hsa04510: Focal adhesion 2 0.496777 TLN2, RAC1

hsa00270: Cysteine and methionine metabolism 1 >0.99 MTAP

hsa00590: Arachidonic acid metabolism 1 >0.99 PTGS2

hsa04020: Calcium signaling pathway 1 >0.99 ERBB4

hsa04060: Cytokine-cytokine receptor interaction 1 >0.99 IL17A

hsa04110: Cell cycle 1 >0.99 SMAD4

hsa04142: Lysosome 1 >0.99 SORT1

hsa04210: Apoptosis 1 >0.99 IRAK1

hsa04320: Dorso-ventral axis formation 1 >0.99 NOTCH2

hsa04330: Notch signaling pathway 1 >0.99 NOTCH2

hsa04350: TGF-beta signaling pathway 1 >0.99 SMAD4

hsa04540: Gap junction 1 >0.99 NRAS

hsa04610: Complement and coagulation cascades 1 >0.99 CFH

hsa04621: NOD-like receptor signaling pathway 1 >0.99 TRAF6

hsa04622: RIG-I-like receptor signaling pathway 1 >0.99 TRAF6

hsa04660: T-cell receptor signaling pathway 1 >0.99 NRAS

hsa04666: Fc gamma R-mediated phagocytosis 1 >0.99 RAC1

hsa04670: Leukocyte transendothelial migration 1 >0.99 RAC1

hsa04710: Circadian rhythm 1 >0.99 PER1

hsa04720: Long-term potentiation 1 >0.99 NRAS

hsa04730: Long-term depression 1 >0.99 NRAS

hsa04910: Insulin signaling pathway 1 >0.99 NRAS

hsa04912: GnRH signaling pathway 1 >0.99 NRAS

hsa04916: Melanogenesis 1 >0.99 NRAS

hsa05012: Parkinson’s disease 1 >0.99 PARK2

hsa05014: Amyotrophic lateral sclerosis (ALS) 1 >0.99 RAC1

hsa05120: Epithelial cell signaling in Helicobacter pylori infection 1 >0.99 RAC1

hsa05213: Endometrial cancer 1 >0.99 NRAS

hsa05214: Glioma 1 >0.99 NRAS

hsa05215: Prostate cancer 1 >0.99 NRAS

hsa05216: Thyroid cancer 1 >0.99 NRAS

hsa05218: Melanoma 1 >0.99 NRAS

hsa05219: Bladder cancer 1 >0.99 NRAS
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Database, the RNA-seq data of 354 randomized HCC

and 50 normal tissues were finally included. The miR-

146a-5p expression in HCC was significantly down-

regulated as compared to its expression in normal liver

tissues (8.0304 � 1.6810 vs 8.9665 � 0.8451,

t = �6.274, P < 0.001). Furthermore, a moderate diag-

nostic value of miR-146a-5p in HCC was perceived via

ROC (AUC: 0.686; 95% CI: 0.628–0.744, P < 0.001).

Besides, a new combined cohort using qRT-PCR was

established by pooling data from the previous research

[9] and four newly included pairs. Unsurprisingly, the

decreased expression of miR-146-5p was observed in

HCC tissues (0.7302 � 0.5142) when compared with

that in adjacent noncancerous liver tissues

(1.3015 � 0.6934, t = �7.911, P < 0.001) and the

remarkable diagnostic value of miR-146a-5p in HCC

should be denoted (AUC: 0.787; 95% CI: 0.720–0.854,
P < 0.001).

Table 3. (Continued).

Term Count P value Genes

hsa05221: Acute myeloid leukemia 1 >0.99 NRAS

hsa05223: Nonsmall cell lung cancer 1 >0.99 NRAS

hsa05416: Viral myocarditis 1 >0.99 RAC1

Fig. 9. Gene connectivity test for miR-146a-5p predicted target genes. Gene connectivity test established the top gene connectivity of

RAC1 (z-test, P = 0.007305) among all the 20 hub genes of miR-146a, interacting with 10 different genes in total.

Table 4. Results of gene connectivity test for miR-146a-5p predicted target genes.

Gene Degrees P value Interactions

RAC1 10 0.007305 ERBB4, IQGAP1, NRAS, PARK2, PTGS2, RACGAP1, ROBO1, SMAD4, TRAF6, YES1

NRAS 8 0.044385 ELAVL1, ERBB4, NOTCH2, PTGS2, RAC1, RACGAP1, SMAD4, YES1

TRAF6 7 0.091440 ERBB4, IL17A, IRAK1, OTUD7B, PARK2, RAC1, SORT1

ERBB4 5 0.276934 NOTCH2, NRAS, PTGS2, RAC1, TRAF6

NOTCH2 5 0.276934 ERBB4, HEYL, NRAS, PTGS2, SMAD4

PTGS2 5 0.276934 ELAVL1, ERBB4, NOTCH2, NRAS, RAC1

ELAVL1 4 0.412161 NOVA1, NRAS, PARK2, PTGS2

PARK2 4 0.412161 ELAVL1, RAC1, SMAD4, TRAF6

SMAD4 4 0.412161 NOTCH2, NRAS, PARK2, RAC1

YES1 4 0.412161 NRAS, PTPRE, RAC1, RACGAP1

RACGAP1 3 0.558826 NRAS, RAC1, YES1

HEYL 1 0.812719 NOTCH2

IL17A 1 0.812719 TRAF6

IQGAP1 1 0.812719 RAC1

IRAK1 1 0.812719 TRAF6

NOVA1 1 0.812719 ELAVL1

OTUD7B 1 0.812719 TRAF6

PTPRE 1 0.812719 YES1

ROBO1 1 0.812719 RAC1

SORT1 1 0.812719 TRAF6
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For the comprehensive meta-analysis, a large cohort

of 762 HCC and 454 noncancerous liver tissues from

GEO database, TCGA dataset, the previous article, [9]

and four newly added samples were included, which

renders the integrated perspective with the most com-

plete data. A pooled SMD of �0.554 (95% CI: �0.866

to �0.241), P = 0.001) was presented by the random-

effects model. The P value of the heterogeneity test

was <0.001 (I2 = 76%) and no publication bias was

observed (Begg’s test: P = 0.876; Egger’s test:

P = 0.460). Based on the above in the meta-analysis,

we can safely reach the conclusion that miR-146a-5p is

down-regulated in HCC, which is consistent with our

previous findings [9].

The integrated computation consists of three parts;

the natural language processing, the miR-146a-5p tar-

get genes’ prediction, and the comprehensive integra-

tion of overlapped genes. The NLP [15] established a

record of 64 577 entries on the basis of the literature

from PubMed, 1800 of which were proved HCC

related by hypergeometric distribution. As to miR-

146a-5p target genes’ prediction, an unprecedented

union of 11 prediction tools was employed, and 251

genes were considered to be potential miR-146a-5p tar-

get genes since they were nominated by at least four

Fig. 10. Regulatory network construction for miR-146a-5p

predicted target genes. Regulatory network was constructed to

unveil the potential regulatory network of miR-146a-5p.

Fig. 11. Regulatory network construction for the overlapped genes. miR-146a-5p might interact with RAC1, PTGS2, and NRAS via VEGF

signaling pathway and mediate biological processes with SMAD4, YES1 and IQGAP1 via adherens junction. SORT1 might be associated

with miR-146a-5p via neurotrophin signaling pathway and Toll-like receptor signaling pathway could be in charge for the interactions and

regulations between miR-146a and TRAF6 and IRAK1. The rest of genes might interact with miR-146a-5p via various pathways.
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platforms. Eventually, the comprehensive integration

yielded a total of 104 genes by overlapping results

from NLP and gene prediction, which were deemed

both HCC- and miR-146a-5p related.

Three comprehensive bioinformatics analyses were

applied in the study; pathway enrichment test, gene

connectivity test, and regulatory network construction.

First of all, four pathways were highlighted among all

the 59 pathways identified in the pathway enrichment

analysis for miR-146a-5p predicted target genes; that

is, neurotrophin signaling pathway (count = 5;

P = 0.000627; IRAK1, NRAS, RAC1, SORT1,

TRAF6), adherens junction (count = 4; P = 0.001949;

RAC1, SMAD4, YES1, IQGAP1), VEGF signaling

pathway (count = 3; P = 0.025301; NRAS, PTGS2,

RAC1), and TLR signaling pathway (count = 3;

P = 0.043766; IRAK1, RAC1, TRAF6). In the con-

nectivity test for miR-146a-5p, RAC1 ranked top as

the most interacted gene among all the 20 hub genes

of miR-146a-5p (z-test, P = 0.007305), interplaying

with 10 other genes altogether (ERBB4, IQGAP1,

NRAS, PARK2, PTGS2, RACGAP1,ROBO1,

SMAD4, TRAF6, and YES1). Regulatory networks

constructed for the overlapping genes demonstrated

that miR-132 in HCC might interact with RAC1,

PTGS2, and NRAS via VEGF signaling pathway,

mediate biological processes with SMAD4, YES1, and

IQGAP1 via adherens junction, associate with TRAF6

and IRAK1 via TLR signaling pathway, and interplay

with SORT1 via neurotrophin signaling pathway.

The gene with top connectivity for miR-146a-5p,

RAC1, and four pathways with high enrichment for

the overlapped genes are worthy of extra attention

since they might provide unique insights into mole-

cule-based diagnostic and therapeutic strategies.

The RAC1 gene encodes the Rac1 protein, which

has been reported to be significantly regulatory in cell

growth and motility specifically [30] and might result

in metastasis, invasion [31], and epithelial mesenchy-

mal transition (EMT) [32] in the oncological context.

In HCC, the up-regulation of Tiam1 and Rac1 has

been found to associate with poor prognosis [33]. Our

previous research showed that miR-146a-5p expression

was related to clinical TNM stage and metastasis [9].

The relations between other miRs and RAC1 gene in

HCC have already been extensively studied. Zhou

et al. [34] reported that miR-100 suppresses HCC

metastasis by abolishing the ICMT-Rac1 signaling and

that the decrease in miR-100 might promote the

metastasis in HCC. Also, miR-142-3p is found to play

a directly negative regulatory role of human RAC1

and able to suppress the HCC cell migration and inva-

sion [35]. The two studies [34,35] mutually complement

and support our current and previous [9] research in a

sense: for one thing, the top connectivity highlighted

the possible role of RAC1 in the down-regulation of

miR-146a-5p in HCC; for another, the two studies

[34,35] established the validated role of RAC1 in miR-

related HCC and proved the vigorous validity of

bioinformatics tools in the present research, rendering

us the potential role of RAC1 in miR-146a-5p-related

HCC. Considering the above, we speculate that RAC1

might be negatively regulated by miR-146a-5p and

promote metastasis in miR-146a-5p-related HCC.

The VEGF signaling pathway is considered to play

a significant role in vasculogenesis and angiogenesis

[36] by boosting the vascular permeability, prolifera-

tion and migration [37]. The negative correlations [9]

between miR-146a-5p and portal vein tumor embolus

as well as metastasis might be related to VEGF signal-

ing pathway. Recent research [7] proved that miR-

146a-5p limits metastasis by down-regulating VEGF in

HCC, which supports our bioinformatics findings.

Adherens junction is crucially associated with intercel-

lular adhesion and is responsible for maintaining cell

polarity and structures, which represses cell migration

and proliferation [38]. Thus, adherens junction might

be positively regulated by miR-146a-5p and correlate

with favorable clinical outcomes. TLR are widely

expressed by various cells and play a significant part

in inflammation and immune responses. Changes in

TLR activities might exert the antitumor influence on

HCC cells, which might prove useful for novel tar-

geted therapeutics in HCC [39]. Research has shown

that the TLR pathway is involved in the initiation,

progression, and metastasis of HCC and that the

essential role of TLR4 should not be ignored in the

pathogenesis and progression of HCC [40]. Further-

more, studies [41–43] have shown the involvement of

TLR and TLR pathway in miR-146a-5p-related HCC

or other liver diseases, which illuminate the potential

regulatory mechanisms of miR-146a-5p and TLR in

HCC. Neurotrophin signaling pathway is thought to

be actively involved in many biological processes in

the nervous system, with the examples of neurocyte

development and higher order behaviors such as learn-

ing and memory. Neurotrophin signaling pathway and

related microRNAs mutually regulate each other and

are considered highly related to multiple cancers and

brain diseases, whose mechanisms are auspicious in

developing novel diagnostic and therapeutic strategies

[44]. The network construction for the overlaps

implied that SORT1 and miR-146a-5p might interact

via the neurotrophin signaling pathway.

There are three articles by Zhou et al. [34], Wu

et al. [35], and Zhang et al. [7], respectively, that are
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particularly noteworthy, since they prove the validity

and feasibility of the current bioinformatics analyses

to a certain extent. Zhou et al. [34] stated that miR-

100 suppresses HCC metastasis by abolishing the

ICMT-Rac1 signaling and negatively correlates with

metastasis in HCC, whereas Wu et al. argued that

miR-142-3p negatively regulates RAC1 and is able to

suppress the migration and invasion of HCC cells [35],

both of which happened to cover the involvements of

certain individual microRNAs in HCC and merit

attention for the further verification of RAC1 and

miR-146a-5p in HCC. Even more delightfully, Zhang

et al. [7] reported that miR-146a-5p confines metastasis

by negatively regulating VEGF in HCC, which has

precisely verified the bioinformatics discovery—the

same microRNA (miR-146a-5p) exerts its influence in

the same disease (HCC) via the exactly same identified

pathway (VEGF signaling pathway).

Several aspects of the study add to its merits.

First of all, the study gathered the most complete

data currently available (762 HCC vs 454 noncancer-

ous tissues) and validated the down-regulation of

miR-146a-5p in HCC, which is the first of its kind.

Secondly, the study provided us with the gene signa-

tures for HCC- and miR-146a-5p-related overlapped

genes, mapping out the potentially primary picture

for the further exploration into the mechanisms.

Thirdly, the powerful combination of 11 bioinfor-

matics tools for prediction maximized the reliability

of miR-146a-5p target gene prediction results, since

other previous articles only used the utmost of three

prediction platforms. Last but not least, the pre-

dicted target genes of miR-146a-5p and the related

informatics analyses have all been made available in

the current article along with the supplementary files,

which are easily accessible and reusable for further

study purposes. Still, in vitro experimental validation

and verification are needed for the featured miR-

146a-5p hub gene with top connectivity, RAC1, as

well as the four identified pathways with their inter-

acting genes, which the team plans to perform in

future.

Conclusions

The study gathered the most complete data currently

available from multiple resources (GEO-based

microarrays, TCGA-based RNA-seq data, and qRT-

PCR), validated the down-regulation of miR-146a-5p

and denoted its diagnostic values in HCC. An out-

standing union of 11 bioinformatics platforms pre-

dicted a total of 251 potential target genes of miR-

146a-5p. With the HCC-related genes from NLP, the

overlaps of 104 genes were generated, which are con-

sidered both HCC- and miR-146a-5p related. Last but

not least, the bioinformatics analyses highlighted

RAC1 as the most connected hub gene for miR-146a-

5p and four pathways with high enrichment were fea-

tured for the overlapped genes, both of which could

prove useful for future molecule-based diagnostics and

therapeutics of HCC.
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