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Abstract
We analyze a real data set pertaining to reindeer fecal pellet- group counts obtained 
from a survey conducted in a forest area in northern Sweden. In the data set, over 70% 
of counts are zeros, and there is high spatial correlation. We use conditionally autore-
gressive random effects for modeling of spatial correlation in a Poisson generalized 
linear mixed model (GLMM), quasi- Poisson hierarchical generalized linear model 
(HGLM), zero- inflated Poisson (ZIP), and hurdle models. The quasi- Poisson HGLM al-
lows for both under-  and overdispersion with excessive zeros, while the ZIP and hur-
dle models allow only for overdispersion. In analyzing the real data set, we see that the 
quasi- Poisson HGLMs can perform better than the other commonly used models, for 
example, ordinary Poisson HGLMs, spatial ZIP, and spatial hurdle models, and that the 
underdispersed Poisson HGLMs with spatial correlation fit the reindeer data best. We 
develop R codes for fitting these models using a unified algorithm for the HGLMs. 
Spatial count response with an extremely high proportion of zeros, and underdisper-
sion can be successfully modeled using the quasi- Poisson HGLM with spatial random 
effects.
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1  | INTRODUCTION

Fecal pellet- group counts have long been used in wildlife management 
to map population densities of large herbivores and their habitat se-
lection (see, e.g., Fattorini, Ferretti, Pisani, & Sforzi, 2011; Neff, 1968; 
Skarin, 2008). The technique provides managers with a simple and 
cheap alternative to modern technologies, such as GPS collars for the 
surveillance of animal populations (Edge & Marcum, 1989). Although 
the pellet- group counts provide only a crude indication of animal hab-
itat use rather than more precise measures of movement and habitat 
selection which, for example, GPS tracking can do, they still give a 

general idea of species distributions over different geographic areas 
and information about habitat use by all animals in a population using 
a defined area. However, an awareness of pellet decay is necessary 
in order to interpret the data correctly (e.g., Davis & Coulson, 2016; 
Skarin, 2008).

A reindeer pellet- group survey was conducted in the northern for-
est area of Sweden in order to assess the impact of newly established 
wind farms on reindeer habitat selection. From the initial survey data, 
collected over the 2 years 2009–2010, appearance of large numbers 
of 0 counts was identified as a challenge for the data analysis. This sit-
uation is not unusual in that data pertaining to spatial species counts 

http://creativecommons.org/licenses/by/4.0/
mailto:maa@du.se


7048  |     Lee et aL.

often contain excessive zeros (see, e.g., Agarwal, Gelfand, & Citron- 
Pousty, 2002; Dénes, Silveira, & Beissinger, 2015; Zuur, Saveliev, & 
Ieno, 2012), and requires appropriate modeling.

In the literature, zero- inflated Poisson (ZIP; Lambert, 1992), hur-
dle models (Cragg, 1971), and their extensions are widely suggested 
for modeling counts with excessive zeros (Zuur et al., 2012). Recently, 
Neelon, Ghosh, and Loebs (2013) used a spatial (Poisson) hurdle model 
to analyze hospital emergency department visits. Agarwal et al. (2002) 
used a ZIP model for modeling spatial species counts. Ver Hoef and 
Jansen (2007) used a spatiotemporal ZIP model for analyzing data 
on Harbor seal counts. Agarwal et al. (2002) and Neelon et al. (2013) 
used intrinsic conditional autoregressive (ICAR) structure, whereas 
Ver Hoef and Jansen (2007) used conditional autoregressive (CAR) 
random effects to handle spatial correlation, and all of them took a 
Bayesian approach to their model computations, using Markov Chain 
Monte Carlo (MCMC) simulations.

Even though the hurdle and ZIP models are often found to be suit-
able for analyzing data with excessive zero counts, these models apply 
only when there is overdispersion in the response variable. However, 
in many applications it has been found that excessive zero counts are 
associated with underdispersion (see, e.g., Oh, Washington, & Nam, 
2006; Tin, 2008) for which ZIP and hurdle models do not make sense. 
Ridout and Besbeas (2004) presented two examples closely related to 
ecology, one pertaining to variability in birds’ clutch size and another 
on polyspermy of eggs, which showed underdispersion. Unfortunately, 
any discussion of the issue of underdispersion associated with ex-
cessive counts has been missing from ecological applications. One 
possible reason might be that the Bayesian computational software 
(e.g., WinBugs; Lunn, Thomas, Best, & Spiegelhalter, 2000) restricts 
researchers to including only overdispersion with zero- inflated count 
responses. Theoretically, given that the mean is correctly specified as 
a function of the covariates, underdispersion can appear with count 
data if the underlying data are generated, for instance, from a double- 
Poisson (Efron, 1986), weighted Poisson (Ridout & Besbeas, 2004), 
Poisson mixture (e.g., generalized Poisson; Consul & Jain, 1973), or 
gamma (Oh et al., 2006) distribution. A failure to account for the cor-
rect type of over- /underdispersion with count data can lead to the 
model having a poor fit of the model (Ridout & Besbeas, 2004; Tin, 
2008), very different estimates of the regression parameters (Ver Hoef 
& Boveng, 2007), and incorrect inferences about the model parame-
ters (McCullagh & Nelder, 1989).

In this study, we show that high spatial correlation among counts 
can result in excessive zeros. Thus, to fit the reindeer pellet- group 
counts, we investigate whether an over- /underdispersed quasi- 
Poisson hierarchical generalized linear model (HGLM; Lee, Nelder, & 
Pawitan, 2006) with spatial correlation is suitable. The difference be-
tween a Poisson model, y ~ Poisson(λ), and a quasi- Poisson model is 
that the variance of y is λ for a Poisson model, whereas the variance 
of y in a quasi- Poisson model includes an additional parameter ϕ such 
that var(y) = ϕλ (Nelder & Pregibon, 1987). For ϕ > 1 (or ϕ < 1), the 
data are referred to as overdispersed (or underdispersed).

While a spatial hurdle model only allows for overdispersion, a spa-
tial quasi- Poisson HGLM allows for either over-  or underdispersion. 

The HGLM approach can confer computational advantages because 
the spatial quasi- Poisson HGLMs and the spatial hurdle model can 
both be fitted using the iterative weighted least square (IWLS) algo-
rithm developed by Lee and Nelder (1996) for HGLMs. Furthermore, 
the HGLM approach enables us to compare these alternatives, via 
conditional Akaike’s information criterion (cAIC; Lee et al., 2006) 
and adjusted profile likelihoods. Lee and Nelder (1996) extended 
the scaled deviance and its degrees of freedom for GLMs to HGLMs. 
Based on these, the deviance information criterion (DIC) has been 
proposed as a model selection criterion (Spiegelhalter, Best, Carlin, & 
van der Linde, 2002), while cAIC was developed as a model selection 
criterion in frequentist work (Vaida & Blanchard, 2005). For compar-
ison of these two information criteria (see Section 6.5 of Lee et al., 
2006).

The aim of this study is to show how a spatially correlated count 
response with excessive zeros can be successfully modeled using 
HGLMs. We achieve this by: (1) presenting the HGLMs for spatially 
correlated count data; (2) providing a theoretical comparison of the 
HGLMs with zero- inflated count data models; and (3) applying HGLM 
to a real data set pertaining to reindeer pellet- group counts and com-
paring fits of HGLMs with those of the spatial hurdle and zero- inflated 
models. Brief descriptions of the estimation techniques and their R (R 
Core Team, 2014) implementations are provided in the supplemen-
tary material. Here, it should be noted that the HGLM methodology, 
using IWLS, can fit the following models that include spatial correla-
tion: Poisson generalized linear mixed model (GLMM), quasi- Poisson 
HGLM, and hurdle model. We use the reindeer pellet- group counts as 
an example showing the need for a quasi- Poisson model with spatially 
correlated random effects in ecological modeling. It is the only model 
of those investigated in this study that can accommodate both un-
derdispersion and excess zeros.

2  | MATERIALS AND METHODS

Lee and Nelder (1996) presented HGLMs to model correlated ex-
ponential family responses by incorporating independent random ef-
fects. These models were extended to deal with correlated random 
effects in Lee et al. (2006). In the following, we briefly introduce a 
Poisson HGLM with normally distributed random effects, that is, a 
GLMM. Thereafter, we show how a quasi- Poisson HGLM with cor-
related random effects provides a way to model excess zeros jointly 
with over- /underdispersion. For comparison, we also present two 
models commonly used for data with excess zeros: the hurdle model 
and the zero- inflated negative- binomial model. For the different mod-
els, we also present a theory explaining how they can fit over-  or un-
derdispersion. At the end of the section, we present the example data 
set for reindeer pellet- group counts.

2.1 | Poisson GLMM

Consider a Poisson GLMM of counts zi or i = 1,2,…,n with conditional 
mean λi = E(zi|vi)
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where Xi is a row vector of covariates, and β and τ are fixed parameters.
In this model, 

and 

where a=exp[τ]−1≥0. Clearly, Var(zi)≥μi for τ ≥ 0, where the equal-
ity holds for τ = 0. Thus, the GLMM automatically accounts for over-
dispersion, which resulting in more zero counts than a Poisson GLM 
(this issue is further elaborated in Section 2.4).

2.2 | Quasi- Poisson HGLM with spatial correlation

The spatial latent intensity approach for spatial count data was presented 
by Clayton and Kaldor (1987) and was subsequently modified by many 
others, including Cressie (1993) and Lee et al. (2006). The basic model is 
as follows. Given a random intensity λi for location i (i = 1,2,…,n), which 
is identified by the spatial coordinates s(i) = (xi, yi), the conditional (count) 
response process zi follows a double exponential family (Lee et al., 2006; 
equivalent to the extended quasi- Poisson model, Efron, 1986), that is,

where ϕ is the dispersion parameter. This model gives E(zi|vi) = λi 
and Var(zi|vi)=ϕλi; ϕ = 1 gives the Poisson distribution. It allows 
for overdispersion when ϕ > 1 and underdispersion when ϕ < 1. 
Equation (5) can be obtained from equation (4) using Stirling’s approx-
imation and this was used to formulate the extended quasi- likelihood 
by Nelder and Pregibon (1987). Lee and Nelder (2000) showed that 
equations (4) and (5) give identical likelihood inferences.

Lee et al. (2006, Section 7.2) showed that the use of a quasi- 
Poisson- GLM can give inefficient estimate for dispersion parameter ϕ 
when the data are generated from a random- effect model. Zuur et al. 
(2012) also showed, in a simulation study, that quasi- Poisson- GLM 
should not be used to model overdispersion due to zero inflation. Lee 
et al. (2006) proposed that instead of quasi- Possion- GLM, the use of 
quasi- Poisson- HGLM allowing for an additional random effect vi pro-
duces a better fit. Thus, in this study, we propose the use of quasi- 
Possion- HGLM for count data with excessive zeros.

Further, we model the random intensity parameter λi as 

where vi is a random location effect following a certain distribution. It 
is generally assumed that vT = (v1, v2, … vn) follows a multivariate nor-
mal distribution, that is, v ~ N(0, Σ).

One popular structure of Σ for spatial covariance is Σ=τ(I−ρD)−1 
where I is an identity matrix, D is a known symmetric matrix and Σ 
is positive definite giving the so called CAR structure (Besag, 1974) 
for v. However, the construction of the D matrix needs some careful 
consideration, which has been discussed elsewhere (see, e.g., Cressie, 
1993; Haining, 1990; Wall, 2004).

Besides CAR (proper), other popular choices for the joint distri-
bution of v includes the intrinsic CAR (or ICAR; Besag & Coperberg, 
1995; Neelon et al., 2013; Lee et al., 2006) and the spatial (or si-
multaneous) autoregression (Ord, 1975; Wall, 2004) which gives 
v~N(0, ((I − ρD)T(I − ρD))−1). All these correlation structures, CAR, 
ICAR, and SAR, can be fitted using a HGLM fitting algorithm (R imple-
mentations are provided in the supplementary materials).

For a CAR model (as in Section 3), following Lee et al. (2006) and 
Ver Hoef and Jansen (2007), we constructed D = {di,j} as 

where ||s(i) − s(j)|| represents the Euclidean distance between loca-
tions i and j.

2.3 | Hurdle and ZIP models for spatial  
zero- inflated counts

In the literature, zero- inflated Poisson (ZIP) and hurdle models, and 
their extensions are widely suggested for modeling counts with exces-
sive zeros. The arguments in favor of ZIP and hurdle models, besides 
any background theory about the actual data generation process, are 
as follows. First, zero- inflated data contain more zeros than can be 
generated by an ordinary Poisson model for count data. Second, in the 
presence of zero inflation, the mean–variance relationship within an 
ordinary count data model breaks down. And third, the zero- inflated 
(and mixture) model can handle possible multiple modes (one mode at 
zero) in the data.

A hurdle model can be presented as follows. Given v0={v0,i}
n

i=1
 

and v1={v1,i}
n

i=1
, the response follows 

where TP is a zero- truncated Poisson probability mass function, gk is 
“logit” and “log” link for k = 0 and 1, respectively, and vk values are as-
sumed to follow some sort of multivariate distribution (e.g., Gaussian 
CAR or SAR), which account for the spatial correlation. This specifica-
tion gives

where ϕPH
i

=1+{1− (1−μ0,i)∕(1−exp[−μ1,i])}μ1,i. In hurdle models, 
μ0,i>exp[−μ1,i] implies ϕPH

i
>1, so that excessive zeros occur together 

with overdispersion.

(1)zi|vi∼Poisson(λi),

(2)ηi=Xiβ+vi,

(3)vi∼N(0,τ),

μi=E(zi)=E(E(zi|vi))=exp

[
Xiβ+

1

2
τ

]
,

Var(zi)=E(Var(zi|vi))+Var(E(zi|vi))=μi+aμ2
i
,

(4)f(zi|vi)=ϕ−
1

2 exp

[
−
λi

ϕ

] exp
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,

(6)log (λi)=Xiβ+vi,

di,j=

{ 1

||s(i)−s(j)|| if i≠ j

0 if i= j
,

(7)
Pr (yi=y�v0,i ,v1,i,Xi) =μ0,i if y=0

= (1−μ0,i)TP(y,μ1,i) if y=1,2,…
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⎫
⎪⎬⎪⎭
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i
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1−exp[−μ1,i]
and Var(yi|vi)=ϕPH

i
μPH
i
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As an alternative to the hurdle model, the ZIP and the zero- inflated 
negative- binomial (ZINB) models are often considered. Consider the 
ZINB model:

where covariates Zi and Xi are the same as in the hurdle model 
and exp[wi] follows the independent gamma distribution with 
E(exp[wi]) = 1. When all vi = 0, it becomes the ZIP model. Since

where μZIP
i

=1+ (1−pi)piλi≥1, this implies that ZIP and ZINB models 
only allow overdispersions.

2.4 | Overdispersion due to random effects leads to 
higher probability of zero counts

So far, we have discussed the usefulness and limitations of ZIP and 
hurdle models for zero- inflated data. Now, it remains to explain how a 
spatial HGLM can handle excessive zero counts. We explain this issue 
in two steps. First, we show that overdispersion due to random effects 
leads to zero inflation (see Theorem 1). Then, we explain how spatial 
correlation can lead to even higher proportions of zeros in observed 
data compared with independent observations.

Theorem 1: If Ui, (i = 1, 2, …, n) is iid Poisson- distributed with 
E(Ui)=exp[ηi], Vi|ui is also iid Poisson with E

(
Vi|ui

)
=exp[δi+ui], 

ui ~ N(0, σ2), and ηi = δi + (σ2/2) so that E
(
Ui

)
=E

(
Vi

)
 but Vi is overdis-

persed, for σ2 > 0 then, Pr (Vi=0)>Pr (Ui=0).
Proof of Theorem 1: From the definition of marginal probability, we 
have

The kth term of the summation on the right hand side of 
 equation (9) is 

When k is even, or 0, then tk≥
1

k!
(−exp[δi])

k because exp
(
1

2
σ2k2

)
 ≥ 1 

for σ2k2 ≥ 0. Again, when k is odd, tk<
1

k!
(−exp[δi])

k. But, 

Comparing equations (9) and (11), we see that all the positive 
terms (for k = 0, 2, 4, …) in the summation series on the right hand 

side of equation (9) are greater than (or equal to when k = 0) the cor-
responding terms in equation (11) and all the negative terms (for k = 1, 
3, …) in equation (9) are smaller than the corresponding terms in equa-
tion (11). Therefore, we have

But, Pr(Ui = 0) = exp [−exp [ηi]] = exp[− exp[δi+
σ2

2
]]. Therefore, 

Pr (Vi=0)>Pr (Ui=0).
From Theorem 1, we see that overdispersion due to random ef-

fects leads to a higher probability of zero counts, in other words 
zero inflation, compared with an ordinary Poisson GLM. To illus-
trate how spatial correlation can introduce an even higher pro-
portion of zeros, let us consider two observations, Y1 and Y2 om 
a binary variable (0 represents zero counts, 1 represents non-
zero), then it is straightforward to show that (proof is omitted) 
Pr (Y1=0&Y2=0|Cor(Y1,Y2)>0)>Pr (Y1=0&Y2=0|Y1⊥Y2). In other 
words, due to spatial correlation, co- occurrence of zero counts can 
give higher proportions of zeros in some samples than expected in the 
case of independent observations.

A reviewer pointed out that an additional covariate could also ex-
plain excessive zeros in the data. This is true, but herein we assume 
that the relationships between the mean of the response and the co-
variates are correctly specified, and only the assumptions about the 
distribution should be questioned. In this respect we have in mind that 
in real data analysis we do not have many options about the covari-
ates and link functions, only thing we can do is to try to improve the 
fit of our model by adopting different families of distributions for the 
response variable.

2.5 | Analysis of reindeer pellet- group counts

We analyze a real data set pertaining to reindeer fecal pellet- group 
counts. The data were obtained from a survey conducted on Storliden 
Mountain (504 m MLS; 65°13′N, 18°53′E) in northern Sweden (see 
Fig. 1). The size of the study area was 25 km2, and eight windmills 
were built in the center of the area in 2011. The survey was con-
ducted between 3 and 8 June in 2009 and 28 May and 1 June in 
2010. Reindeer graze freely in this area from May to October ex-
cept during a short period in early July when they are gathered for 
the marking of the calves. The survey was conducted using a point 
transect design (Buckland et al., 2001) and was part of a larger inven-
tory of reindeer pellet groups over an area of 250 km2. The distance 
between each transect was 300 m and the distance between each 
plot (red dots, in Fig. 1) on each transect was 100 m. Each plot had 
a size of 15 m2 (radius = 2.18 m). The coordinates of the plots were 
recorded, and the center of each plot was marked with an orange 
wooden stick.

The pellet groups were counted using the fecal standing crop (FSC) 
technique in 2009 and fecal accumulation rate (FAR) in 2010 (see defi-
nitions in Skarin, 2007). A pellet group was counted for a certain plot if 
the center of the group was found inside the plot. Because an animal 

(8)

P(yi) =pi+ (1−pi) exp[−λi], yi=0

P(yi) = (1−pi)
exp[−λi]λ

yi
i

yi!
, yi>0
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log (λi) =Xiβ+wi

⎫
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,
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i

=E(yi|vi)=piλi and Var(yi|vi)=ϕZIP
i

μZIP
i

,
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1
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(− exp[δi+ui])

k

)
=

∞∑
k=0

1
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(− exp[δi])

kE(exp[ui]
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k exp

(
1

2
σ2k2

)
.

(10)tk=
1

k!
(− exp[δi])

k exp

(
1

2
σ2k2

)
.

(11)exp[− exp[δi]]=
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k=0

1
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(− exp[δi])
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k=0

1
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(− exp[δi])

k exp
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might move as it defecates, the pellets can spread over a large area. 
Therefore, a pellet group was defined by a cluster of 20 or more pellets.

Preference for habitat use by reindeer, based on the pellet- group 
counts, was modeled for each inventory. From the initial analysis (not 
reported), it was noted that 73.67% of the plots had zero counts in 
2009 and 83.62% had zero counts in 2010. This indicates (possible) 
inappropriateness of standard count data models, for example, the 
Poisson GLM. Although our FSC inventory probably had a higher 
abundance in dry vegetation types due to the slower decay rate of the 
pellets (Skarin, 2007), we did not take this into account here, as the 
main purpose of this research was to find a method to treat the large 
amount of zeros in the data.

3  | RESULTS

3.1 | Spatial modeling of reindeer pellet- group 
counts

In order to deal with the issues of spatial correlation and excessive 
counts, with the pellet group data, we apply three different models 
for overdispersion (see Table 1). The spatial covariance structure 
for the normal random effects is either Σ−1=

1

τ
(I−ρD) (i.e., CAR, 

which includes Poisson- normal HGLM as a special case for ρ = 0) or 
Σ−1=σ2((I−ρD)T(I−ρD))−1. We also fit a Poisson GLM, as would be 
done in regression kriging (Bivand, Pebesma, & Gomez- Rubio, 2008). 
A detailed list of the fitted models is presented in Table 1.

As GLMs are uniquely specified by the mean (in our case, λi) and 
the variance function, V(λi), we use only these parameters and func-
tions to specify the models. All the spatial models presented in Table 1 
can be fitted using the HGLM algorithm (an R implementation is avail-
able in the supplementary material).

For the 2009 data, we started with a large (full) model containing 
13 covariates: the (log- ) distance from the power grid, slope of the 
location, a ruggedness index, elevation, forest age structure, dummies 
(1/0) for clear- cuts, young forest, coniferous forest, broad- leaved for-
est, flat area, southeast slope, northwest slope, and northeast slope. 
To avoid possible multicollinearity, we did not include (log) distance 
to nearby big infrastructure (which had a correlation of 0.8 with log- 
distance to power grid, while the correlation between any other pairs 
of variables did not exceed 0.6, in absolute value) in the model. For the 
2010 data, we excluded the dummy variable for broad- leaved forest 
from the full model. In the 2010 data, broad- leaved forests had only 
pellet- group counts of zero; this indicates that special care is neces-
sary to tackle the exploding tendency of the ML estimate, if it exists, 
for the relevant parameter (Feinberg & Rinaldo, 2007). However, we 
found that the MLEs of the other parameters remained similar after 
the broad- leaved forest was dropped from the model.

Table 2 reveals that the quasi- Poisson- normal HGLM with ϕ < 1 
and the CAR (QCAR) specification (Model V) fits the data best, as it 
has the lowest cAIC. The models with the SAR covariance structure 
are not able to produce a better fit than the QCAR model. We do not, 
therefore, report those results in this paper.

F IGURE  1 Map of the study area and the inventory plots for the pellet- group count conducted on Storliden Mountain in the Malå reindeer 
herding community. Location of the study area in Sweden is shown in the smaller map. © Lantmäteriet i2014/764
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Starting with the best- fitted full model, we gradually delete covari-
ates one at a time from the model on the basis of the absolute t- value 
(covariate with the lowest absolute t- value deleted first as commonly 
suggested in the literature, see, e.g., McCullagh & Nelder, 1989; Ch. 
3.9) until we obtain the final model, having all the fixed- effect param-
eters significant at the 5% level (both in the Wald and likelihood- ratio 
tests). The estimated parameters and their standard errors for the final 
models for the 2009 and 2010 data are presented in Table 3.

From the results (Table 3), we see that distance from power grid 
was the most influential factor (both in 2009 and 2010), and it was 
also statistically significant (p- value < .001 for both GLM and QCAR). 
Its positive coefficient estimate reveals that the pellet- group counts 
were higher at locations farther away from power lines.

A plot of the observed responses against the fitted values (for 
the 2009 FSC count) is given in Fig. 2. The same plots for the 2010 
FAR count data reveal the same overall pattern, so these plots are 
not shown. From Fig. 2, we see that the fit of the model gradually im-
proves as the spatial dependence structures we incorporate become 
more reasonable. This indicates the advantage of joint modeling of the 
mean and the covariance. By comparing the plots for the four models 
in Fig. 2, we see that QCAR (lower right in Fig. 2; which is also the best 
fit model in terms of cAIC, see Table 2) not only improves the mean 
prediction but also reduces the predicted mean square error (PMSE; 
see Table 4).

Comparing the four plots of the observed counts with the in- 
sample fitted values in Fig. 2, we see that the simple Poisson- normal 
HGLM (upper left plot in Fig. 2) was not able to model excessive zero 
counts, adequately. Harrison (2014) also showed, in a simulation study, 
that this Possion- normal HGLM failed to reduce bias in zero- inflated 
data. By modeling spatial correlation (Poisson- normal HGLM with 
CAR), we get a better fit compared with the Poisson- normal HGLM 

with independent random effects. Figure 2 also shows that the exces-
sive overdispersion that results from using a negative- binomial- normal 
HGLM with CAR does not improve the prediction. Finally, QCAR gives 
the best fit. The same findings hold for both the 2009 and 2010 data. 
Here, ϕ̂=0.737<1 for 2009 and ϕ̂=0.476<1 for 2010.

3.2 | Comparison with the hurdle model

The hurdle model is frequently used for analyzing count response with 
excess zeros. Therefore, we also analyze the reindeer pellet- group 
counts using such a model (eq. 7). We assume vk∼N(0,Σk) where Σ1 
has a CAR specification as in Model III (see Table 1). Because no R 
package module is able to fit Model (7) with CAR random effects in 
a non- Bayesian manner, we developed our own R codes to carry out 
the model computation using a hierarchical likelihood (h- likelihood) 
approach (a brief description of the algorithm, and the R program are 
available in the supplementary material).

For the binary part (μ0,i in eq. 7), we use four covariates (north-
west slope, southeast slope, elevation, and log- distance to power 
grid) for the 2009 data and six covariates (southeast slope, Young 
forest, clear- cuts, forest age structure, elevation, and log- distance 
to power grid) for the 2010 data. These variables were selected on 
the basis of separate binomial models for Pr(Count > 0) and because 
they have the lowest cAIC values. For the truncated Poisson model 
in equation (7), we use the same set of covariates as in Table 3. 
Because the truncated Poisson part of the hurdle model does not 
provide a direct estimate of the random effects for the locations 
with observed 0 counts, a direct computation of the fitted values 
for the hurdle model is not straightforward (a kriging approach as 
presented in Section 3.4 could be an option though). Therefore, we 
report the fit of the binomial and the truncated Poisson part of the 
hurdle models separately in Fig. 3. The top panel of Fig. 3 shows the 
fit of the binomial (left) and truncated Poisson (right) parts of the 
hurdle model for the 2009 data. The bottom panel of Fig. 3 shows 
the same for the 2010 data.

Comparing Figs 2 and 3, we see that the HGLM with QCAR (Model 
V) provided a better fit than the hurdle model. Although the truncated 
Poisson part of the hurdle model did a reasonably good job, the failure 
in the binary part downgraded the overall prediction. We tried, using 
all the available variables, to improve the performance of the binary 
part of the model, but we failed. We could not fit a spatial correlation 
in the binary part because standard R packages, for example, lme4 
(Bates, Maechler, Bolker, & Walker, 2015) and hglm (Alam, Ronnegard, 

TABLE  1 Specifications of the fitted models

Model Description Mean (ηi= log (λi)) Variance function (V(λi)) Random effects and their distributions

I Poisson GLM Xiβ λi No

II Poisson HGLM Xiβ + vi λi vT= (v1,v2,… ,vn), vi ~ N(0, τ)

III Poisson HGLM with CAR Model II λi v∼N(0,Σ), Σ−1= (1∕τ)(I−ρD)

IV Negative- binomial HGLM with CAR Xiβ + vi + wi λi exp[wi]∼Gamma(α,1∕α), v is as in Model III

V Quasi- Poisson HGLM with CAR Model II ϕλi Same as Model III

TABLE  2 cAIC with full set of covariates

Model

cAICa

2009 data 2010 data

Model I 628.71 432.13

Model II 587.93 402.84

Model III 586.55 406.15

Model IV 542.10 326.18

Model V 528.87 206.77

acAIC iss the AIC for model I.
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& Shen, 2015), cannot fit a binary GLMM with one observation per 
subject. If repeated observations from each plot were available, we 
could try to apply bivariate random effects (for binary part and Poisson 
part), as used in Neelon et al. (2013), but with the current data set we 
cannot improve on our current approach.

3.3 | Comparison with a zero- inflated Poisson model

Figure 4 shows that the HGLM with QCAR (Model V) provided a bet-
ter fit than Poisson GLM, ZIP, and ZINB models. The hurdle model 
allows overdispersion only for zero- deflation cases. However, this data 

set exhibits underdispersion but with excessive zeros. This means that 
ZIP, ZINP, and hurdle models are not appropriate to apply to this data 
set. The quasi- Poisson HGLM allows for underdispersion (ϕ < 1) with 
excessive zeros.

3.4 | Prediction by the models

To evaluate the performance of predictions from various models, the 
whole data set is divided randomly into two parts: 70% as the data 
form training set and the remaining 30% form the test set; this division 
is repeated for 100 times. After fitting models I–V to each training set, 

TABLE  3 Estimated model parameters and fit statistics for Model I and Model V (final)

Parameters

For 2009 FSC counts For 2010 FAR counts

Model I Model V Model I Model V

Intercept −18.916 (3.782) −18.171 (4.491) −12.21 (4.562) −10.979 (5.163)

Northwest slopes −0.489 (0.304) −0.656 (0.364)

Southeast slope 0.696 (0.316) 0.988 (0.410)

Elevation 0.007 (0.002) 0.007 (0.003) −0.005 (0.003) −0.005 (0.004)

Distance to power lines 1.897 (0.426) 1.728 (0.519) 1.569 (0.499) 1.33 (0.595)

Clear- cuts 0.607 (0.346) 0.567 (0.500)

τ 1.324 (0.270) 2.327 (0.393)

ϕ 0.737 (0.082) 0.476 (0.036)

ρ 3.038 (0.750) 1.903 (4.416)

cAICa 618.4 526.25 418.78 221.44

Values in parentheses represent standard error.
acAIC is AIC for GLM.

F IGURE  2 Plots of observed versus 
fitted values for different models (with the 
full set of covariates) for the 2009 FSC 
count
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the PMSE is computed for the rest of the data (the test set) using the 
following formula

where ntest is the sample size of the test set, yi is the response of 
the test set and λ̂ is the estimator of λi using the training set. For 
models I–II without a spatial correlation, λi=exp[Xiβ̂] where β̂ is the 
estimated β from the training set. For models III–V with a spatial 
correlation, λi=exp[Xiβ̂+ v̂i] where v̂i is the predicted value of vi. We 
compute v̂i=�cov(vi,v

Train
i

)�cov(vTrain
i

)−1v̂Train
i

 where v̂Train
i

 is the random 
location effect of the training set. Here, ĉov(vTrain

i
)−1 and v̂Train

i
 are es-

timated using the training set, and ĉov(vi, vTraini
) is cov(vi, vTraini

) after 
replacing the parameters involved with their estimates from the 
training set.

Table 4 shows the average PMSE of 100 random selections of the 
training and test sets. HGLM with QCAR (Model V) with underdisper-
sion and spatial correlation is, overall, the best- fitting model giving the 
lowest cAIC (also known as DIC, see Lee et al., 2006, Ch. 6.5; see also 
the supplementary materials) and PMSE, together. Thus, the model 
with underdispersion gives better predictions than overdispersed 
models with zero inflation.

4  | DISCUSSION

In this paper, we introduce a quasi- Poisson HGLM with a spatial corre-
lation to fit reindeer pellet- group counts, and we show that a Poisson 
GLM, by ignoring spatial correlation, can lead to a poor model fit. Such 
a simplified model produces poor- quality residuals (due to the lack of 
fit), which lead to incorrect conclusions being drawn about the spa-
tial correlation. Consequently, the regression kriging prediction based 
upon those residuals, which is often suggested in the literature (see, 
e.g., Bivand et al., 2008; Cressie, 1993; Gribko, Hohn, & Ford, 1999), 
may result in poor spatial prediction.

From the results of the fitted quasi- Poisson HGLM (see Table 3), 
we conclude that several environmental variables, for example, slope, 
elevation, and vegetation type at the location, as well as human de-
velopment activities, for example, power lines, are significant factors 
explaining reindeer habitat preference.

In the literature, hurdle and ZIP models are widely used for an-
alyzing count responses with excessive zeros. However, hurdle and 
ZIP models do not allow for underdispersion with excessive zeros. In 
practice, such data sets often exist, for example, the incidence rate of 

(12)PMSE=
1

ntest

ntest∑
i=1

(yi−λ̂i)
2,

TABLE  4 Average PMSE of various models, based on 100 random 
test data sets

Model PMSE for 2009 data PMSE for 2010 data

Model I 0.665 0.351

Model II 0.663 0.349

Model III 0.272 0.201

Model IV 0.142 0.154

Model V 0.123 0.115

Hurdle 0.606 0.380a

ZIP 0.620 0.355

ZINB 0.621 0.355

aCalculated after ignoring four abnormal (>1,000) PMSEs.

F IGURE  3 Plots of observed versus 
fitted values for the binomial and truncated 
Poisson parts of the hurdle models for the 
FSC (Year 2009, top panel) and FAR (Year 
2010, bottom panel) counts
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hospitalization (Tin, 2008), and accident rates when accidents are very 
rare events (Oh et al., 2006), where excess zero counts appear along 
with underdispersion.

For a real data set pertaining to pellet- group counts, we fit models 
with zero inflation, ZIP and ZINB. However, they give poor predictions 
(Table 4) and have poor fitted values (Fig. 4). Spatial- correlation- only 
models (III and IV) improve both prediction and fitted values. However, 
hurdle, a model with both zero inflation and spatial correlation, is 
worse than a spatial- correlation- only model. We show that Poisson 
HGLM with spatial correlation and underdispersion, namely Model V, 
provides the best predictions and fitted values.

With the reindeer pellet- group counts, a quasi- Poisson HGLM 
with CAR allows for underdispersion (ϕ < 1) with excessive zeros for 
both 2009 and 2010 data. Thus, quasi- Poisson HGLM with CAR ran-
dom effects provides a better fit with the data than the hurdle model 
with similar linear covariates and correlation structures. Our results, 
however, do not imply that Poisson HGLM can be safely used to ana-
lyze data that are generated by a true zero- inflated Poisson or a hurdle 
model (see contrasting example in Zuur et al., 2012). If the underlying 
subject matter theory leads to a ZIP or a hurdle model, then that model 
should be applied. However, the results show that we cannot reject a 
HGLM in favor of a ZIP or a hurdle model only because the data con-
tain a high proportion of zeros; overdispersion, high correlation, and a 
covariate may well be able to explain the excessive zeros.

It would be interesting in future work to extend hurdle models to 
allow for underdispersion with excessive zeros by adopting some sort 
of weighted Poisson distribution (Ridout & Besbeas, 2004; and refer-
ences cited therein), generalized Poisson, or gamma distribution (Oh 
et al., 2006) for the positive response part. However, computation of 

those models, especially when there is spatial dependence, and the 
interpretation of the model parameters would be challenging tasks. 
Spatial hurdle models are commonly fitted using Bayesian MCMC 
techniques (Zuur et al., 2012), which are computationally too inten-
sive. If there is no special reason for using a Bayesian approach (such 
as priors originating from a theoretical justification), one can use an 
HGLM model computed using the h- likelihood method that provides 
a deterministic algorithm (R code is provided in the supplementary 
material with this paper) and is faster than conventional MCMC 
methods.
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F IGURE  4 Plots of fitted versus 
observed values for Poisson GLM, QCAR, 
ZIP, and ZINB for the 2010 FAR counts
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