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Abstract

Relation extraction is an important task in the field of natural language processing.

In this paper, we describe our approach for the BioCreative VI Task 5: text mining

chemical–protein interactions. We investigate multiple deep neural network (DNN)

models, including convolutional neural networks, recurrent neural networks (RNNs)

and attention-based (ATT-) RNNs (ATT-RNNs) to extract chemical–protein relations. Our

experimental results indicate that ATT-RNN models outperform the same models without

using attention and the ATT-gated recurrent unit (ATT-GRU) achieves the best performing

micro average F1 score of 0.527 on the test set among the tested DNNs. In addition, the

result of word-level attention weights also shows that attention mechanism is effective

on selecting the most important trigger words when trained with semantic relation labels

without the need of semantic parsing and feature engineering. The source code of this

work is available at https://github.com/ohnlp/att-chemprot.

Database URL: https://github.com/ohnlp/att-chemprot

Introduction
The current scientific discovery in the biomedical domain
highly depends on knowledge resources that catalog sci-
entific findings in a computable format to facilitate data
analysis and interpretation due to the advancement of high-
throughput technologies. However, valuable information

of scientific findings is generally embedded in literature
and it is very expensive and time-consuming to acquire
such information from literature manually (1, 2). In the
past decade, natural language processing (NLP) has been
applied to accelerate the acquisition process with reason-
able success (3, 4). Previous BioCreative challenges have

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/
https://github.com/ohnlp/att-chemprot
https://github.com/ohnlp/att-chemprot
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produced named-entity recognition (NER) tools (5–8) for
extracting and normalizing a wide range of biomedical enti-
ties with good performance. Recent subsequent NLP chal-
lenges have started to focus on the extraction of relations
among those entities. The chemical–protein interactions
(ChemProt) task in BioCreative VI aims to automatically
extract the interaction information between chemical com-
pounds and genes/proteins as interactions between chemical
compounds and gene products are essential for understand-
ing metabolism, signaling and drug treatment (9).

Deep learning approaches have been extensively studied
and achieved state-of-the-art performances in various NLP
tasks such as NER (10–12) and relation extraction (13–16).
Despite many empirical successes demonstrated via quan-
titative evaluation metrics, deep learning models have long
been challenged as ‘black boxes’. It is mainly due to the diffi-
culty in tracing the prediction of deep learning models back
to important explicit features. Therefore, it is of interest
and importance to show the effectiveness of deep learning
models on extracting explicit features to unveil how deep
neural network models work. In biomedical relation extrac-
tion contexts, trigger words, which are the words appearing
in the context of biomedical entities and directly indicating
the existence of semantic relations, are widely used as input
features of various text mining methods (17–21). Attention
mechanism (22), proposed from the intuition of visual
attentions of human to emphasis the relatively important
part of the input data, has been shown to improve model
performance and enhance the model interpretability via
incorporating the attention information into deep learning
(23). Here, we present our approach for the ChemProt
task using attention-based (ATT-) neural networks and
demonstrate the strength of ATT-models in performance
by comparing with other deep learning approaches and
their interpretability by analyzing the word-level attention
weights.

The paper is organized as follows. We first briefly review
the related work. The proposed methods for the ChemProt
task including the overall architecture and the detailed
learning strategy are described next. We then present our
experimental results with different perspectives of evalu-
ation, followed by the analysis of the trained attention
weights. Finally, we discuss the limitations of our methods
and conclude the paper with several future directions.

Related work

In the general domain, deep neural networks (DNNs) have
been utilized widely in relation extraction tasks. Various
DNN models were explored for relation extraction on the
SemEval 2010 Task 8 benchmark. For example, Zeng et al.
(24) proposed convolutional neural network (CNN) using

position embedding for relation extraction. Xu et al. (25)
used dependency and position embeddings with long
short-term memory (LSTM) model and showed their
learning strategy significantly outperforms the recurrent
neural network (RNN) methods with extensive features
including part-of-speech (POS) tags, NER results and
WordNet features.

In the biomedical domain, various relation extraction
tasks such as protein–protein interactions (26, 27), drug–
drug interactions (28) and chemical–disease interactions
(29) have been investigated in prior shared tasks in the
biomedical domain. Various machine learning-based meth-
ods including supervised machine learning methods (30,
31), pattern clustering (32) and topic modeling (33) were
used before deep learning models became dominant among
the recent advances. Besides conventional DNN models
(34, 35), dependency (15, 36) and character level (16)
information have been used to enhance the models with
improvement over their baselines. Recently, the attention
mechanism on top of DNN models has shown promise in
various NLP tasks, such as machine translation (23), ques-
tion answering (37), document classification (38) as well
as relation extraction. Several studies have used a sentence-
level ATT-model for relation extraction and employ CNNs
to embed the semantics of sentences (39, 40). Shen et al. (41)
investigated multi-level attention CNNs to discern patterns
in heterogeneous contexts.

In this work, we investigate the ATT-neural network
for the ChemProt task and demonstrate the effectiveness
of attention mechanism on selecting importance and inf-
ormative word-level information without using external
knowledge and extensive feature engineering, thus can be
a generalizable model for relation extraction.

Materials and methods

The system architecture of our methods is illustrated
in Figure 1. Given the raw text of ChemProt-related
articles and the annotated chemical protein/gene entity
mentions, we model the relation extraction problem as
a relation classification problem among all the potential
ChemProt relation (CPR) pairs. We first divide the text into
sentences. Then the entity annotations are aligned with
each sentence. The sentence and the set of entities within
the sentence are then used to generate relation instances.
The word embedding and position embedding features are
extracted for each relation instance as the input of our
proposed neural network models. The final output is the
prediction of labels of each relation instance, including the
pairs with no CPR. Eventually, only the predicted relations
with CPR types of interest are extracted in the required
format for the final evaluation.
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Figure 1. Overview of the system workflow.

Figure 2. Relation instance generation from annotated entities within

sentence.

Sentences detection and relation instance

generation

In this study, we only consider the relations between entities
appearing in the same sentence. We use Punkt sentence
detector in Natural Language Toolkit (42, 43) to detect sen-
tence boundaries. The title of each article is regarded as the
first sentence of the abstract, and it is not treated separately.

For each potential ChemProt pair in the sentence, we
assign a relation label ‘NA’ for the pair without annotated
gold standard annotation provided by the challenge orga-
nizers. Here we consider the relations other than the five
evaluated types as negative relations (CPR 1, 2, 7, 8 and 10).
An example of how relation instances are generated from
sentences is shown in Figure 2. There are two chemical
mentions, ‘UCCB01-125’ and ‘MK-801’, and two gene
mentions, ‘PSD-95’ and ‘NMDAR’, in the sentence, yielding
four candidate pairs with two of them as positive CPRs.

Input representation

In our proposed system, the input to the DNN models is
expected to be low-dimension semantic word-level vectors.

As a preliminary experiment, we test two different meth-
ods to represent the pre-annotated entities. In the first
method, the raw word in the sentences are directly sent to

Figure 3. Example of position embedding indices of the word

‘inhibitors’ using raw words (upper) and entity labels (lower).

the word embedding model to retrieve the word embed-
dings, regardless if it is an annotated word as part of
an entity. The limitation of this method is that a lot of
chemical, gene and protein entities may not be found from
the pre-trained word-embedding model. Besides, many of
the entity mentions are phrases (e.g. ‘human ether-a-go-go-
related gene (HERG) potassium channel’), which makes it
challenging to obtain semantic vector representations based
on word-level embeddings. Therefore, we replace all the
chemical and gene/protein entity mentions by their entity
types. Specifically, for chemical entity mentions, all the
words of the entity are replaced by the word ‘chemical’,
and all the gene and protein entities are replaced by ‘gene’.
By doing so, the number of out-of-vocabulary words sig-
nificantly decreases, and the entity mentions with multiple
words get properly handled.

There are two kinds of features we used as the input of
the DNN models:

Word embeddings. We use 300-dimension pre-trained
Glove-6B model (https://nlp.stanford.edu/projects/glove/).
Our preliminary experiments show that the 300-dimension
Glove-6B outperforms the word embedding models we
trained by continuous bag of words (CBOW) from PubMed
(44). If a word cannot be found from the word embedding
model, the embedding will be generated randomly and the
generated embedding will be appended into the model.

Position embeddings. We follow the method by Zeng
et al. (24) to generate the position embedding of the entities
in each narrative sentence. The position embedding is gener-
ated based on the relative distances of words to the entities.
An example of relative distance is shown in Figure 3. The
distances are then shifted by an arbitrary offset to map the
distances to positive integers. The shifted distance d = 25
is then used as the index of the position embeddings.
The position embeddings are then jointly trained during
the training phase.

For each relation instance, there will be two position
embeddings for each word from two entities for chemical
and protein entities, respectively. The two position embed-
dings are concatenated to the word embeddings of the word
as the input to the neural network models. In this study,
we use two 50-dimensional position embeddings and 300-

https://nlp.stanford.edu/projects/glove/
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Figure 4. CNN model for relation extraction.

Figure 5. Illustration of gated recurrent units.

dimensional word embeddings, yielding a 400-dimensional
feature vector for each word.

DNN models

We experiment with three DNN models.

CNNs. To demonstrate the effectiveness of our proposed
ATT-model, we first developed a relation extraction model
using CNN as baseline, which is one of the most widely used
DNN model. The CNN model for relation extraction is
built according to Zeng et al. (24). The model architecture is
shown in Figure 4. The convolutional layer can capture con-
textual information of filters of a pre-defined filter length.
The convolutional filters are expected to generate high-level
local features from the input vector representations. The
output of the convolutional layer is then forwarded to the
Global Max-pooling layer, where the maximum values of
each filter outputs are pooled and concatenated for relation
classification.

Gated recurrent unit. While CNN can capture the local
patterns in the convolutional space as larger structures,
RNN models are designed to learn the patterns across
time of given sequences. We investigate the usage of
RNN for relation extraction. RNN models the sentence
into a sequence of vectors. In this paper, we would
like to test a different RNN unit, gated recurrent unit
(GRU) for the task. GRU was first proposed by Cho
et al. (45). The intuition behind GRU unit is similar to
LSTM regarding the gating mechanism to combine the

updates and current input into each RNN unit. Previous
model comparison for other deep learning tasks showed
that there is no obvious winner between LSTM and
GRU (46).

We follow the formulation of GRU used by Chung et al.
(46). A GRU can be illustrated as Figure 5. Using xt to
denote input vector, W to denote the transform matrix of
the inputs, U to denote the transform matrix of hidden
states and b as the bias, the output of the GRU ht can be
calculated as

zt = σ
(
Wzxt + Uzht−1 + bz

)
,

rt = σ
(
Wrxt + Urht−1 + br

)
,

h̃t = tanh
(
Whxt + Uh

(
rt ∗ ht−1

) + bh
)

,

ht = zt ∗ ht−1 + (1 − zt) ∗ h̃t,

where σ (·) denotes sigmoid function and ∗ denotes the
element-wise multiplication. The ‘reset gate’ rt represents
how much the current state is affected by the previous
activation. h̃t is the hidden ‘state candidate’ of the output.
The ‘update gate’, zt, aims to decide the scale of the unit
based on the previous activation, and it controls how much
the output ht is affected by h̃t.

ATT-RNN. Attention mechanism is proposed to empha-
size the contribution of the informative neural units in the
model. Instead of directly receiving the activations or out-
puts from consecutive RNN units, the additional attention
layer overlooks all the RNN units of the input sequence
and assigns different weights to each unit according to
their importance. The intuition for applying ATT-model in
relation extraction task is to try to assign higher weights
for words that are indicators or trigger words of specific
semantic relations.

We use the equations inspired by Luong et al. (23) to
calculate attention weights for each word in a sentence. The
ATT-RNN for relation extraction is illustrated in Figure 6.
The activations of the RNN units is denoted as h = [h1, h2,
. . . , hT], where T is the sentence length. Given word repre-
sentation as w and the activations of previous RNN units ht,
we define the hidden weight matrix of the attention layer
as ut and word-level importance vector uw, which is a
trainable variable. The relation representation vector s is
the weighted sum of RNN outputs h and the attention
weights α.

ut = tanh
(
Wwht + bw

)
,

αt = exp
(
uT

t uw
)

∑
t exp

(
uT

t uw

) ,

s =
∑

t
αtht,
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Figure 6. Attention-based RNN for relation extraction.

where Ww and bw are the weight matrix and bias of the
attention layer, similar to the notations of the GRU layer.

Classification

Finally, a non-linear function can be used on the max-
pooling vector to predict the probability-like values of each
relation label. We then select the label with the highest value
from the non-linear layer as the relation label. The classifi-
cation step is identical among CNN, RNN and attention
models.

A non-linear layer is implemented to use a softmax
function to predict CPR labels of each relation instance into
K = 6 categories: five CPR types identified in the shared
task plus a class of ‘NA’ as ‘not related’. Taking the output
of either convolutional layer, RNN layer or attention layer
h∗ as input of this non-linear layer, the predicted probability
of each label k ∈ {1, . . . , 6} of given input p̂

(
y = k|x)

can
be obtained by

p̂
(
y = k|x) = exp

(
Wkch + bkc

)

∑K
j=1 exp

(
Wjch + bjc

) .

W·c, b·c, h·c are trainable parameters of the fully con-
nected layer.

Then, denoting the predicted discrete class labels as ŷ,
we have

ŷ = arg maxy p̂
(
y = k|x)

,

which is regarded as the predicted CPR label of the relation
instance for the evaluation.

Evaluation

The system performance is evaluated by the official evalua-
tion package provided by the task organizers (http://www.
biocreative.org/media/store /files /2017/evaluation-kit.zip)
via precision, recall and standard micro-average F1 score

defined in the following:

Precision = TP
TP + FP

Recall = TP
TP + FN

F1 = 2 · Precision · Recall
Precision + Recall

Here, TP (true positive) denotes the number of correctly
detected positive relation instances, FP (false positive)
denotes the number of relations ‘NA’ in the gold stan-
dard but are predicted as one of the positive relations
by the DNN model, false negative (FN) denotes the
number of positive instances that are not detected by
the model.

Results

Data set

The ChemProt corpus consists of 4966 PubMed abstracts
with 126 457 annotated chemical and protein entities. The
relations were annotated with 10 CPRs. According to the
shared task description, only 5 out of 10 semantic relation
types would be evaluated. Therefore, we focused only on the
relation groups included in the official evaluation (CPR 3,
4, 5, 6 and 9). The details and subgroups of in each relation
type are shown in Table 1.

Table 2 shows the corpus statistics of the training, devel-
opment and testing data sets, including the number of
documents in the data set, the average number of entities
per document (abstract) and the average number of positive
relations per document.

Parameter settings

The models are implemented using Keras (https://keras.io/)
with Tensorflow (https://github.com/tensorflow/tensorflow)
backend. The models are trained using Adam optimizer
on the loss function of sparse categorical cross entropy.
Dropout was applied to the non-linear layers to prevent
overfitting (47), and the dropout rate was set to 0.5. Table 3
lists the hyperparameters tested and their optimal values.

Table 1. Relation types for ChemProt

Relation label Subgroups

CPR:3 upregulator, activator, indirect upregulator
CPR:4 downregulator, inhibitor, indirect downregulator
CPR:5 agonist, agonist-activator, agonist-inhibitor
CPR:6 antagonist
CPR:9 substrate, product of,

http://www.biocreative.org/media/store/files/2017/evaluation-kit.zip
https://keras.io/
https://github.com/tensorflow/tensorflow
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Table 2. ChemProt corpus statistics

Data set No. of
docs

Average
no. of
entities

No. of
positive
relations

No. of all
relation
instances

Training 1020 25.247 4157 15 842
Development 612 25.436 2416 9759
Test 800 25.536 3458 13 095

Table 3. Hyperparameter setting for CNN and ATT-RNN

models

Hyperparameter Optimal value Tested values

Batch size 64 [16, 32, 64, 128, 256]
Number of CNN filters 100 [30, 50, 100, 150, 200]
Filter length 3 [3, 4, 5]
RNN dimension 128 [32, 64, 128, 256, 512]
Learning rate 0.001 [0.01, 0.005, 0.001,

0.0005, 0.0001]

The choices of hyperparameters need to be made carefully
with both the support of rationale and experimental results.
Learning rate and batch size together control the converge
of the model training, the effect of which are evaluated
based on system performance in F1 score. The number
of RNN dimension directly affects the size of the model,
namely the number of trainable parameters. If the RNN
dimension is too large, the model will fail to converge
due to the lack of sufficient training samples. If the RNN
dimension is set too small, the model may not be capable
to capture existing patterns. The optimal hyperparameter
values are selected based on grid search on the vector space
using the development set.

Experimental results

We submitted four runs to the official BioCreative VI Chem-
Prot task evaluation trained using the training set:

Run 1: CNN with raw tokens as input, without replacing
annotated entity tokens.

Run 2: CNN with raw tokens replaced as labels.

Run 3: ATT-GRU raw tokens as input, without replacing
annotated entity tokens.

Run 4: ATT-GRU with raw tokens replaced by entity
labels.

Table 4 shows the system performance of each submitted
run in the development and test sets. Based on our experi-
mental results, ATT-GRU models (Run 3 and 4) outperform
CNN models (Run 1 and 2) and replacing raw entity
mentions by entity labels enhances the models slightly for
both CNN and ATT-GRU. The best run, achieved by the

ATT-GRU model with entity labels, has an F1 score of
0.494 on the test set. Replacing entity mentions by entity
labels overcomes out-of-vocabulary issues associated with
chemical, gene and protein tokens. The F1 scores only
slightly decrease (≤ 0.012) when evaluated on the test set
comparing to those achieved on the development set which
indicates our models generally do not suffer much from
overfitting.

We further evaluate the DNN models more comprehen-
sively after the test set made publicly available. We train
DNN models using both the training set and the devel-
opment set, i.e. a total of 1600 abstracts. Table 5 shows
the post-challenge evaluation of various DNN models in
the test data set. The RNN and LSTM models cannot con-
verge using our feature set in our preliminary experiments
and will fail to predict any positive relation. Therefore,
we did not include them into our results. We observe an
increase of F1 score from 0.496 to 0.527 for the ATT-
GRU model on entity labels due to the increase of training
instances. This implies that the model can be enhanced by
incorporating more training data, a common characteristic
for supervised machine learning systems. Note that we
can add weights to each CPR type while calculating the
loss function to balance the precision and recall. However,
the weights are not consistent across different DNN mod-
els and adding weights does not necessarily yield better
F1 scores.

The performance breakdown of each CPR type of our
best run (ATT-GRU) on the test set is shown in Table 6.
The classification report is generated via scikit-learn (http://
scikit-learn.org/stable). CPR:4 has the highest F1 score
among all the CPR types and has the largest proportion
in all relations as well. CPR:3 is one of the most difficult
relation types to classify. To further illustrate the prevalence
of CPR extraction errors, we plot the confusion matrix of
the CPR classification of ATT-GRU model on the test set
as shown in Figure 7. The x axis is the predicted label by
the model while the y axis is the gold standard label. The
numbers in each cell are the total relation instances. The
color is normalized by row including the ‘NA’ instances,
with darker blue indicating more instances and the lighter
white indicating less instances. The confusion matrices and
the classification reports of other DNN models are also
provided in the supplemental material. From the confusion
matrix, we can see that the major challenge of the relation
classification of our proposed model is the large number
of negative instances. Comparing to the misclassified rela-
tions with positive labels, more of the CPR types suffer
from how to ‘detect’ the existence of the CPRs accu-
rately. Besides that, the confusion between different relation
types is relatively small compared to the positive/negative
errors.

http://scikit-learn.org/stable
https://academic.oup.com/databa/article-lookup/doi/10.1093/databa/bay102#supplementary-data
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Table 4. Official submissions to BioCreative VI ChemProt challenge

Run ID Model
Train vs dev Train vs test

Precision Recall F1 score Precision Recall F1 score

1 CNN token 0.459 0.456 0.457 0.477 0.437 0.456
2 CNN entity 0.497 0.448 0.471 0.507 0.430 0.465
3 ATT-GRU token 0.470 0.522 0.494 0.484 0.491 0.488
4 ATT-GRU entity 0.512 0.501 0.506 0.530 0.463 0.494

Figure 7. Confusion matrix of the CPR on the test set, normalized by

row.

Analysis of the word-level attention weights

The most prominent advantage of using attention mech-
anism is that it can learn the word-level important
features using the RNN outputs aligned with input words.
To demonstrate the effectiveness of attention weight
assignment, we have done further analysis on the attention
weights trained from the training and development set using
the test set, which is considered unobserved by the model.
The attention weights are computed using the activations of
the RNN layer and the trained parameters. Figure 8 shows

examples of attention weight distribution at sentence-level.
It demonstrates that the attention mechanism can highlight
keywords with important indicators in semantic relations
effectively.

To further demonstrate what pattern from the attention
we can learn from the ChemProt corpus, we collect all the
words with the largest attention in each positive instance
among the test set and show the top 5 words of each CPR
type in Table 7. From the top word list, we can see there
are some CPR types that have high concentration of key
words, such as CPR: 4, 5 and 6. Especially, in CPR: 4, all the
top 5 words are the variations of “inhibitor”, which is also
in the definition of CPR: 4. For CPR: 5 (agonist, agonist-
inhibitor), the top three words in the sentence “agonist”,
“receptor” and their plural form contributes to in total of
99.1% of the CPR: 5 relation instances, which indicates that
the occurrence of “agonist” and “receptor” itself can be
considered as a very strong indicator of CPR: 5 relations.
Similarly, the variations of “antagonists” contributes to
88.1% in CPR: 6. It is also notable that the system is
able to identify key terms like ‘enzyme’, ‘substrate’ and
‘catalyze’ for CPR: 9 highlight deeper semantic association
and textual variants as relevant to the broad class substrate
a central concept in enzyme kinetics.

Discussion

The experimental results we have presented show the atten-
tion mechanism is effective for selecting the most important
features when classifying semantic relations without the
need of extensive feature engineering. The enhancement of

Table 5. Post-challenge evaluation of DNN models using replaced entities

Model
Train vs dev Train + dev vs test

Precision Recall F1 score Precision Recall F1 score

CNN 0.497 0.448 0.471 0.546 0.434 0.483
GRU 0.494 0.446 0.469 0.532 0.487 0.509
ATT-RNN 0.516 0.404 0.445 0.522 0.445 0.481
ATT-LSTM 0.485 0.429 0.456 0.572 0.465 0.513
ATT-GRU 0.512 0.501 0.506 0.574 0.487 0.527
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Figure 8. Examples of attention weight distribution with in each relation instance. The chemical and gene/protein entities are surrounded by square

parenthesis (‘[ ]’). Darker background color (dark blue) on the word block indicates higher attention weights.

Table 6. Performance breakdown of ATT-GRU on the test set

Label Support Precision Recall F1 score

CPR:3 598 0.544 0.355 0.429
CPR:4 1512 0.607 0.641 0.623
CPR:5 161 0.524 0.534 0.529
CPR:6 270 0.615 0.504 0.554
CPR:9 569 0.494 0.492 0.493

ATT-models to conventional DNN models is in both the
performance and interpretability.

In the official evaluation of BioCreative VI ChemProt
task, our best submission trained only on the training set
without using the development set ranked 17 out of 45
submitted runs (0.494 F1 score). Two of the top three teams
(Peng et al. (48) with an F1 score of 0.641 and Mehryary
et al. (49) with an F1 score of 0.609) used ensembles of
support vector machine (SVM) and DNNs. Peng et al.
developed a rich feature SVM including words, POS tags,
chunk types, contextual words of entities, distance, selected
keywords and shortest dependency path features. CNN
and RNN models were also trained on word embeddings,

POS tags, IOB (Inside-Outside-Beginning) tags and position
embeddings. The majority voting was done between five
SVMs, five CNNs and five RNNs, which achieved the top
performing run of the shared task with 0.6410 F1 score.
Mehryary et al. used a hybrid system of Turku Event Extrac-
tion System (TEES) (50) and DNN models in the task. The
feature sets of SVM-based system TEES are similar to Peng
et al.’s. The DNN models from (49) consist of separated
LSTM models trained from words, POS tags and depen-
dency type sequences. The submitted results are obtained
from an ensemble of four neural networks with different
random seeds. Our proposed ATT-GRU model is favorably
comparable to their top performing run of 0.5249 F1 score
from DNN, while we only used the word sequence and
position embedding without POS and dependency features.
Corbett and Boyle (51) (0.614 F1 score) explored the appli-
cation of transfer learning and pre-trained LSTM model
and word embeddings from unlabeled data. They used two
neural networks for the task: a pre-training network and
a recognition network. The pre-training network turned
out to boost the performance via training on unlabeled
data and word embeddings. In comparison with those top-
performing systems, our system used a single DNN model
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Table 7. Top five attention keywords in each ChemProt relation type. The words are represented in the format of ‘word with

largest attention weights in the sentence (number of the occurrence in each category, percentage of the occurrence in each

category)’

CPR:3 (up-regulator, activator) CPR:4 (down-regulator, inhibitor) CPR:5 (agonist, agonist-inhibitor)

Expression (44, 8.8%)
mRNA (32, 6.4%)
Phosphorylation (30, 6.0%)
Activation (26, 5.2%)
Inhibited (23, 4.6%)

Inhibitor (192, 19.4%)
Inhibitors (128, 12.9%)
Inhibition (105, 10.6%)
Inhibited (60, 6.1%)
Inhibits (33, 3.3%)

Agonist (51, 45.5%)
Agonists (45, 40.2%)
Receptors (13, 11.6%)
Receptor (2, 1.8%)
Antagonism (1, 0.9%)

CPR:6 (antagonist) CPR:9 (substrate, product of)

Antagonist (91, 49.5%)
Antagonists (60, 32.6%)
Antagonism (11, 6.0%)
Agonist (7, 3.8%)
Receptor (4, 2.2%)

Enzyme (43, 10%)
Transporter (33, 8%)
Uptake (26, 6%)
Catalyzes (23, 5%)
Catalyzed (19, 4%)

without voting/stacking mechanisms. In addition, our sys-
tem did not utilize features extracted from external lan-
guage resources such as POS and dependency information,
as well as additional unlabeled data. We only used the anno-
tated sequences of words and position embeddings from the
data set annotation as input features. Another difference of
our proposed model is that the trigger words are outcomes
of trained ATT-DNN models, rather than input features
used by other supervised machine learning models such
as SVM.

It is also worth noting that our attention-based approach
has several limitations.

Due to the limited features used as the input of the
DNN layers, the proposed method may not perform
well when processing sentences with multiple relation
pairs. Between multiple relation instances in the same
sentence, the attention weights will be slightly different
among different relation instances. However, since the
classification is done after the summation of hidden vector
from RNN layer weighted by the attention weights, the
model will not collect sufficient information to disting-
uish the positive relations and negative relations if there
are positive relations in the sentence. This is why the
attention mechanism works well on finding the keywords
related to the relations from the sentence, but the
performance of overall sentence classification is not as good
as expected.

The word-level features are inadequate in capturing
dependency information in long sentences. The redundancy
of sentence structure may also be hard for flat RNN
vectors to capture. For instance, in the sentence of
‘Treatment with [CAPE] decreased protein abundance of
[Akt], [Akt1], [Akt2], [Akt3], . . ., but increased cell cycle
inhibitor [p27Kip]’, there are 13 protein entities in the

sentence, thus the distance between the first and the last
protein entity in the sentence is too long for recurrent units
to memorize and distinguish with each other. Though the
attention weights correctly highlight the words ‘decrease’,
‘increase’ and ‘inhibitor’, the differences among the weights
are minimal. There are two potential solutions to this
diminishing information issue. Intuitively, heuristic rules
can be applied as a step of pre-processing or post-processing
to merge multiple entities into one for relation classification.
The machine learning-based solution might be to use
Abstract Meaning Representation (AMR) (52) to trim the
sentence and use the structured sentence abstract, which
also removes the redundancy in the sentences and proved
to be effective for other biomedical relation extraction
tasks (15, 53). The semantic embeddings of AMR and
dependency parsing results can be used as other word-
level embeddings, such as word embeddings and position
embeddings in this study.

Conclusion and future work

In this paper, we describe our proposed system for Biocre-
ative VI Task 5: text mining ChemProt interactions. The
incorporated attention layer into RNN improves both the
performance and the interpretability of the original DNN
models. Our experiment demonstrates that the attention-
based models outperform other deep learning models with-
out attention in the task of CPR extraction. The results
of attention weight distribution and top attention words
show that the attention mechanism is effective in high-
lighting semantic association and textual variants of CPRs
when trained with labeled CPR instances without the prior
domain knowledge and extensive feature engineering.

There are some directions to extend this work to a
more comprehensive neural-based relation understanding
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framework. We would like to see if an external knowledge
base can be used to improve our machine learning-based
system, which is dependent on the provided corpus. Since
the word embedding plays a critical role in representing
word-level information in CPR sentences, we would also
like to investigate more options of word embeddings using
external resources (51). We are also interested in exploring
how to apply the word-level attention weights directly to
the relation classification tasks using pattern generation and
sub-language analysis techniques.

Supplementary data

Supplementary data are available at Database Online.
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