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Objectives: Lumbar disc herniation (LDH) is a musculoskeletal disease that contributes
to low back pain, sciatica, and movement disorder. Existing studies have suggested
that the immune environment factors are the primary contributions to LDH. However,
its etiology remains unknown. We sought to identify the potential diagnostic biomarkers
and analyze the immune infiltration pattern in LDH.

Methods: The whole-blood gene expression level profiles of GSE124272 and
GSE150408 were downloaded from the Gene Expression Omnibus (GEO) database,
including that of 25 patients with LDH and 25 healthy volunteers. After merging
the two microarray datasets, Differentially Expressed Genes (DEGs) were screened,
and a functional correlation analysis was performed. The Least Absolute Shrinkage
and Selection Operator (LASSO) logistic regression algorithm and support vector
machine recursive feature elimination (SVM-RFE) were applied to identify diagnostic
biomarkers by a cross-validation method. Then, the GSE42611 dataset was used
as a validation dataset to detect the expression level of these diagnostic biomarkers
in the nucleus pulposus and evaluate their accuracy. The hub genes in the network
were identified by the CIBERSORT tool and the Weighted Gene Coexpression Network
Analysis (WGCNA). A Spearman correlation analysis between diagnostic markers and
infiltrating immune cells was conducted to further illustrate the molecular immune
mechanism of LDH.

Results: The azurophil granule and the systemic lupus erythematosus pathway were
significantly different between the healthy group and the LDH group after gene
enrichment analysis. The XLOC_l2_012836, lnc-FGD3-1, and scavenger receptor class
A member 5 were correlated with the immune cell infiltration in various degrees. In
addition, five hub genes that correlated with LDH were identified, including AQP9,
SIRPB2, SLC16A3, LILRB3, and HSPA6.

Conclusion: The XLOC_l2_012836, lnc-FGD3-1, and SCARA5 might be adopted for
the early diagnosis of LDH. The five identified hub genes might have similar pathological
mechanisms that contribute to the degeneration of the lumbar disc. The identified hub
genes and immune infiltrating pattern extend the knowledge on the potential functioning
mechanisms, which offer guidance for the development of therapeutic targets of LDH.
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INTRODUCTION

Low back pain (LBP) affects approximately 1.71 billion
people worldwide and is the main contributor to the global
burden of musculoskeletal conditions (Cieza et al., 2021).
Lumbar disc herniation (LDH) is a pathology that causes
LBP, sciatica, and movement disorders (Clark and Horton,
2018). LDH causes LBP symptoms by mechanical compression,
chemical radiculitis, and autoimmunity. However, the exact
pathological immune mechanism of LDH remains unknown.
A study illustrated that immune environment factors are a
contributing factor to inflammation and pain exacerbation
for patients with LDH. Until now, no effective medical
therapy has been available for LDH. Therefore, identifying
the vital biomarkers and revealing the relationship is of great
significance to developing effective treatment strategies for
patients with LDH.

The intervertebral disc is a fibrocartilage that connects two
adjacent vertebrae. The disc consists of the outer annulus fibrosus
(AF), inner nucleus pulposus (NP), and cartilage endplate (CEP).
A previous study reported that intervertebral disc degeneration
and aging are crucial factors that contribute to the dehydration
of the NP, consequently weakening the AF (Gorth et al., 2019).
As the cartilage endplate becomes weak, fissures will appear in
the AF, and its shock-absorbing ability will be limited and will
eventually contribute to LDH. An increasing number of studies
suggest that the immune environment plays an important role
in the occurrence and deterioration of LDH. Sun et al. (2020)
showed that the damage of the blood-NP barrier (BNB), an
immune privilege of the intervertebral disc, plays a significant
role in the whole process of LDH. Therefore, identifying
the differential gene expression will assist the clarification of
the molecular mechanism that underpins LDH and develops
new immunotherapy targets. To date, only a few studies that
have investigated the molecular immune mechanism of the
development of LDH were found.

MATERIALS AND METHODS

Selecting and Preprocessing Data
In the Gene Expression Omnibus (GEO) database1,
intervertebral disc degeneration and lumbar disc herniation
were set as the retrieval condition. Based on the sample size and

Abbreviations: LDH, Lumbar disc herniation; GEO, Gene Expression Omnibus;
DEGs, Differentially Expressed Genes; LASSO, Least Absolute Shrinkage and
Selection Operator; WGCNA, Weighted Gene Coexpression Network Analysis;
LBP, Low back pain; AF, Annulus fibrous; NP, Nucleus pulposus; BNB, Blood-
NP barrier; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; DO, Disease Ontology; BP, Biological process; MF, Molecular function;
CC, Cellular component; FDR, False discovery rate; GSEA, Gene Set Enrichment
Analysis; ROC, Receiver operating characteristic; TOM, Topological Overlap
Matrix; GS, Gene significance; MM, Module membership; PPI, Protein-protein
interaction; ICCs, Infiltrating immune cells; BPI, Bactericidal permeability-
increasing protein; HRASLS, The H-RAS-like suppressor; CTSG, Cathepsin G;
AQP9, Aquaporin 9; SIRPB2, Signal Regulatory Protein Beta 2; LILRB3, Leukocyte
immunoglobulin-like receptor subfamily B member 3; HSPA6, Heat Shock
Protein 6.
1https://www.ncbi.nlm.nih.gov/geo/

retrieval condition of the lumbar disc, the datasets GSE124272
(Wang et al., 2019) and GSE150408 (Wang et al., 2021) were
selected. Whole-blood RNA-seq transcriptome data were
obtained from eight patients in the GSE124272 dataset and 17
patients in the GSE150408 dataset. In addition, the patients
with treatment were excluded from the transcriptome data in
the GSE150408 dataset. Healthy group data were obtained from
eight healthy volunteers in the GSE124272 dataset and 17 healthy
volunteers in the GSE150408 dataset.

The “R” software (R v4.1.1)2 was adopted for the analysis. The
Practical Extraction and Report Language (Perl)3 was applied to
accurately handle the text formats that were required for the R
package analysis. Figure 1 shows the analysis steps in this study.
Two gene expression matrices were merged, and the inter-batch
differences were removed for next-stage analysis. The “ggplot2”
package (Skidmore et al., 2016) was applied to draw the two-
dimensional PCA cluster plot and to visualize the effect after
data normalization.

Processing Data and Analyzing
Enrichment
The “limma” package (Ritchie et al., 2015) was adopted
to screen differentially expressed genes (DEGs), and the
“ConsensusClusterPlus” package (Wilkerson and Hayes, 2010)
was applied to cluster the LDH dataset into different groups
on account of the expression similarity. Then, the “pheatmap”
package and the “ggplot2” package (Steenwyk and Rokas,
2021) were applied to visualize the expression of DEGs. The
selection criteria were |log2 FC| > 1, and false discovery rate
(FDR) was < 0.05.

The “clusterProfiler,” (Yu et al., 2012) “org.Hs.eg.db,”
“enrichplot,” and “ggplot2” packages were applied to perform
Gene Ontology (GO) (Gene Ontology Consortium, 2015) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
and Goto, 2000; Kanehisa et al., 2017). Then, the “GSEABase”
package and the “DOSE” were applied to analyze Disease
Ontology (DO) (Yu et al., 2015) enrichment on DEGs. The GO
analysis consisted of biological process (BP), molecular function
(MF), and cellular component (CC). The KEGG analysis
was adopted to identify the pathways of biological molecular
interaction. The DO analysis was applied to explore the similarity
of diseases. The level of FDR < 0.25 and p < 0.05 were chosen to
find out the significant function enrichment.

The “clusterProfiler” package was adopted to perform Gene
Set Enrichment Analysis (GSEA) (Reimand et al., 2019) on
the gene expression matrix. The “c2.cp.kegg.v7.0.symbols.gmt”
and “c5.go.v7.4.symbols.gmt” were applied to analyze significant
enrichment between the healthy group and LDH group.
Subsequently, the results were illustrated in the enrichment plot
by applying the “enrichplot” package. The GSEA is another
enrichment analysis to identify significant biological changes in
the microarray datasets. Net enrichment score (NES), gene ratio,
and p-value in the GSEA analysis were applied to verify the GO
and KEGG enrichment results.

2https://www.r-project.org/
3https://www.perl.org/get.html
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FIGURE 1 | A flow-process diagram showing the analysis steps in this study (GEO: Gene Expression Omnibus; DEGs: Differentially Expressed Genes; ROC:
Receiver operating characteristic; LASSO: Least Absolute Shrinkage and Selection Operator; SVM-RFE: the support vector machine recursive feature elimination;
GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; DO: Disease Ontology; GSEA: Gene Set Enrichment Analysis; WGCNA: Weighted Gene
Coexpression Network Analysis; PPI: Protein-protein interaction).

Screening and Verifying Diagnostic
Biomarkers
The “glmnet” package was applied to analyze DEGs by the
application of the Least Absolute Shrinkage and Selection
Operator (LASSO) logistic regression algorithm. The feature
sorting method of support vector machine recursive feature
elimination (SVM-RFE) (Zhang et al., 2018) was conducted to
improve the accuracy of identifying the diagnostic biomarkers by
analyzing appropriate datasets selected by the LASSO algorithm
to obtain biomarkers. The “e1071” package, “kernlab” package,
and “caret” package were applied to identify DEGs from
whole-blood gene expression profiles by applying SVM-RFE.
The “VennDiagram” package was applied to draw a Venn
plot which shows the screened intersection genes after using
the LASSO algorithm and SVM-RFE method to analyze the
gene expression profiles. The GSE42611 dataset was used as
a validation dataset to detect the gene expression level of
intersection genes in the nucleus pulposus. The “pROC” package
was adopted to draw receiver operating characteristic (ROC)
curves (Mandrekar, 2010), calculate AUC, and evaluate values of
diagnostic biomarkers.

Identifying the Hub Genes
The “CIBERSORT” method (Newman et al., 2015) was applied to
analyze the level of immune cell infiltration. Then, the “e1071”
package was adopted to calculate the relative ratio of immune
cells and immunity score (Chen et al., 2018). Moreover, the
“corrplot” package was used to draw the correlation graph of
22 types of infiltrating immune cells. Due to the sample size of

DEGs, the merged group was chosen to analyze and filter out
the low expression data. Based on the gene difference analysis,
the “ConsensusClusterPlus” package was applied to cluster the
“merge” data set into different groups for gene expression
similarity. Then, the “ggpubr” package was applied to analyze the
immune infiltration of DEGs between the healthy group and the
LDH group. Besides, the “ggplot2” package was adopted to draw
a boxplot to show the difference in infiltrating immune cells.

The immune cell infiltration-related genes were identified by
the Weighted Gene Coexpression Network Analysis (WGCNA)
(Langfelder and Horvath, 2008), revealing the correlation
between immune cell infiltration-related genes and exploring the
phenotype and hub genes in the network. Total samples were
clustered by average linkage and Pearson correlation value. β = 4
(scale free R2 = 0.9) was chosen to construct a scale-free network
(Figure 5C). Then, a hierarchical clustering tree was constructed
by the dynamic hybrid cutting technology to construct gene
modules (minimum gene number of gene modules is 50).
Branches represent a series of genes with similar expression data,
and each leaf represents a gene in the tree (Figure 5D). In
addition, six modules (Figure 5E) were built into the analysis.
A heatmap was used to show the gene expression in six modules
and two groups. Afterward, cluster analysis was carried out on
gene modules and the modules were merged into a new dynamic
tree. Gene significance (GS) and module membership (MM) were
calculated. The relationship between gene expression and sample
trait (including immune cell infiltration score) was determined.
Lastly, the “VennDiagram” package (Chen and Boutros, 2011)
was used to draw a Venn plot and show the intersection of DEGs
and gene modules. Intersection genes were analyzed using the
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FIGURE 2 | The distribution of RNA in lumbar disc herniation (LDH) after merging the GSE124272 and the GSE150408 datasets. (A) In the two-dimensional PCA
cluster plot of the merged dataset before normalization, with each point representing a sample. (B) In the two-dimensional PCA cluster plot of the merged dataset
after normalization, with each point representing a sample. (C) The expression level of RNA in LDH. The higher the level of expression, the darker the color (red
represents upregulated, green represents downregulated). The tree on the left showed the clustering results of significant RNA in different samples. The grid on the
right indicated the groups (red represented normal group and blue represented LDH group). (D) Volcano map of differentially expressed genes (DEGs); red
represents upregulated differentially expressed genes (DGEs), gray represents no significant DGEs, and green represents downregulated DGEs.

online tool STRING4 to construct a protein-protein interaction
(PPI) network (Miryala et al., 2018), and Cytoscape software
(Reimand et al., 2019) was employed to investigate the interaction
and identify the hub genes.

Verifying the Correlation of Diagnostic
Biomarkers and Immune Cell Infiltration
The “corrplot” package was adopted to analyze the correlation
of the 22 types of immune cells. In addition, intersection genes
were filtered from the genes of LASSO logistic regression and
significant gene modules. The “VennDiagram” package was
applied to draw a Venn plot and show the intersection genes.
The “ggpubr” package and the “ggExtra” package were applied
to perform Spearman correlation analysis on diagnostic markers
and infiltrating immune cells. Then, a lollipop drawing was
applied to visualize the analysis results.

4https://string-db.org

RESULTS

Selecting and Preprocessing Data
The inter-batch differences between GSE124272 and GSE150408
datasets were eliminated after the two datasets merged.
The clustering of the two datasets was evenly distributed
after data normalization (Figures 2A,B), indicating a
reliable sample source.

Processing Data and Analyzing
Enrichment
A total of 21 DEGs between the healthy and LDH groups
were identified from the merging gene expression matrix.
Figures 2C,D illustrate the expression of DEGs. Six upregulated
genes and 15 downregulated genes were found in the
merging dataset.

Figure 3 illustrates the results of functional correlation
analysis of GO, KEGG, and DO. The results of GO analysis
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FIGURE 3 | Functional correlation analysis. (A) Gene Ontology (GO) enrichment analysis, where the circle size represents the count of DEGs (the larger the circle
size, the more count of DEGs), and the color represents p-value (the redder the color, the smaller the value). GO analyses consisted of biological process (BP),
molecular function (MF), and cellular component (CC). (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, where the circle size represents
the count of DEGs, and the color represents p-value. (C) Disease Ontology (DO) enrichment analysis, where the circle size represents the count of DEGs, and the
color represents p-value. (D) Gene Set Enrichment Analysis (GSEA) in the normal group using annotation information of GO. (E) GSEA in the LDH group using
annotation information of GO. (F) GSEA in the normal group using annotation information of KEGG. (G) GSEA in the LDH group using annotation information of
KEGG [Net enrichment score (NES), gene ratio, and p-value in GSEA analysis were used to verify the GO and KEGG enrichment results].

(Figure 3A) suggest that DEGs are mainly involved in 3
cellular functions: BP, CC, and MF. The primary variations
in BP are neutrophil degranulation, neutrophil activation
in immune response, neutrophil-mediated immunity, and
neutrophil activation. The main differences in CC were the
primary lysosome, azurophil granule, secretory granule lumen,
cytoplasmic vesicle lumen, and vesicle lumen. The most variation
in MF was the endopeptidase activity. Figure 3B illustrates
the results of the KEGG pathway analysis. It shows that
DEGs were significantly enriched in neutrophil extracellular
trap formation, systemic lupus erythematosus, transcriptional
misregulation in cancer, and staphylococcus aureus infection. DO
analysis (Figure 3C) revealed that DEGs were primarily related to
autosomal recessive disease, cystic fibrosis, periodontal disease,
tuberculosis, tooth disease, and mouth disease.

Gene Set Enrichment Analysis (GSEA) and GO analysis
(Figures 3D,E) showed that azurophil granules were significantly
different between the healthy and LDH groups. The GSEA

enrichment results showed the top five significant results in the
healthy and LDH group. In addition, GSEA and KEGG analysis
(Figures 3F,G) indicated that systemic lupus erythematosus was
significantly different between the healthy and LDH groups.

Screening and Verifying Diagnostic
Biomarkers
Figure 4A illustrates gene numbers after using LASSO logistic
regression algorithm to screen genes. Figure 4B presents
the gene numbers after using SVM-RFE to screen genes.
The ROC curves (Figure 4E) indicated the accuracy of five
diagnostic biomarkers distinguishing the healthy and LDH
patients, including XLOC_l2_012836 (AUC = 0.690), HRASLS2
(AUC = 0.736), scavenger receptor class A member 5 (SCARA5;
AUC = 0.722), LINC00278 (AUC = 0.693), and lnc-FGD3-
1 (AUC = 0.557). Figure 4C presents the seven intersection
genes screened by both the LASSO and SVM-RFE methods.
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FIGURE 4 | Identification of diagnostic biomarkers in LDH. (A) The gene numbers screened by the LASSO. (B) The gene numbers screened by the support vector
machine recursive feature elimination (SVM-RFE). (C) The Venn plot was adopted to show the intersection genes between LASSO and SVM-RFE. (D) The
distribution of scavenger receptor class A member 5 (SCARA5) between healthy and LDH group in GSE42611 dataset. (E) Receiver operating characteristic (ROC)
curves showed the prediction efficiency of diagnostic markers.

According to the result of the gene expression levels of three
intersection genes in the GSE42611 dataset, the expression of
SCARA5 was different in the nucleus pulposus (Figure 4D), while
the expressions of Bactericidal permeability-increasing protein
(BPI) and Cathepsin G (CTSG) were not significantly different.

Identifying the Hub Genes
Figure 5 illustrates the results of the WGCNA analysis. Within
the six of the merged modules, two gene modules were
significantly associated with LDH. Among them, the yellow
module is positively correlated with LDH, and the brown module
is negatively correlated with LDH. The yellow module consists
of 287 genes, while the brown module consists of 384 genes.
Venn plot was constructed to show the intersection genes
between the two clustering groups (Figure 5G) and the two
modules. Subsequently, 11 intersection genes were obtained
between the yellow module and the clustering genes (Figure 5G),
including ADCY4, AQP9, ATG16L2, ECEL1P2, HSPA6, LILRB3,
lnc-F8A2-2, LOC101928948 (lncRNA), LOC729040 (lncRNA),
SIRPB2, and SLC16A3. Figures 6A,B illustrate the results
of the PPI network of intersection genes. As a result, five
significant hub genes were identified (Figures 6A,B), namely,
AQP9, LILRB3, HSPA6, SIRPB2, and SLC16A3. The ADCY4,
AQP9, ECEL1P2, HSPA6, LILRB3, lnc-F8A2-2, LOC101928948,
LOC729040, SIRPB2, and SLC16A3, all of which were found to
have upregulated gene expressions. On the other hand, ATG16L2
was found to have downregulated gene expression in LDH.

Verifying the Correlation of Biomarkers
and Immune Cell Infiltration
The relationships between the 22 types of immune cells of DEGs
in the LDH group were analyzed (Figure 6C). It was found
that resting natural killer (NK) cells were positively related to

plasma cells and CD4 memory-activated T cells. The heatmap
revealed that neutrophils had a positive relation with plasma
cells, CD4-naive T cells, macrophages M0, macrophages M1,
and activated mast cells while having a negative correlation with
CD8 T cells, CD4 memory-activated T cells, and monocytes.
Then, the boxplot of immune infiltration (Figure 6D) revealed
that naive B cells, resting NK cells, neutrophils, and immune
scores have a significant difference between the healthy and
LDH groups. Subsequently, Venn plots were applied to identify
diagnostic markers and perform Spearman correlation analysis.
Consequently, the lnc-FGD3-1 was identified when screening
intersection genes in brown modules and genes obtained by
LASSO logistic regression (Figure 6E). The XLOC_l2_012836
(lncRNA) was also identified when screening intersection genes
in yellow modules and genes obtained by LASSO logistic
regression (Figure 6E). Figures 6F–H illustrate the relationship
between diagnostic biomarkers and immune cell infiltration.
The expression level of lnc-FGD3-1 was negatively correlated
with naive B cells (r = −0.313, p = 0.027) (Figure 6F). In
addition, the expression level of XLOC_l2_012836 was positively
correlated with neutrophils (r = 0.561, p < 0.001), macrophages
M0 (r = 0.426, p = 0.002), activated mast cells (r = 0.313,
p = 0.027), and CD4-naive T cells (r = 0.295, p = 0.038). The
expression level of XLOC_l2_012836 was negatively related with
naive B cells (r =−0.324, p = 0.022) and CD8 T cells (r =−0.346,
p = 0.014) (Figure 6G). The expression level of SCARA5 was
negatively correlated with neutrophils (r =−0.298, p = 0.036) and
activated mast cells (r =−0.309, p = 0.029) (Figure 6H).

DISCUSSION

This study aimed to identify the vital diagnostic biomarkers
and hub genes and to analyze the immune cell infiltration
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FIGURE 5 | Identification of the hub genes in LDH. (A) Consensus clustering matrix for k = 2 in LDH dataset [Consensus clustering cumulative distribution function
(CDF) for k = 2 to 9]; (B) Consensus clustering matrix (Each bar represents a grid, where the more complete the bar color, the better the clustering degree); (C) β = 4
(scale free R2 = 0.9) was chosen to construct a scale-free network; (D) A cluster tree of co-representation network modules based on 1-Tom matrix is constructed.
(E) Module-trait relationships, where different colors represent different modules in two groups (each row corresponds to a module, and each unit includes a
correlation coefficient and a p-value). (F) Module-gene relationships: each plot includes a correlation coefficient and a p-value. (G) Venn plot: identification of
intersection genes between cluster genes and module genes.

patterns in the LDH population. It is observed that the genes
XLOC_l2_012836, lnc-FGD3-1, and SCARA5 correlated with the
immune cell infiltration to various extents, which may, therefore,
act as potential diagnostic biomarkers of LDH. Five hub genes
were identified that correlated with LDH, including AQP9,
SIRPB2, SLC16A3, LILRB3, and HSPA6. The new hub genes and
immune infiltrating pattern identification extend the knowledge
of the potential lumbar disc degeneration mechanisms.

In the present study, the GSEA and GO analysis
(Figures 3D,E) showed that azurophil granule in the LDH
and healthy group was significantly different. Azurophil granules
released cytotoxic and digestive agents when neutrophils were
guided to the site of infection (Cowland and Borregaard,
2016). The result supports the recent theory that inflammation
plays a role in the cause of LDH. In addition, the GSEA and
KEGG analysis (Figures 3F,G) indicated that the systemic lupus
erythematosus pathway was significantly different between the
LDH and the healthy group. A recent study suggested that
NP cells could transform into fibroblast-like cells after the
injury of the intervertebral disc (Au et al., 2020). Besides, a
previous study found that systemic lupus erythematosus (SLE)

was associated with the proliferation of fibrous tissue cells
(Yamamoto et al., 2005). Though no study had provided firm
evidence to support that SLE is correlated with the development
of LDH, it is reasonable to speculate that SLE may contribute to
the development of LDH by promoting the transformation of
NP cells in the interverbal disc.

The LASSO logistic regression determines variables by looking
for optional λ when the classification error is minimal. The SVM-
RFE was used to achieve better performance by analyzing the
appropriate dataset selected by the LASSO algorithm to obtain
biomarkers. The intersection genes from the two modules of
WGCNA and LASSO logistic regression identified significant
differences in lnc-FGD3-1 and XLOC_l2_012836 between the
LDH and healthy groups (Figure 6E). A long non-coding RNA
(lncRNA) was found to play a vital role in the development of
LDH by regulating cell proliferation and metastasis (Tang et al.,
2020). Faciogenital dysplasia 3 (FGD3) has a presumed guanine
nucleotide exchange factor which plays an important role in cell
migration (Hayakawa et al., 2008). The FDG3 is found in the
growth plate cartilage of the femurs of mice, which is associated
with articular cartilage and growth plates (Takasuga et al., 2015).
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FIGURE 6 | Identification of the hub genes in LDH and verification of the correlation between diagnostic biomarkers and immune cell infiltration. (A) The
protein-protein interaction (PPI) network was constructed to identify the hub genes; (B) The number of adjacent nodes correlated with protein of hub genes; (C)
analysis of the relationship between 22 types of immune cells of DEGs in LDH; (D) box plot: identification of significant immune cells between normal groups and
LDH group (symbol “*,” “**,” and “ns,” respectively, stand for p-value under.05, p-value under.01, and non-significance.); (E) Venn plot: identification of intersection
genes between biomarkers and module genes; (F) Expression level correlation between lnc-FGD3-1 and infiltrating immune cells; (G) Expression level correlation
between XLOC_l2_012836 and infiltrating immune cells. (H) Expression level correlation between SCARA5 and infiltrating immune cells (The larger the circle size, the
stronger the correlation; The color of the dots represents the p-value, and p < 0.05 was considered statistically significant).

Therefore, it is reasonable to speculate that lnc-FGD3-1 may
promote the degeneration of the intervertebral disc by regulating
FDG3 expression and inhibiting the growth of the cartilage
endplate. In addition, XLOC_l2_012836 (lncRNA) was positively
correlated with neutrophils, M0 macrophages, activated mast
cells, and CD4-naive T cells, while negatively correlated with
naive B cells and CD8 T cells (Figure 6G). A previous study
(Peng et al., 2006) suggested that macrophages and mast
cells may play a vital role in repairing damaged AF and
subsequent disc degeneration. This is given some support by a
study that reported that imbalanced counts of CD4 + T and
CD4 + /CD8 + lymphocytes were correlated with LDH-related
back pain. Therefore, it could be proposed that XLOC_l2_012836
promotes the development of LDH by stimulating neutrophils,
M0 macrophages, activated mast cells, and CD4-naive T cells,
reducing naive B cells, and CD8 T cells. It is reasonable
to speculate that XLOC_l2_012836 might play a vital role
in the immune response in LDH. It is also reasonable to

take SCARA5 into a relationship analysis between diagnostic
biomarkers and immune cells after using the external validation
of the GSE42611 dataset. The expression level of SCARA5
was negatively correlated with the expression of neutrophils
(r = −0.298, p = 0.036) and activated mast cells (r = −0.309,
p = 0.029) (Figure 6H). A previous study found that the
downregulation expression of SCARA5 is correlated with the
proliferation of synovial (de Seny et al., 2021) and cancer
cells (Yan et al., 2012). From the result of the present study,
the downregulated expression of SCARA5 might promote the
proliferation of the nucleus pulposus to some extent and correlate
with the occurrence of inflammation. More studies are needed to
further analyze the function of lncRNA.

The hub genes of AQP9, SIRPB2, SLC16A3, LILRB3, and
HSPA6 were significantly different between the LDH and
healthy groups (Figures 6A,B). Aquaporin-9 (AQP9) is a
hydroglycerin channel protein that promotes water movement
between cerebrospinal fluid and brain parenchyma (Badaut et al.,
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2001). A study showed that AQP9 might be involved in chronic
inflammation disease (Mesko et al., 2010). The downregulation
of AQP9 was observed in the cartilage cells, which would cause
the decomposition-related genes of stimulating the IL-1β that
is down-expressed in osteoarthritis (Piccio et al., 2005). It is
reasonable to suspect that the increased expression of AQP9
would promote the inflammation of CEP in the intervertebral
disc, which subsequently contributes to LDH. Another potential
theory is that owing to the lack of local blood supply, the
NP cells settle in hypoxic conditions, which, thereby produces
an increased amount of lactic acid and promotes the high
expression of AQP9 (Badaut et al., 2001). Signal-regulatory
protein beta 2 (SIRPB2), a transmembrane glycoprotein, is found
to be expressed in the immune and central nervous system
(Piccio et al., 2005). A recent study showed that the CD47
on antigen-presenting cells that engage with SIRPB2 on T
cells could promote the proliferation of antigen-specific T-cells
(Veillette and Chen, 2018). Therefore, the SIRPB2 might play a
significant role in the immune response. The solute carrier family
16 member 3 (SLC16A3, also called MCT4), which is mainly
affected by HIF-1α in NP cells at hypoxic conditions, plays a
significant role in maintaining the stability of the intervertebral
disc (Silagi et al., 2020). It is possible that due to the lack of
blood supply, prolonged hypoxia could stimulate the increased
expression of SLC16A3 and induce NP cell death. Leukocyte
immunoglobulin-like receptor subfamily B member 3 (LILRB3,
also called PIR-B) is found to be associated with the neutrophil
activation and antibacterial effect function (Zhao et al., 2020).
It might be reasonable to regard LILRB3 as an immune-
induced treatment point since it can effectively inhibit immune
response in vitro (Yeboah et al., 2020). The heat shock 70 kDa
protein 6 (HSPA6) involves cell repairment and cell protection
(Hageman et al., 2011). Becirovic and Brown (2017) illustrated
that HSPA6 is involved in the post-stress transcriptional recovery
in neurodegenerative diseases. Therefore, HSPA6 might be
associated with the cell protection of LDH when facing stress. To
date, there is no conclusive evidence confirming the above hub
genes have the same pathological mechanism that contributes to
the development of LDH. However, these genes are associated
with the same factors, such as hypoxia or injury that promote the
development of LDH. It might be a possible means to produce
targeted therapy using these genes as the starting points.

LIMITATIONS

In the present study, the cross-validation between LASSO logistic
regression algorithm and SVM-RFE was applied to identify
significant genes, followed by functional enrichment analysis to
identify the mechanism. The data was then analyzed using the
CIBERSORT method to explore the pattern of immune cells
infiltration. However, there are still limitations about the effect
of diagnostic markers in LDH. First, the present research is a
retrospective study. Although external validation was added in
the present study, there was no clinical trial to verify the accuracy
of biomarker identification. Therefore, the functional impact of
these RNAs in the occurrence and development of LDH ought
to be assessed by knocking out or importing studies in animal

models and cell lines. Second, the present study is a secondary
analysis based on the originally published dataset. Although
the results were broadly consistent with previous studies, the
validity of the results should be examined with reasonable doubt.
Moreover, the effect of treatment on the expression of RNA was
not appraised. Despite the two chosen datasets being from the
same research institute to minimize the error, the small sample
size may contain bias.

CONCLUSION

The present study identifies XLOC_l2_012836 (lncRNA), lnc-
FGD3-1, and SCARA5 as potential genes for target therapy
points. Their involvement in the development of LDH are
potentially related to the immune response or inhibiting growth
of cartilage endplate. The five identified hub genes are associated
with the same factors of hypoxia or injury. The azurophil granule
and the SLE pathway are significantly different between the
healthy group and the LDH group after gene enrichment analysis.
The findings of the present study provide some guidance for
future research on the pathogenesis and treatment of LDH.
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