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Social corbiculate bees are major pollinators. They have characteristic
bacterial microbiomes associated with their hives and their guts. In honey-
bees and bumblebees, worker guts contain a microbiome composed of
distinctive bacterial taxa shown to benefit hosts. These benefits include sti-
mulating immune and metabolic pathways, digesting or detoxifying food,
and defending against pathogens and parasites. Stressors including toxins
and poor nutrition disrupt the microbiome and increase susceptibility to
opportunistic pathogens. Administering probiotic bacterial strains may
improve the health of individual bees and of hives, and several commercial
probiotics are available for bees. However, evidence for probiotic benefits is
lacking or mixed. Most bacterial species used in commercial probiotics are
not native to bee guts. We present new experimental results showing that
cultured strains of native bee gut bacteria colonize robustly while bacteria
in a commercial probiotic do not establish in bee guts. A defined community
of native bee gut bacteria resembles unperturbed native gut communities in
its activation of genes for immunity and metabolism in worker bees.
Although many questions remain unanswered, the development of natural
probiotics for honeybees, or for commercially managed bumblebees, is a
promising direction for protecting the health of managed bee colonies.

This article is part of the theme issue ‘Natural processes influencing
pollinator health: from chemistry to landscapes’.
1. Introduction
Animal-associated microbial communities often benefit their hosts, and hosts
therefore benefit from efforts to protect microbiomes, by limiting adverse
impacts of toxins or poor nutrition. In addition to protecting native micro-
biomes, host health might be enhanced through the application of beneficial,
live microorganisms, that is, probiotics [1]. In this article, we explore using pro-
biotics to bolster the health of managed colonies of honeybees and bumblebees.
We first review work on the naturally occurring microbial communities associ-
ated with social bees, including the considerable evidence on beneficial effects
of the native adult gut microbiota. We then summarize investigations on the
potential for probiotics in honeybees, with emphasis on probiotics composed
of bacterial strains native to honeybee guts. A major unanswered question is
whether probiotics establish and persist in recipient hosts. We present new
experimental results showing that non-native bacterial strains from a commer-
cial probiotic product fail to establish in the worker bee gut, but a mixture of
native gut bacterial strains colonizes robustly and resembles a natural micro-
biota in eliciting expression of bee genes related to immunity and
metabolism. Finally, we discuss future prospects for probiotics in managed
bee colonies, including natural strains isolated from bees and natural strains
genetically engineered to protect bees.
2. Background on microbiomes of social corbiculate bees
Recent research has revealed that naturally occurring microbiomes of social cor-
biculate bees which include honeybees (genus Apis), stingless bees (tribe
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Meliponini) and bumblebees (genus Bombus) are distinctive,
have evolved long term with hosts and play positive roles
in host health. We summarize these studies and refer readers
to other reviews for more details [2–4].
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(a) Adult worker gut microbiomes
Most work has focused on the distinctive communities in
guts of workers of the western honeybee Apis mellifera.
These communities are dominated by five to eight bee-
restricted bacterial lineages [5,6]. Bumblebees and stingless
bees harbour communities composed of closely related bac-
terial lineages, with some exceptions in stingless bee groups
that have lost particular gut bacterial lineages [6,7].

In Apis and Bombus, the main bacterial gut symbionts are
acquired via social contact within colonies. Apis mellifera
workers are colonized soon after emergence as adults,
through contact with other workers [8]. The transmitted bac-
teria grow to a stable community, with a characteristic
composition and size, of about 108 cells per worker [9],
with similar numbers in bumblebees [6]. Each bacterial
species has a characteristic distribution in the ileum or
rectum of the hindgut [5,9] (figure 1).

For both honeybees and bumblebees, native gut commu-
nities have been shown to support adult worker development
and health [2,3]. In experiments that compared workers with
or without a normal gut microbiota, the former enjoy a range
of benefits that include protection against bacterial, viral, and
eukaryotic pathogens [10,11], digestion of components of
pollen cell walls [12,13], microbial detoxification of certain
sugars [14], stimulation of insulin signalling, appetite, gut
development, and weight gain [15] and enhanced production
of bee-encoded P450 enzymes that can neutralize dietary
toxins [16], although the gut microbiota does not protect
against widely used insecticides [17]. In bumblebees, the
gut microbiota appears to protect against selenate toxicity
[18]. Most experiments in bumblebees (Bombus terrestris and
Bombus impatiens) have focused on protection against para-
sites and have repeatedly shown that the gut microbiota
can defend against trypanosomatid parasites [19–21].

The most widely documented benefit of the adult gut
microbiota is protection against invasion by pathogens and
parasites. Such protection called ‘colonization resistance’ is
a feature of mammalian gut communities [22]. This protective
effect may partly reflect enhanced bee immune responses, as
the gut microbiota stimulates immune pathways [11,23,24].
However, direct microbe–microbe interactions also appear
to contribute, as individual strains vary in protective capacity
[20] and possess varying mechanisms for inter-bacterial
antagonism [25]. The establishment of biofilms within bee
guts also may impose a physical barrier to pathogenic
invasion [26,27].

While most evidence for beneficial effects of the bee micro-
biota comes from laboratory-based studies, experimental and
observational evidence supports similar effects in field colo-
nies and populations. In bumblebee populations, microbiota-
conferred protection against parasites is supported by lower
parasite incidence in individuals with an intact gut microbiota
[27]. In honeybees, exposure to antibiotic chemicals disrupts
the microbiota and lowers worker survivorship both within
hives and following laboratory challenge with opportunistic
bacterial or eukaryotic pathogens [16,28–31].
(b) Queen, larval and hive-associated microbiomes
Honeybee queens have gut communities drastically different
from those of workers; they lack the core species present in
workers, are more erratic in composition and size, and largely
consist of environmentally widespread bacterial species
[32–34]. By contrast, bumblebee queens have a gut microbiota
similar to that of workers and dominated by the characteristic
bacterial lineages found in guts of adult corbiculate bees
broadly [35].

Microbial communities are also associated with larvae,
food reserves and hive surfaces, and these may also affect
vigour of the overall colony. In honeybees, all of these com-
munities differ dramatically from those found in adult
worker guts [36]. One of the most abundant bacterial species
associated with honeybee larvae is a cluster of Acetobactera-
ceae initially recovered at very low abundance from adult
workers [37,38] and later found to be frequent in larval
guts and queen guts [32–34,39]. It was initially called
‘Alpha 2.2’, then described as Parasaccharibacter apium [36]
and more recently placed in its own genus as Bombella apis
[40]. Several strains isolated from larvae are able to persist
in larvae, royal jelly, hypopharyngeal glands and nurse
crops [36].

Host-associated communities also can include organisms
that are deleterious for hosts [41]. In honeybees, these include
viruses such as deformed wing vrus and others [42], bacterial
pathogens of larvae such as American and European foul-
brood (Paenibacillus larvae and Melissococcus plutonius) [43],
microsporidians in the genus Nosema [44], trypanosomatids
including Crithidia [45] and Lotmaria [45], fungal pathogens
such as chalkbrood (Ascosphaera apis) [46] and opportunistic
bacterial pathogens such as Serratia marcescens [47,48]. These
deleterious organisms tend to be invasive and sporadic, but
when they dominate, their harmful effects can overpower
any benefits of the usual community.

(c) Threats to bee microbiomes
The gut microbiota is key to honeybee health, but it is subject
to disruption. For example, the gut community composition
is drastically affected by exposure to antibiotics [29,49] or to
some herbicides [28,30,50]. Bee gut communities can be
impacted by diet, including nutrient quantity, nutrient com-
position and phytochemicals present in nectar, pollen and
propolis [51], and by temperature [52,53]. In honeybees, per-
turbed gut communities are more susceptible to invasion by
pathogens, as observed in challenge experiments with S. mar-
cescens [28] and Nosema [10,54]. Honeybee workers with
dysbiosis, defined as unhealthy disruption of the normal
microbiota, have higher mortality rates within hives [28,29].
Bumblebees also are subject to gut dysbiosis [27,55], which
can increase their susceptibility to pathogens [21].
3. Approaches and challenges for probiotic
treatments

The mounting evidence that the native microbiota is key to
bee health but vulnerable to disruption raises the question
of whether managed colonies of these insects might be
strengthened through probiotic treatments that deliver ben-
eficial bacteria. Such treatments might prevent, or cure
dysbiosis. One type of probiotic consists of bacteria that are
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intended to promote health and a stable microbiome without
themselves persisting in the host [1]. Much of the human pro-
biotic industry is based on ingesting organisms such as
Lactobacillus or Bifidobacterium used in fermenting food;
these do not colonize guts but may still promote a healthy
microbiome although evidence for this is mixed [56].

A second probiotic strategy involves inoculation with
microbial strains that are themselves native to the host gut
and that could establish and persist long term in the host.
For example, hosts experiencing dysbiosis can be treated
through the direct transfer of native microbial communities
from healthy individuals. In humans, such treatments,
called faecal microbiota transplants, have shown efficacy for
the treatment of some bowel disorders.

Both approaches are potentially beneficial in bees. Most
commercial probiotics currently contain only non-native bac-
teria from the food industry as in human probiotic mixtures;
however, some incorporate a mixture of non-native and native
bacteria [57]. Published analyses of persistence in bee guts are
not available. However, experimental work has shown that
transfers of native gut bacteria between worker honeybees,
accomplished by providing homogenate from donor guts to
recipient bees, result in stable colonization, typical community
composition and host benefits (e.g. [15]). However, direct trans-
fers between hosts carry the risk of introducing pathogenic
organisms, potentially causing more harm than benefit, as
occasionally observed in human faecal transfers (e.g. [58]).
Below we summarize studies of bee probiotics (electronic
supplementary material, table S1). A recent publication
provides an exhaustive compilation [57].
(a) Probiotics for larvae, queen and hive health
The most evident bee pathogens affect larvae, a vulnerable
stage of development for honeybees and the stage most vis-
ible to beekeepers, since affected bees die in the hive.
Larval parasites and pathogens include Varroa mites, the bac-
teria P. larvae and M. plutonius [43], the chalkbrood fungus
As. apis and several RNA viruses.

Several investigators have sought to directly protect
larvae with probiotics. A strain of Bombella apis enhanced
larval survival in vitro and was investigated as a probiotic
hive supplement, delivered in custom-made pollen patties
[59]. However, Bombella apis had no effect on colony-level
measures of brood area, food storage or foraging rate. Bees
from hives supplemented with Bombella apis appeared to
resist Nosema infection better, as fewer Nosema spores were
present after an in vitro challenge. Later tests of whether Bom-
bella apis inoculation could protect larvae against M. plutonius
did not reveal protective effects [60]. Miller et al. [61] recently
demonstrated that some Bombella apis strains produce a
metabolite that inhibits fungal growth both in vitro and in
vivo. Nosema is a microsporidian, a group closely related to
fungi, so potentially the same mechanism underlies this
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fungal suppression and the reduced Nosema loads in treated
colonies. These experiments were performed in the labora-
tory, so it remains to be tested if providing these strains as
probiotics to hives will be beneficial.

Recently, researchers have also tested commercially
available probiotic formulations at the hive scale. Daisley
et al. [62] focused on hive supplementation with a mixture
of two non-bee-associated Lactobacillus strains (Lactobacillus
plantarum and Lactobacillus rhamnosus) and one hive-associ-
ated strain: Apilactobacillus kunkeei. They found that
supplementation helped hives resist P. larvae. By contrast,
Stephan et al. [63] provided a probiotic mixture of several
hive- and gut-associated strains of Lactobacillus and Bifido-
bacterium to hives infected with P. larvae and treated or
not with antibiotics, but found no improvements in
colony fitness. Differences in the design and execution of
these experiments, or in the status of the study hives, can
explain the different outcomes. These two studies illustrate
the persistent issues of reproducibility that face honeybee
probiotics research.

Queens remain in the hive and are vital to hive health,
and queen longevity and productivity have declined recently,
potentially owing in part to hive treatments for mites [64].
The queen’s own gut microbiome may influence her health
and productivity, but studies of queen microbiomes have
not addressed links to fecundity or colony productivity
[32,34]. Some probiotic applications appear to improve egg-
laying in hives [65,66], potentially owing to impacts on the
queen microbiome. Further work is needed to determine if
microbiota manipulations in queens can improve hive health.
(b) Probiotics for adult workers
Workers comprise the vast majority of individuals in hives and
are responsible for all hive-level functions except for egg-
laying. Colony declines, particularly those associated with
classic colony collapse disorder, are often associated with the
disappearance of workers from a colony [67]. Since sick
workers tend to leave the hive to avoid the spread of disease
[68,69], they are less obvious to beekeepers than are sick
larvae. Thus, opportunistic pathogens of adult workers are
probably underappreciated as factors in overall colony health
[48].

Many recent studies indicate that the native worker gut
microbiota is perturbed by agrochemicals, such as antibiotics
that are used in hives to treat larval infections and in fields to
control crop pathogens, and other pesticides, sprayed in areas
near colonies. These perturbations are linked to increased
susceptibility of workers to infections by opportunistic patho-
gens [28,29,31,50,54]. For example, workers are more likely to
die from S. marcescens strains present in hives following
microbiota perturbation by antibiotics or glyphosate [28,47].
Potentially, probiotic treatment with natural gut strains from
the native microbiota could replenish perturbed gut commu-
nities. Recent experimental studies have shown that bees
mono-colonized with single or multiple strains of native gut
bacteria can control the overproliferation of S. marcescens in
the bee gut [11,70]. Similar overproliferation is observed in
microbiota-deprived bees or antibiotic-treated bees [70].

To date, almost all studies on the use of probiotics to con-
trol infections in workers have investigated non-native strains
[71,72] In one such study, Daisley et al. [62] saw shifts in
microbial composition in the guts of worker bees and
found that probiotic supplementation, besides increasing
the expression of bee immunity genes, such as defensin-1,
had a negative correlation with the abundance in guts of
Commensalibacter, Frischella and P. larvae, but did not change
overall bacterial loads. A follow-up study [73] reported that
antibiotic-induced dysbiosis in workers could be countered
by providing the same probiotic mixture to hives, and that
the probiotic bacterial strains were detected in workers
post-supplementation.

Native gut probiotics, consisting of isolates from bee guts,
could potentially replenish perturbed gut communities and
provide sustained protection against pathogens and parasites
of workers. Powell et al. [31] found that hive treatment with
recommended levels of tylosin (antibiotic used against
P. larvae) results in severe disruption of worker gut commu-
nities and in higher mortality when challenged with
S. marcescens. This increased susceptibility was lessened by
treatment with a probiotic mixture of strains of native gut
bacteria, suggesting that native gut probiotics can replenish
perturbed worker gut communities and thereby reduce
pathogenic infections.

Nosema also takes advantage of microbial perturbations
induced by antibiotics to cause disease in adult workers
[54] and can itself perturb the native worker microbiota
[74–76]. Many recent probiotic studies in adult honeybees
have focused on Nosema and have supplemented caged
bees or hives with mixtures of bacteria originating from
sources other than the native bee microbiota (see
the electronic supplementary material, table S1). While
some of these experiments reported beneficial effects, such
as reduction in Nosema spore counts and/or higher survival
rates of bees [71,72,77–79], others reported a completely
opposite outcome, with increases in spore counts and/or
lower survival rates of bees after supplementation [80–82].
A few studies have investigated the effects of probiotics in
the control of Varroa, showing a reduction in Varroa in sup-
plemented hives [66,72,83]. However, these studies did not
investigate whether these non-native bacteria persist in the
bee gut or affect the native microbiota. To date, clear evidence
that probiotics protect workers is lacking.

(c) What should bee probiotics look like?
Most probiotic efforts in honeybees have not verified the
basic mechanisms that contribute to probiotic usefulness.
Do probiotic strains establish in bee guts? Also, do probiotics
have sustained effects on bee physiology and immune
responses?

Native probiotic mixtures should be standardized to con-
tain only a beneficial community, eliminating the risk of
introducing harmful entities while including the necessary
community diversity to restore a stable, healthy community.
Powell et al. [31] provided preliminary evidence that a
defined community consisting of native gut bacteria can
help to ameliorate microbiota perturbation and pathogen
susceptibility.
4. New experimental results
We performed experiments aimed at addressing questions
regarding probiotics for worker gut communities. We tested
a defined community of native gut bacteria to examine the
ability to establish and persist in the bee gut, comparing



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

377:20210156

5
this to a commercial probiotic currently in use in apiculture.
We also examined the ability of this defined community to
stimulate changes in gene expression that are typically
induced by the native gut community.

(a) Natural gut bacteria, but not commercial probiotics,
robustly colonize bee guts

To explore the ability of probiotic strains to persist in the bee
gut, we placed newly emerged adults directly in sterile cup
cages with sugar syrup and sterile pollen. We divided
workers into four treatments (approx. 15 bees cup−1): no
microbial exposure (NP, no probiotic), inoculation with a
commercial probiotic (ProB), inoculation with a defined com-
munity of co-cultured bee gut microbiota members (DC) or
inoculation with a mixture of commercial probiotic with the
defined community (ProB +DC). After 5 days, we extracted
total gut RNA to produce complementary DNA; thus, dead
cells in the gut do not contribute to our assays. We estimated
the total load of metabolically active bacteria using quantitat-
ive polymerase chain reaction (qPCR) and the taxonomic
composition using sequencing of 16S ribosomal RNA
(rRNA) amplicons. Detailed methods are included in the
electronic supplementary material, methods.

Bees in all of the treatments achieved similar bacterial
loads (figure 2a). The presence of high levels of bacteria in
the NP group suggests inoculation from frame surfaces as
the young bees emerged, as previously observed [8]. Com-
munities from bees in the NP group and the ProB group
have a very similar taxonomic composition (figure 2b). Both
groups had large components of Enterobacteriaceae, includ-
ing genera that are opportunistic pathogens. An evaluation
of bacteria by probable source (environment/commercial
probiotic/native bee gut community) showed that the NP
and ProB conditions were dominated by environmentally
acquired bacteria (figure 2c). In the ProB treatment, the com-
ponent probiotic taxa were present at less than 1% on
average. Thus, bacteria from a non-bee gut origin establish
poorly in the gut, enabling increases in opportunistic envir-
onmentally acquired taxa, largely Enterobacteriaceae. By
contrast, in both treatments where native gut bacteria were
used (ProB +DC and DC), native gut strains dominated
(greater than 93% on average) and limited proliferation of
environmentally acquired bacteria. Native strains dominated
at 5 days when bees were harvested and the experiment ter-
minated. Previous experiments showed persistence for at
least 10 days following inoculation of microbiota-free bees
with bee gut homogenates and further showed that the
characteristic bee gut microbiota persists for the life of the
adult worker under natural conditions [3,8,9]. Thus, the DC
community is probably stable for longer periods.

(b) Defined native probiotics mimic effects of natural
communities on host gene expression

Natural gut communities have been shown to modulate the
expression of honeybee genes, including key genes involved
in immunity, metabolism and development, and bees lacking
a normal gut community have abnormal immune function,
metabolism and weight gain [10,11,15,16]. We thus investi-
gated if a defined community of native gut bacteria
resembles complex natural gut communities in effects on
host gene expression.
Late-stage pupae were removed from a frame and placed
in plastic chambers in incubators as in [8], allowed to eclose
as adults, then placed in cup cages with sugar syrup and ster-
ile pollen. Previous work shows that this yields bees devoid
or nearly devoid of gut bacteria [3,8]. We divided bees into
three sets. One set (MD, microbiota deprived) was not
exposed to bacteria, one set (DC, defined community of
native strains) was fed a mixture of native gut strains,
and one set (GH, gut homogenate) was fed fresh gut hom-
ogenate from hive workers, containing the full natural gut
community. We measured expression of genes previously
shown to be induced by colonization with the full gut com-
munity, including genes involved in development [15] and
immunity [11,23]. In one experiment, we assayed genes for
several antimicrobial peptides (apidaecin, abaecin, defensin
and hymenoptaecin) known to be expressed in specific tis-
sues. In a second experiment, we assayed genes involved in
hormonal signalling (vitellogenin, insulin receptors and
insulin-like peptides) and expected to be expressed
throughout the body. We also assayed bacterial loads using
qPCR.

DC and GH bees achieved similar bacterial loads, which
were far higher than those of MD bees (figure 3a,e). The
higher loads correspond to pronounced activation of key
bee genes in abdomen samples (higher expression of genes
encoding abaecin, apidaecin and hymenoptaecin in DC and
GH bees than in MD bees) (figure 3b–d) and in whole-body
samples (higher expression of genes encoding defensin-2,
vitellogenin, and insulin receptors 1 and 2 in DC and GH
bees, and insulin-like peptide 1 in GH bees) (figure 3f–k).
Thus, the defined community mimics the native full micro-
biota in inducing the expression of bee genes involved in
immunity and metabolism.
5. Engineered probiotics in bees
Native gut bacteria could also be genetically engineered to
better enhance bee health. Synthetic biologists have engin-
eered probiotic bacteria to perform additional functions and
express new traits, and these engineered probiotics represent
the newest frontier for manipulating microbiomes. Because
bee gut bacteria can be grown in the laboratory and geneti-
cally manipulated, researchers have begun to create and
test engineered probiotics [84–86]. Engineered bee probiotics
could be enhanced to perform a new function (degradation of
pesticides or other harmful xenobiotic compounds), gain
resistance to a specific stressor (resistance to pesticides), or
even manipulate bee behaviour and immunity. Engineered
strains would then be reintroduced into honeybees and
hives where they would coexist with natural strains and per-
form their desired function. This approach mirrors recent
efforts to engineer the human microbiome by modifying
commensal bacteria from human guts to fight pathogens
and treat disease [87–89], and similar efforts are underway
to modify gut communities associated with other insects
[90], plants and other animals [91].

While microbiome engineering to improve bee health
remains in its infancy, a recent study demonstrated the feasi-
bility of this approach [92]. In this study, researchers
engineered the symbiotic bee gut bacterium S. alvi to express
double-stranded RNA in the gut of honeybees which then
triggers the bee RNA-interference immune response. In
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laboratory experiments, this approach successfully altered
bee gene expression and limited damage from deformed
wing virus and Varroa mites.

The feasibility and effectiveness of the approach has not
been tested under field conditions, and it is not yet known
if engineered strains would persist in an actual hive, and
whether genetic constructs would stably function or need
to be periodically reintroduced. Another unknown is how
engineered strains might affect the natural ecosystem and
bacterial community in bees. Appropriate risk assessments
would be required to assess potential for negative impact.
While no engineered bacteria have been used in bumblebees
or other social bees, similar approaches to those used in
honeybees are plausible.
6. Future prospects for honeybee probiotics
Despite efforts to develop honeybee probiotics, no probiotic for-
mulations have been demonstrated to be reliably effective in
honeybees. Currently available probiotic formulations for
bees include strains of Lactobacillus and Bifidobacterium used in
fermenting dairy products and incorporated into human pro-
biotic formulations; these are foreign to bee guts. Results
presented here, and general surveys of bee gutmicrobiota, indi-
cate that these bacteria do not establish to high titers or persist in
bee guts. Even Apilactobacillus strains that are associated with
diverse bees, honey or nectar, may not stably colonize guts of
Apis or Bombus species. Potentially, probiotics can provide
benefits without establishing in hosts, but robust evidence is
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not available. Ingesting substantial quantities of live bacteria
that do not occur naturally in hosts has the potential to do
harm, so rigorous experiments that evaluate effects are needed.

We found that naturally occurring strains of bee gut bac-
teria can be administered as a defined community to bees
where they re-establish and persist, whereas a commercial
probiotic formulation composed of non-native bacteria does
not establish in bee hosts (figure 2). Furthermore, the commu-
nities established by native strains resemble natural bee gut
communities in composition and in their activation of bee
genes related to immunity and development (figure 3).
These results are consistent with preliminary trials showing
that the administration of natural isolates can restore micro-
biota disrupted by antibiotics and can defend against
infection by opportunistic bacterial pathogens [31,70].
Although promising, establishment does not imply efficacy
in promoting host health, and the benefits of native bee gut
strains remain untested at the hive level. The use of natural
gut isolate strains would also require methods to grow
these bacteria at scale, combine them into communities and
deliver them to hives. Since even closely related strains may
vary in their metabolic capabilities, and related bee gut
strains vary in responses to chemical stressors such as
antibiotics and glyphosate, it also would be useful to identify
the specific strains that maximize benefits to bees.

Though some questions are unanswered, the future of
probiotics for honeybees is bright. It may be possible to
design specific communities of natural gut isolates that
stably replenish gut communities disrupted by the many
stressors bees face and that are economical and efficient for
use in apiaries.
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