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ABSTRACT: Many commonly used coarse-grained models
for proteins are based on simplified interaction sites and
consequently may suffer from significant limitations, such as
the inability to properly model protein secondary structure
without the addition of restraints. Recent work on a benzene
fluid (Lettieri, S.; Zuckerman, D. M. J. Comput. Chem. 2012,
33, 268−275) suggested an alternative strategy of tabulating
and smoothing fully atomistic orientation-dependent inter-
actions among rigid molecules or fragments. Here we report
our initial efforts to apply this approach to the polar and
covalent interactions intrinsic to polypeptides. We divide proteins into nearly rigid fragments, construct distance and orientation-
dependent tables of the atomistic interaction energies between those fragments, and apply potential energy smoothing
techniques to those tables. The amount of smoothing can be adjusted to give coarse-grained models that range from the
underlying atomistic force field all the way to a bead-like coarse-grained model. For a moderate amount of smoothing, the
method is able to preserve about 70−90% of the α-helical structure while providing a factor of 3−10 improvement in sampling
per unit computation time (depending on how sampling is measured). For a greater amount of smoothing, multiple folding−
unfolding transitions of the peptide were observed, along with a factor of 10−100 improvement in sampling per unit
computation time, although the time spent in the unfolded state was increased compared with less smoothed simulations. For a β
hairpin, secondary structure is also preserved, albeit for a narrower range of the smoothing parameter and, consequently, for a
more modest improvement in sampling. We have also applied the new method in a “resolution exchange” setting, in which each
replica runs a Monte Carlo simulation with a different degree of smoothing. We obtain exchange rates that compare favorably to
our previous efforts at resolution exchange (Lyman, E.; Zuckerman, D. M. J. Chem. Theory Comput. 2006, 2, 656−666).

1. INTRODUCTION

In an effort to simulate biological systems on larger spatial
scales and longer time scales than can be achieved with all-atom
simulation, the first coarse-grained models for proteins were
constructed by Levitt and Warshel.1,2 Since then, many coarse-
grained force fields for biomolecules have been constructed
according to a wide range of approaches.3−37 Each of these
approaches has its own advantages and limitations.
A large class of models explicitly uses experimental structural

information. The simplest types, Go̅ and elastic network
models, typically include only geometric features of the native
state7−11 or of a preselected set of structures.12−16 The full
Protein Data Bank can also be used to parametrize more
chemically realistic models, typically based on multiatom beads,
which may be restricted to a lattice17−19 or not.20,21 More
elaborate geometries can also be used.22−25,28,29 Presaging
some of the present work, Ma et al. divided the amino acids
into small “blocks” and constructed a knowledge-based packing
potential dependent on the relative orientations of these blocks
using orientational bins.26,27 These force fields assume that the
system under study is similar to those in the Protein Data Bank,
which may not be true for all systems of biological interest.

It is also possible to parametrize a coarse-grained model
directly from physicochemical data. A prominent example is
MARTINI, which was originally developed for lipids30,31 and
subsequently extended to proteins.32 For example, the Lennard-
Jones parameters in MARTINI were derived primarily from the
partitioning free energies of model compounds between
aqueous and organic phases, while bonded parameters are
derived from surveys of structures from the Protein Data Bank
and comparisons with atomistic MD simulations.31 However,
the backbone particles of the MARTINI force field have
different dihedral parameters depending on the type of
secondary structure. Consequently, MARTINI cannot be
used to model conformational changes that include changes
in the secondary structure, such as protein folding or amyloid
aggregation,32 although efforts have been made to improve the
force field for amyloid peptides.33 With structured proteins, the
inclusion of an elastic network model can improve the
agreement with atomistic simulations,38 at the price of limiting
some large-scale motions. The PRIMO model36 is constructed
in a generally similar way. It is free from secondary structure

Received: July 15, 2014
Published: October 9, 2014

Article

pubs.acs.org/JCTC

© 2014 American Chemical Society 5161 dx.doi.org/10.1021/ct500622z | J. Chem. Theory Comput. 2014, 10, 5161−5177

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

pubs.acs.org/JCTC
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


biases but at the cost of a substantially finer resolution, with
each particle representing approximately two to three atoms.
Another approach to coarse-graining involves systematically

optimizing the potential energy function to maximize the
agreement between forces or correlations determined in
atomistic simulations and those determined in coarse-grained
simulations. The most prominent example of this approach is
the multiscale coarse-graining (MS-CG) method.34,35 In
principle, this method provides the coarse-grained potential
energy function that comes closest to formally integrating out
the degrees of freedom not included in the coarse-grained
representation, given a specific functional form.4,5 However, the
resulting force fields are not strictly transferable across systems
or thermodynamic states, so it may be necessary to repeat the
parametrization process. Potential sensitivity to sampling and
the choice of matching observables have been noted.5,6,39

The increase in speed that makes it possible to simulate
larger systems for longer times using coarse-grained models
comes primarily from three sources: the decrease in the number
of particles that comes from replacing many atoms by a single
coarse-grained “bead”, the increased mass of coarse-grained
particles (which enables a longer time step in MD simulations),
and the smoothing of the energy landscape that results from
averaging out fine-grained degrees of freedom.3 There is a
trade-off between this increase in speed and accuracy; a lower-
resolution model offers more speedup at the cost of a reduction
in accuracy. Since the parametrization strategy, as noted above,
will dictate which observables will be modeled accurately, there
is no single coarse-grained model or resolution that is optimal
for all applications. Consequently, it would be helpful if, for
example, the resolution of a coarse-grained model could be
adjusted for each application, instead of being fixed.
Here we apply a highly flexible alternative strategy suggested

by recent work employing tabulated distance and orientation-
dependent interactions applied to a fluid of rigid benzene
molecules.37 In that work, tables were constructed of the
interaction energy between two molecules of benzene as a
function of the Cartesian coordinates of the net displacement
and the two absolute orientations of the benzene molecules.
The tables were used to calculate the energies in a Monte Carlo
simulation. The radial distribution functions of the benzene
were found to be very similar to those obtained in a Monte
Carlo simulation conducted without the use of tables.
Furthermore, the potential energy function represented by
the tables could be smoothed by taking averages over
neighboring energy values in the tables; by changing the
number of cells averaged, the amount of smoothing could be
varied. This smoothing was found to increase the diffusivity of
the benzene molecules in the simulation by as much as 4.7
times compared with the original simulation without tables,
without significant changes to the radial distribution functions.
Combined with the computational saving obtained by
tabulating the energies, this resulted in a net speedup of
approximately 114 times.
In this paper, we extend the tabulation and smoothing

strategy to construct coarse-grained models for proteins. We
divide the 20 possible amino acids into rigid fragments and
construct interaction tables between each pair of possible
fragment types as a function of their relative displacement and
orientation. We have also developed potential energy
smoothing techniques appropriate to these tables. By adjusting
the degree of smoothing, we can effectively vary the resolution
of the model continuously, from a united-atom force field all

the way to a MARTINI-like coarse-grained model in which
each fragment is effectively replaced by a spherical particle. We
note that potential energy smoothing has been applied in the
past to proteins in the context of global optimization of the
structure.40−42

The new strategy has a number of potential advantages.
Because it is based on an atomistic force field rather than on
experimental data or molecular dynamics simulations of specific
systems, it is expected to have fewer implicit biases and be more
transferable than other coarse-grained models, and should also
be more suitable for multiscale modeling. The ability to control
the effective resolution of the model through adjustment of the
degree of smoothing allows selection of the best trade-off
between atomistic accuracy and coarse-grained speed for a
particular system, rather than being restricted to the decisions
that were made when the coarse-grained model was first
constructed. Furthermore, the smoothing technique has been
constructed in such a way as to preserve the generalized second
virial coefficient resulting from interactions between two
fragments, implying that, to the extent that average properties
of the system depend on interactions between pairs of
fragments, they are kept unchanged by the coarse-graining
procedure.
In addition, since the interaction tables are orientation

dependent, they incorporate detailed information on the shape
and charge distribution of each fragment. As will be shown
below, the resulting model is able to maintain the structure of
an α-helix without additional restraints and performs reasonably
for maintaining the structure of a β-sheet as well. By keeping
track of the orientation of each fragment as well as its position,
it is straightforward to generate atomistic structures during the
simulation, allowing the use of atomistic bond, angle, and
dihedral parameters, as well as further simplifying multiscale
modeling.
Potential smoothing appears to be a novel way to implement

the “resolution exchange” (ResEx) idea.43,44 The ResEx idea, as
pursued here, involves constructing a replica exchange
simulation in which some replicas experience a coarse-grained
model, while others simulate according to an atomistic model.
In this way, the simulation benefits from the increased sampling
provided by the coarse-grained model, while still providing
canonical sampling according to an atomistic model. Earlier
ResEx efforts were hampered by an inability to tune
intermediate levels of resolution that were not simple mixtures
of all-atom and coarse-grained models.45 It is worth noting that,
unlike temperature-based replica exchange, which is expected to
sample unfolded space to a significant degree, Hamiltonian
replica exchange and ResEx in principle can maintain sampling
of folded configurations at all levels.46

We demonstrate preliminary results for this new method on
two small systems: an α-helix composed of 12 leucine residues
(Leu12) and the β-hairpin consisting of residues 41−56 from
the B1 domain of streptococcal protein G, otherwise known as
the GB1 hairpin.47 The first section of the paper describes how
the amino acids are divided into fragments, how the tables are
constructed, and how smoothing is accomplished. Particular
attention will be given to the differences between the method
presented here and our previous work on benzene.37 Results
from test simulations of this method on the two peptides are
then described, along with additional tests of our method
coupled with Hamiltonian replica exchange. The analysis of
these simulations focuses on the ability of the method to
preserve secondary structure and on the increase of sampling
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that has been obtained. Finally, we discuss the strengths and
weaknesses of the new method and suggest possible strategies
for improvement.

2. THEORY AND METHODS
Our basic strategy of tabulating interactions and smoothing the
tables follows previous work on benzene,37 but details of our
implementation differ significantly. Not only do the present
coordinates and smoothing strategy differ, but treatment of
polypeptides requires accounting for covalent interactions
among the molecular fragments.
2.1. Choice of Underlying Atomistic Force Field. The

orientation-dependent interaction energy tables used in this
work were based on the CHARMM19 united-atom force
field,48 as implemented in TINKER.49,50 Although an all-atom
force field could have been used, a more elaborate
fragmentation scheme would have been required to handle
the Hα and Cα atoms while allowing the ϕ and ψ bonds to
remain rotatable. Also, given the goal of coarse-graining, united
atom interactions seemed sufficient.
2.2. Orientation-Dependent Interaction Energy Ta-

bles for Proteins. The construction of the model for
nonbonded fragments followed several steps. In overview,
proteins were first divided into fragments that could be treated
as rigid throughout the coarse of the simulation, similar to the
way in which our previous work used rigid benzene
molecules.37 This ensured that tables of this interaction energy
could be constructed in terms of only the relative position and
orientation of the fragments, without any internal conforma-
tional coordinates. Second, a coordinate system was chosen and
a discrete grid defined, in order to represent the relative
displacement and orientation within a table. Here we chose to
use spherical coordinates and Euler angles to construct the
table, rather than the Cartesian coordinates and orientation
library used previously. Once these choices had been made, the
tables themselves could be constructed by calculating the
interaction energy (sum of van der Waals and electrostatic
energies) for each possible relative position and orientation for
every pair of possible fragment types. (Covalently bonded
fragments are discussed below.)
The 20 amino acids that generally make up proteins were

divided into fragments according to the scheme shown in
Figure 1, in which united-atom representations of the 20 amino
acids out of which proteins are made are divided into 32
possible types of fragments. (A detailed list of the fragment
types and their uses in representing the amino acids is shown in
Table S1 in the Supporting Information.) Each of these
fragments is approximately rigid in that it contains no rotatable
bonds among its heavy atoms. A reference geometry for each of
the 32 fragment types was constructed by energy-minimizing
one of the amino acids containing the fragment in vacuum, then
orienting the fragment so that the principal moments of inertia
aligned with the coordinate axes. The configuration space
sampled in our model is then represented by the position ri of
the center of mass and the orientation relative to this reference
geometry (expressed as a quaternion qi

51−53) for each fragment
i. Since most peptide bonds are in the trans configuration, the
reference geometries for peptide bond fragments have this
configuration as well.
For each pair of fragment types, a six-dimensional table of

interaction energies was constructed in terms of the relative
displacement, expressed by spherical coordinates (r, θ, ϕ) and
the relative orientation expressed in terms of Euler angles (ϕ′,

θ′, ψ′). In constructing the table, a regularly spaced grid was
used for all the angular coordinates (θ, ϕ, ϕ′, θ′, ψ′). This grid
was set up so that the resolutions for the angular coordinates
Δθ = Δϕ, and likewise the resolution for the orientational
coordinates Δϕ′ = Δθ′ = Δψ′. An exponential grid was used
for the radial coordinate r, so that the table had a higher
resolution for close interactions between fragments, where the
interaction energy varies more quickly with interfragment
distance. For this exponential grid, the equations relating the
radial grid index n to the radius rn were as follows:

= = + Δ

=

=

+
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0

0

(1)

The minimum radius r0 was chosen to be 2 Å, and the
maximum radius was chosen to be 12 Å for all tables; the
maximum radius also served as a fragment based interaction
energy cutoff, so that interactions between fragments more than
12 Å apart were not counted. During the subsequent
simulations, the interaction energy between two fragments
was determined by looking up the energy from the cell in the
table corresponding to spherical coordinates and Euler angles
closest to the relative displacement and orientation of the two
fragments. (In the event two fragments were closer together
than the minimum radius, an infinite positive energy was

Figure 1. Fragmentation scheme for the 20 amino acids, including
three tautomers of histidine. The fragments are shown as colored
rounded rectangles underneath the atoms assigned to each fragment.
The colors serve to distinguish fragments within each residue but do
not correspond directly to fragment types. The division of the peptide
backbone into fragments is shown for glycine, alanine, and proline. For
the other amino acids, the division is the same as that for alanine. A
detailed list of the fragment types and the atoms included in each is
given in Table S1 in the Supporting Information.
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returned so that all such configurations were rejected in our
Monte Carlo simulations.)
Thus, the resolution of an interaction energy table can be

expressed in terms of the minimum radial resolution, Δr, the
angular resolution, Δθ = Δϕ, and the orientational resolution,
Δϕ′ = Δθ′ = Δψ′. The sizes and resolutions of the tables used
in this work are shown in Table 1. In order to better capture
the highly directional nature of hydrogen bonding, while at the
same time limiting memory usage, a distinction was made
between polar fragments (those capable of hydrogen bonding)
and nonpolar fragments; higher resolution tables were used
when both fragments were polar. The total size of all 528 tables
needed to represent all possible interactions between the 32
different types of fragments, using the same resolutions as was
used for the GB1 hairpin, comes out to approximately 15.1 GB.
The interaction energy used in this work was based

fundamentally on the CHARMM19 force field,48 and was
constructed by replacing most of the van der Waals and
electrostatic terms, by tables containing interaction energies
also derived ultimately from the force field. In addition, some of
the covalent terms involving the backbone may also be replaced
by terms derived from tables. This results in the following form
for the overall potential energy function.

= + + + +

+ + +

U U U U U U

U U U

total interaction backbone bond angle dihedral

improper vdW elec (2)

In this equation, the first two terms are obtained by summing
energies obtained from tables. Uinteraction comes from the
previously described tables of the interaction energy between
fragments, while Ubackbone comes from a separate set of tables
giving the interaction energy between directly bonded frag-
ments that form part of the peptide backbone. These
“backbone tables” are described in more detail in section 2.5.
The remaining six terms have the same forms and parameters

as in the force field, except that they do not include terms
already counted in the tabulated interactions. The last two
terms are needed in order to include certain van der Waals and
electrostatic interactions that could not be included in the
interaction tables because the fragments contained atoms
separated by three or fewer covalent bonds. In order to
incorporate a crude model for the effect of aqueous solvation, a
distance dependent dielectric was used in which ε = 2r, and the
charges of atoms in the side chains of charged amino acids were
scaled by a factor of 0.6 relative to their original values.
(Because the interaction energy is only tabulated in terms of
the relative position and orientation of the fragments, it must
be a pairwise interaction. Consequently, more sophisticated
implicit solvent models, such as the generalized Born model,54

could not be used, since the Born radii would depend on the

positions and orientations of other fragments besides the two
under consideration.)
The CHARMM19 force field has special rules for handling

the van der Waals and electrostatic interactions involving atoms
that are separated by three or fewer covalent bonds.48 The
interaction energies included in the tables were calcuated
assuming that no such relationships existed between the
fragments under consideration. Consequently, these tables
could not be used for any pair of fragments that shared at least
one pair of atoms separated by three or fewer covalent bonds.
These interactions were instead calculated directly without the
use of tables and comprise the UvdW and Uelec terms in eq 2.

2.3. Comparison to Previous Tabulation Strategy. This
structure for the interaction energy table outlined here has
several advantages over the energy tables described in our
previous work on benzene.37 The fragments in the simulations
described here are able to adopt any possible orientation with
respect to the simulation frame of reference, whereas those in
our previous work were restricted to a library of 10 orientations
randomly chosen at the beginning of each simulation. In
addition, because the tabulation is performed based on the
relative orientation rather than the absolute orientation,
interaction energy values are not duplicated over the many
possible pairs of absolute orientations corresponding to the
same relative orientation. This makes the tables significantly
smaller; one interaction table for the GB1 hairpin is at most
approximately 80 MB in size, whereas previously a table of
similar resolution would have occupied about 1 GB in storage
space.37 The use of spherical coordinates and an exponential
grid for the radial coordinate allow the table to have much
higher resolution for closely interacting fragments, at the
expense of coarser resolution for fragments that are further
apart. This is helpful because the interaction energy is a much
more rapidly varying function of relative position and
orientation for closely interacting fragments, particularly when
the fragments are irregularly shaped or strongly directionally
dependent interactions such as hydrogen bonds are present. As
discussed below, the spherical coordinates also aid in
smoothing the table only in the angular and orientational
directions, which allows smoothing to be applied without
allowing a “collapse” of the protein through loss of the repulsive
interactions between fragments.
The main disadvantage of this new approach is that

significantly more calculation is required for each table lookup,
since in order to look up the interaction energy between
fragments i and j, the program must calculate the relative
orientation qjqi

−1 and convert this to Euler angles, as well as the
relative displacement qi

−1(rj − ri)qi, which must be converted
to spherical coordinates. This increase in calculation, coupled
with the relatively small size of the fragments used here, means

Table 1. Resolution, Number, and Size of Tables Needed for Test Simulations

system Leu12 Leu12 (backbone tables) GB1 hairpin full set

polar radial 0.1−0.6 Å 0.1−0.6 Å 0.1−0.6 Å 0.1−0.6 Å
angular 10° 10° 10° 10°
orientational 15° 15° 30° 30°

nonpolar radial 0.2−1.2 Å 0.2−1.2 Å 0.2−1.2 Å 0.2−1.2 Å
angular 20° 20° 20° 20°
orientational 30° 30° 30° 30°

interaction tables 8 8 109 528
backbone tables 0 2 0 12
total size (GB) 1.33 1.36 2.79 15.04
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that the implementation described here does not offer any
significant computational speedup over calculating the
interaction energies exactly during the simulation; any
acceleration in the simulation time scales is due to the
application of smoothing techniques to the tables. In the
Discussion, we will point out avenues for addressing this
computational cost.
2.3.1. Overview of Tabulation. In sum, proteins were

divided into rigid fragments according to the scheme shown in
Figure 1, and interaction energy tables were constructed in
terms of the relative displacement and orientation between
each possible pair of fragments. These energy tables embody
the combined van der Waals and electrostatic terms of the
CHARMM19 force field. While the precise resolution varied
with interfragment distance and angular position, the tables had
an effective resolution of on the order of 0.5 Å in the most
important regions of configurational space. Thus, they can be
considered to be nearly atomistic in resolution. These tables
were used in place of calculating the corresponding van der
Waals and electrostatic interactions during the simulations.
The use of finite-resolution interaction energy tables is

similar in some ways to the use of finite resolution lattices to
construct coarse-grained models.17−19 Although in our models
the fragments are not restricted to a lattice of absolute positions
or orientations, the finite resolution of the tables and the use of
the closest cell introduce similar possible errors to the use of a
lattice. However, the resolution of our tables is finer than the
1.3−1.7 Å spacing of lattice models. Likewise, a 30°
orientational resolution offers 864 possible relative orientations,
about an order of magnitude more than the 56−90 possible
basis vectors for α-carbon traces available in these models.19

2.4. Smoothing of the Interaction Tables. As was done
previously for benzene,37 potential energy smoothing techni-
ques were applied to the “raw” interaction energy tables in
order to construct a coarse-grained model from them. These
potential energy smoothing techniques are intended to reduce
free energy barriers and improve sampling without changing
the overall features of the free energy landscape, in much the
same way that coarse-grained models reduce the frustration and
thereby increase the rate at which conformational changes take
place. The details of the smoothing algorithm differ due to the
new structure for the table, however. Rather than averaging
over a small cube of nearest neighbors in Cartesian space, the
energies were averaged over table cells with the same radial
coordinate but all possible angular and orientational
coordinates, using a Gaussian-like kernel to ensure that nearest
neighbor cells receive the greatest weight in the average. The
kernels are the solutions to the diffusion equation in spherical55

or orientational space. (Averaging in the radial direction was
found to reduce the steric repulsion between fragments, leading
to collapsed structures in the resulting simulations.) The width
of this Gaussian can be used to adjust the extent to which
nearest neighbor cells contribute to the average and
consequently the degree of smoothing. It is analogous to the
time allowed for diffusion; a wider Gaussian creates a smoother,
more coarse-grained potential. In the limit of an infinitely wide
Gaussian, all variation of the interaction energy with angular
position or orientation is eliminated, leaving a spherically
symmetric potential, similar to bead-based potentials such as
MARTINI. As was done previously, Boltzmann averaging was
used in order to prevent high, positive interaction energies from
dominating the average and increasing the roughness of the
landscape. The use of Boltzmann averaging also has the

mathematical property that the generalized second virial
coefficient for the interaction between two isolated fragments
is left unchanged by smoothing.
Translational smoothing was carried out first, followed by

orientational smoothing, although the effect is mathematically
the same as if both types of smoothing were carried out at the
same time. The smoothing procedure is controlled by three
parameters: two angular scales, γ0 and χ0, which control the
degree of translational and orientational smoothing, respec-
tively, as well as a smoothing temperature, Ts, with β = 1/
(kBTs).
The translationally smoothed interaction energy, Ũ(ri, θi, ϕi,

ϕi′, θi′, ψi′), was computed from the unsmoothed interaction
energy, U(ri, θi, ϕi, ϕi′, θi′, ψi′) according to

β θ ϕ ϕ θ ψ
γ β θ ϕ ϕ θ ψ

γ

− ̃ ′ ′ ′

=
∑ Δ − ′ ′ ′

∑ Δ
θ ϕ

θ ϕ

U r

w V U r

w V

exp[ ( , , , , , )]

( ) exp[ ( , , , , , )]

( )

i i i i i i

ij j i j j i i i

ij j

, trans

, trans

j j

j j

(3)

where the sum is taken over all cells in the table having the
same radial coordinate r and orientational coordinates (ϕ′, θ′,
ψ′) as the cell to be smoothed but potentially different angular
coordinates (θ, ϕ). In this equation, ΔVj = ri

3( f − 1) sin θj sin
θi′ΔθΔϕΔϕ′Δθ′Δψ′ is the configurational volume of cell j, γij =
cos θi cos θj + sin θi sin θj cos(ϕi − ϕj) is the angular spherical
distance between spherical coordinates (θi, ϕi) and (θj, ϕj), and
the translational smoothing kernel wtrans(γij) is given by55
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where γ0 is the angular scale for translational smoothing, Pl(x)
is the lth order Legendre polynomial, and lmax was set at 1000.
Similarly, the fully smoothed interaction energy (with both

translational and orientational smoothing)
∼∼U (ri, θi, ϕi, ϕi′, θi′,

ψi′) was computed from the translationally smoothed
interaction energy Ũ(ri, θi, ϕi, ϕi′, θi′, ψi′) according to

β θ ϕ ϕ θ ψ

χ β θ ϕ ϕ θ ψ

χ
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, , orient

j j j

j j j

(5)

Here the sum is taken over all cells in the table having the same
translational coordinates (r, θ, ϕ) as the cell to be smoothed,
but potentially different orientational coordinates (ϕ′, θ′, ψ′).
In this equation χij is the overall angle of rotation needed to
bring a fragment from the orientation given by (ϕi′, θi′, ψi′) to
(ϕj′, θj′, ψj′) and is given by cos(χij/2) = Re qjqi

−1, where qi and
qj are the corresponding quaternions.
The orientational kernel, worient(χij), is likewise a solution to

the diffusion equation in SO(3) (the group of rotations of
three-dimensional space); a derivation is given in the
Supporting Information. (To our knowledge, no solution to
this problem has previously been published in the literature.) It
is given by

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500622z | J. Chem. Theory Comput. 2014, 10, 5161−51775165



∑χ
π

χ χ

χ
=

+
−

+ +

=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( )
w

j j j j
( )

2 1
8

exp
( 1)

4

sin

sinij
j

j
ij

ij
orient

0
2

0
2 1

2
1
2

max

(6)

where χ0 is the angular scale for orientational smoothing and
jmax was set at 1000. In order to speed up the smoothing
process, for both translational and orientational smoothing,
tables were constructed of wtrans(γ) or worient(χ) as a function of
cos γ or cos χ. These tables had ∼105 entries. In addition, a cell
j was not counted in the average if its weight wtrans(γij) or
worient(χij) was less than 1 × 10−6.
Because the smoothing kernels wtrans and worient are solutions

to the diffusion equation in their respective spaces, this
smoothing procedure can be interpreted as allowing the
Boltzmann probability, exp(−βU), to diffuse along the angular
and orientational coordinates. The angular scales γ0 and χ0
control the extent of this diffusion and therefore the degree of
translational or orientational smoothing. For γ0 = χ0 = 0, no
smoothing takes place and the interaction energy is equivalent
to that given by the atomistic force field, with relatively small
errors that come from the finite resolution of the table. In the
limit as γ0 → ∞ and χ0 → ∞, all variation in the interaction
energy with the angular coordinates (θ, ϕ, ϕ′, θ′, ψ′) is
eliminated, and the interaction potential becomes a spherically
symmetric potential, dependent only on the interfragment
distance r. Thus, by adjusting the values of γ0 and χ0, and
constructing tables accordingly, we can obtain a continuous
range of protein force fields, ranging from a united-atom force
field all the way to a MARTINI-like coarse-grained model with
spherical “beads” centered on the center of mass of each
fragment. Figure 2b shows this transformation, and a plot of the
kernel functions wtrans(γ) and worient(χ) for γ0 = 60° and χ0 =
60° is shown in Figure 2a.

It should be noted that a smoothing angle of 60° constitutes
a large amount of smoothing and largely removes the
directional dependence of hydrogen bonding or nonspherical
steric interactions. This can be seen in Figure 2a, which shows
the effect of smoothing on the interaction energy of two
peptide identically oriented peptide fragments. The two minima

of the interaction energy between two peptide fragments visible
in the exact potential energy surface, corresponding to two
possible hydrogen-bonding configurations, have largely become
one nearly spherically symmetric minimum in the interaction
energy surface corresponding to a 60° smoothed table.
In addition, it can be demonstrated mathematically that the

smoothing procedure leaves the generalized second virial
coefficient for the interaction between two fragments unaltered
at the smoothing temperature:

∫
∑

∑

β θ ϕ ϕ θ ψ

β θ ϕ ϕ θ ψ

β θ ϕ ϕ θ ψ

= − − ′ ′ ′ − Ω
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i
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i
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(7)

This implies that the contribution to the partition function
from pairwise interactions between fragments is left unchanged
by the smoothing procedure outlined here and more generally
ensures that the overall strength of the interaction between
each pair of fragments is left approximately the same. A proof of
this theorem is provided in the Supporting Information.
To summarize, coarse-grained models were created by

smoothing the tabulated potential energy in the angular and
orientational coordinates through Boltzmann averaging. It is
expected that this smoothing will result in an overall free energy
surface that is smoother, thus reducing the effective resolution
of model and reproducing the ability of coarse-grained models
to provide improved sampling relative to atomistic models. By
adjusting the width of the Gaussian-like kernel for this
smoothing, a range of coarse-grained models can be created,
extending from a nearly atomistic model when no smoothing is
used to a model with one to two spherical beads per side chain
when infinite smoothing is used. The smoothing procedure
ensures that the overall strength of interactions between
fragments remains roughly the same by maintaining the second
virial coefficient of the interaction.

2.5. Backbone Tables and Smoothing. Another source
of barriers to conformational change comes from steric
interactions along the protein backbone. The interaction
energy tables described above cannot be used for the
interactions between peptide fragments, because they do not
include the corresponding bond, angle, or dihedral terms, nor
do they take into account the special van der Waals or
electrostatic interactions for atoms in 1−2, 1−3, 1−4
relationships. Consequently, a separate set of tables was
constructed for pairs of covalently bonded peptide-like
fragments, which included the necessary bond, angle, and
dihedral terms, as well as its own smoothing technique. These
tables included the necessary bond, angle, and dihedral terms,
as well as the van der Waals and electrostatic interactions.
These “backbone tables” contained the interaction energy

between two adjacent peptide fragments as a function of the
two Ramachandran angles ϕ and ψ and the N−Cα−C bond
angle (which will be designated α in the following equations).
The tables had a resolution of 1° in ϕ and ψ, as well as a 1°
resolution in α, which ranged from 100° to 130°. The tables
were used to calculate Ubackbone in eq 2, and the corresponding
terms were omitted from the other terms in the equation.
These backbone tables could also be smoothed in the ϕ and

ψ directions. The smoothed backbone energy Ũ(ϕ, ψ, α) was

Figure 2. Smoothing kernels and effect of smoothing on interaction
potentials. (a) Plots of the smoothing kernels wtrans(γij) and worient(χij)
given in eqs 4 and 6 for smoothing scale γ0 = χ0 = 60°. (b) Contour
plots of interaction energy between peptide-bond fragments of
identical orientation as a function of angular scale of smoothing.
Blue contour represents interaction energy of +1.0 kcal/mol; red
contour represents interaction energy of −1.0 kcal/mol.
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computed from the unsmoothed interaction energy U(ϕ, ψ, α)
according to

β ϕ ψ α
ϕ ψ ϕ ψ ϕ ψ β ϕ ψ α

ϕ ψ ϕ ψ ϕ ψ

− ̃
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∑ Δ Δ −
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(8)

where the smoothing kernel wbb(ϕi, ψi, ϕj, ψj) is given by
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where σ0 is the angular scale for backbone smoothing in
Ramachandran space. No smoothing was carried out in the α
direction.
In sum, in addition to the interaction tables described above,

which include only van der Waals and electrostatic interactions,
our model also includes backbone tables. These tables include
both covalent and noncovalent interactions along the backbone.
By smoothing these tables, one can lower the free energy
barriers for backbone dihedral transitions, which is expected to
enhance sampling beyond what can be achieved with the
smoothing of the interaction tables alone.
2.6. Simulation Protocol and Systems. In order to test

the new method, complete sets of interaction tables covering all
32 types of fragments included in our fragmentation scheme
were constructed at smoothing levels in 5° increments from no
smoothing to 30° and in 10° increments from 40° to 90°. In
each case, the angular scale of smoothing along the angular
coordinates was kept equal to that along the orientational
coordinates so that the impact of smoothing on the simulations
could be studied relative to a single “smoothing scale”.
Using the tables, Monte Carlo simulations56 were performed

in the potential given by eq 2 on two test systems: an α-helix
having the sequence Ac-L12-NMe (Leu12) and a β-hairpin
consisting of residues 41−56 from the B1 domain of
streptococcal protein G (the GB1 hairpin). Simulations of
Leu12 were performed with smoothing levels in 10° incre-
ments, while simulations of the GB1 hairpin additionally used
the tables smoothed at 5° increments. (Although simulations of
the GB1 hairpin were performed up to 90° smoothing, results
are only reported up to 30° smoothing because the simulations
beyond this failed to converge, for reasons discussed below in
section 3.2.) These simulations were then analyzed to
determine the stability of the structure and the extent of
sampling.
The initial coordinates for Leu12 in the CHARMM19 force

field48 were constructed using equilibrium bond lengths, bond
angles, and dihedral angles using the internal coordinate facility
in CHARMM,57,58 including a ϕ angle of −79° and a ψ angle of
−39° for each amino acid. The initial coordinates for the GB1
hairpin were taken from residues 41−56 of the structure as
determined by NMR spectroscopy (PDB code 2GB1),47 with
acetyl and N-methyl groups on the N- and C-termini,
respectively (sequence Ac-GEWTYDDATKTFTVTE-NMe),
and any missing coordinates were also filled in using the
CHARMM internal coordinate facility. In either case, the
structure was then minimized in CHARMM under the same
conditions analogous to those that would be used for the
subsequent Monte Carlo, except that a switching function
between 12 and 14 Å for both electrostatic and van der Waals

interactions was used in place of a fragment-based cutoff at 12
Å.
Each system was then divided into rigid fragments according

to the fragmentation scheme shown in Figure 1. The starting
centers, ri, and orientations, qi, of each rigid fragment were
determined by minimizing the mass-weighted RMSD between
the reference geometry of each fragment and the corresponding
atoms in the minimized structure of the system according to
the algorithm given by Coutsias et al.59 All fragments were
successfully fitted with a mass weighted RMSD of no more than
0.1 Å.
During the subsequent Monte Carlo simulations, trial moves

were performed first on the fragment centers and orientations;
then, after each trial move, the Cartesian coordinates of each
united atom in the simulation were recalculated based on the
new center and orientation of each fragment. Consequently, no
subsequent RMSD fits needed to be performed during the
simulation proper. For each fragment pair whose centers were
within a 12 Å cutoff, the interaction energy was determined by
calculating the relative displacement and orientation, converting
this to spherical coordinates and Euler angles, and looking up
the energy corresponding to the closest cell in the appropriate
table. The resulting interaction energies were summed to
determine the overall interaction energy term, Uinteraction. The
remaining terms in eq 2 were calculated from the Cartesian
coordinates according to the force field. The moves were then
accepted or rejected based on the Metropolis criterion.56

The trial moves used included backbone rotations, side chain
rotations, and backrub moves;60 detailed descriptions of each
move and information on the distribution of move sizes are
shown in Table S2 in the Supporting Information. The
Cartesian coordinates of each atom were also written to the
trajectory; consequently, the simulation produced structures at
near atomistic resolution despite being in some respects a
coarse-grained simulation. Each system was simulated at 300 K.
Control Monte Carlo simulations without tabulation were also
conducted, in which the van der Waals and electrostatic
interactions between fragments were calculated directly from
the atom positions during the simulation, rather than using the
table. The lengths of all Monte Carlo simulations are shown in
Table 2.
The generation of smoothed tables and subsequent use of

these tables for Monte Carlo simulations were implemented in
an in-house code written in C++. (Some code was adapted
from the variable-resolution library-based Monte Carlo
program previously developed in our laboratory.61) Computer
times used for the determination of speedup factors were
obtained by performing the above-described simulations using
this code on a single processor. A speedup factor for energy
calculations was obtained as the ratio of CPU time per trial
move between a simulation with without tables and a
simulation with tables with or without smoothing.
For reference, all-atom MD simulations of Leu12 and the

GB1 hairpin were also performed, starting from the minimized
structures, using the CHARMM22 force field with CMAP
corrections.62,63 These simulations also used a distance
dependent dielectric and a switching function between 12
and 14 Å for both electrostatic and van der Waals interactions.
They were run at 300 K using Langevin dynamics, a time step
of 2 fs, and SHAKE64 to maintain constant length for bonds
involving hydrogen. The Leu12 simulation was run for 100 ns,
and the GB1 hairpin simulation was run for 50 ns.
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2.7. Analysis. To determine whether and how much the
structural properties of Leu12 and the GB1 hairpin changed as
a result of being simulated by means of this new method, the
resulting trajectories were analyzed by constructing histograms
of the backbone RMSD (omitting end residues) and by
assigning the secondary structure of each residue using
STRIDE,65 from which the average fraction of α-helical or β-
sheet structure could be calculated.
In addition, sampling was assessed by the rate of

Ramachandran transitions and by the rate of high-RMSD
excursions. Each residue in each frame was assigned to one of
the basins shown in Table S3 in the Supporting Information
according to its Ramachandran ϕ and ψ angles, and the rate of
transitions between these basins per 106 trial moves was
computed. End residues were excluded from this analysis to
prevent their flexibility from dominating the calculated rates. A
sampling speedup factor was calculated as the ratio of the
transition rate between basins for the simulation without tables
and the corresponding rate for a simulation using tables with or
without smoothing.
High-RMSD excursions were defined as excursions of the

backbone RMSD above a threshold of 2.5 Å for Leu12 and 2.0
Å for the GB1 hairpin, followed by a return to lower values.
Thresholds were determined by visual inspection of backbone
RMSD distributions shown below.
2.8. Hamiltonian/Resolution Exchange Simulations.

By adjusting the angular scale of smoothing, it is possible using
this method to produce a continuous range of force fields
ranging in resolution from a united-atom force field to a coarse-
grained one. Since the configurational space in each force field
is the same (the positions and orientations of the fragments), it
is relatively easy to construct a Hamiltonian replica exchange
simulation in which each replica uses a different level of
smoothing, similar to previously proposed “resolution
exchange” simulations in which different replicas are simulated
at different coarse-grained resolutions.43,44

Leu12, the GB1 hairpin, and Met-enkephalin were all
simulated in this way; a total of six replicas were used for
Met-enkephalin, eight replicas were used for Leu12, and 10

replicas were used for the GB1 hairpin. (The structure of Met-
enkephalin from PDB code 1PLW66 was used without
minimization.) In each case, one replica simulated the system
without tabulation, calculating van der Waals and eletrostatic
interactions directly from the atom positions. It was found
necessary also to have an additional replica in which the
potential energy was a 50/50 mixture of tabulated and directly
calculated potential energy functions:

= +U U U0.5 0.550/50 nontabulated tabulated (10)

The remaining replicas used tables with various levels of
smoothing; schedules showing the amount of smoothing used
for each replica are shown in Table 3. The temperature of each
replica was 300 K. A trial exchange between one randomly
chosen replica i and its neighbor j = i + 1 was performed after
every 104 trial Monte Carlo moves of other kinds. This
exchange was accepted or rejected with probability p according

Table 2. Monte Carlo Simulations Used for Testing of the
New Coarse-Grained Modela

system interaction table smoothing

backbone
table

smoothing

length
(109

trial
moves)

Leu12 no tables no tables 5.0
0−90° in 10° increments no tables 5.0
0−90° in 10° increments 10−30° in

5°
increments

4.0

replica exchange no tables 1.0
GB1 hairpin no tables no tables 5.0

0−30° in 5° increments, 40−90° in
10° increments

no tables 5.0

0−90° in 10° increments 10−30° in
5°
increments

3.0

replica exchange no tables 4.0
Met-
enkephalin

replica exchange no tables 5.0

aFor replica exchange simulations, the lengths given are per replica,
and exchange attempts were made every 104 trial moves per replica.
Schedules of replicas for the replica exchange simulations are shown in
Table 3.

Table 3. Schedules of Replicas and Average Exchange
Probabilities for Hamiltonian Replica Exchange
Simulationsa

system replica Hamiltonian used
exchange probability

(%)

Met-
enkephalin

1 no tabulation (exact force
field)

19.6

2 tabulation with no
smoothing

39.3

3 tabulation with 10°
smoothing

53.1

4 tabulation with 15°
smoothing

59.1

5 tabulation with 20°
smoothing

17.5

6 tabulation with 40°
smoothing

Leu12 1 no tabulation (exact force
field)

14.1

2 50/50 mixture (eq 10) 10.9
3 tabulation with no

smoothing
23.6

4 tabulation with 10°
smoothing

16.4

5 tabulation with 15°
smoothing

23.1

6 tabulation with 20°
smoothing

2.7

7 tabulation with 40°
smoothing

17.9

8 tabulation with 60°
smoothing

GB1 hairpin 1 no tabulation (exact force
field)

3.5

2 50/50 mixture (eq 10) 2.6
3 tabulation with no

smoothing
4.2

4 tabulation with 5°
smoothing

1.9

5 tabulation with 10°
smoothing

7.8

6 tabulation with 15°
smoothing

6.7

7 tabulation with 20°
smoothing

1.5

8 tabulation with 25°
smoothing

aAverage exchange probabilities are between the replica listed and the
succeeding replica.
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to the detailed balance criterion for Hamiltonian replica
exchange:

β β

β β
=

− −

− −
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r q r q
min 1,
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exp[ ( , )]exp[ ( , )]
i j j j i i

i i i j j j (11)

where in this equation β = 1/(kBTi) with T being the
temperature of each replica, ri, qi, rj, and qj are the fragment
centers and orientations for the configuration from replicas i
and j, respectively, and Ui and Uj represent the energy functions
for replicas i and j. The average exchange probabilities were

calculated for each replica. The total length of each simulation
is shown in Table 2.

3. RESULTS
Using the coarse-grained model described here, we performed
test Monte Carlo simulations of the α-helical peptide Leu12
and the GB1 hairpin, which has primarily β-sheet structure. We
have carried out a variety of analyses in order to characterize
the ability of the new method to preserve the structure of the
systems and speed up simulations.

3.1. Effect of Finite-Resolution Tables on Structure.
Just as a careful choice of lattice was needed to obtain

Figure 3. Backbone RMSD distributions in the various ensembles. (a, b) Backbone RMSD distribution in simulations without exchange of (a) Leu12
and (b) GB1 hairpin. (c, d) Backbone RMSD distribution in Hamiltonian replica exchange simulations of (c) Leu12 and (d) the GB1 hairpin. (e, f)
Average backbone RMSD as a function of smoothing scale for simulations with and without exchange, for (e) Leu12 and (f) the GB1 hairpin.
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secondary structures in lattice-based coarse-grained models,17 it
is possible for the finite resolution of our tables to destabilize
secondary structure in our models. To investigate this, we
compared the average α-helical or β-sheet fraction and the
distribution of backbone RMSD in simulations with and
without tables. The results are shown in Figures 3 and 4. For
Leu12, both the fraction of α-helical structure and the
distribution of backbone RMSDs did not change when tables
were used.
For the GB1 hairpin, the distribution of backbone RMSDs in

the first simulation without tables showed a peak at about 2 Å
that was not present when tables were used (Figure 3). This
was due to a conformational transition that took place in the
simulation without tables (Figure S2a in the Supporting
Information). A repetition of this simulation under identical
conditions but with different random number seeds did not
reproduce this conformational transition (Figure 3 and Figure
S2b in the Supporting Information). In addition, none of the
other simulations of the GB1 hairpin reported here produced
any conformations closer than approximately 1.2 Å in backbone
RMSD to the conformation of the hairpin reached by this
transition. Therefore, it appears that this conformational
transition was an extremely rare event on the time scale of
our simulations, although it may be important to the ensemble
as a whole. The second simulation without tables had a
backbone RMSD distribution and fraction of β-sheet structure
that corresponded much more closely to the simulation using
tables.
Thus, it appears that the limited resolution of the tables does

not appear by itself to hinder the representation of the
secondary structure of proteins. This is true despite the highly

directional nature of the backbone hydrogen bonds within
protein secondary structures.

3.2. Effect of Smoothing on Structure. The histograms
of backbone RMSD and the secondary structure analyses also
make it possible to assess the effect of smoothing on the
conformations sampled by each simulation. In both systems,
the quality of the structure decreases with increasing angular
scale of smoothing, with increasing average RMSD deviation
from the starting structure and decreasing fraction of α-helical
or β-sheet structure. For Leu12, the decrease in quality is small
for smoothing scales up to about 40−50° (backbone RMSD
deviations of 1−2 Å), but much greater at higher levels of
smoothing. The use of backbone smoothing likewise decreases
the secondary structure, and the effects of backbone and
interaction smoothing appear to be roughly additive (Figure
4c). At higher levels of smoothing, unfolded conformations
appear with significant deviations from the starting structure,
although even heavily smoothed simulations return to
structures near the original starting structure (Figures S1e,f in
the Supporting Information).
The GB1 hairpin is more sensitive to the smoothing

procedure. The fraction of β-sheet structure in the GB1 hairpin
declines more rapidly with increasing smoothing scale than
does the fraction of α-helical structure in Leu12, and the data
for the GB1 hairpin is also much noisier in standard simulations
(Figure 3). Some simulations of the GB1 hairpin moved away
from the original structure over the course of the simulation,
toward more compact structures in which the β-sheet structure
was lost. This can also be seen in the distribution of backbone
RMSD and its evolution over the course of the simulations
(Figure 3b and Figure S2 in the Supporting Information). This

Figure 4. Secondary structure in tabulated and smoothed simulations. (a) Average fraction of α-helical structure in Leu12 as determined either by
regions of the Ramachandran plot or using STRIDE.65 Thin horizontal lines indicate result for simulation without tables. (b) Average fraction of β-
sheet structure in GB1 hairpin as determined by STRIDE. (c, d) Contour plot of average fraction of (c) α-helical structure in Leu12 and (d) β-sheet
structure in the GB1 hairpin, both as a function of interaction smoothing and covalent smoothing.
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sensitivity is likely due to approximations made in this first
implementation of tabulation and smoothing for peptides. Also,
Figures 3 and 4 show that for the GB1 hairpin, Hamiltonian
exchange simulations exhibit more physically intuitive, and
perhaps better sampled, behavior. These data are discussed
further below.
To further diagnose the structural changes in the GB1

hairpin, a temperature replica exchange Monte Carlo
simulation67 of the hairpin was performed without tables
using eight replicas at temperatures of 300, 356, 423, 503, 597,
709, 842, and 1000 K, following a similar protocol to the
resolution exchange simulations discussed above. Histograms of
the backbone RMSD for the trajectory from each replica were
prepared and are shown in Figure S3a in the Supporting
Information. All replicas, including ones at low temperatures,
showed conformations substantially different from the starting
configuration. The replica at 300 K showed distorted, compact
conformations with similar features to those seen in the
smoothed, tabulated simulations of the hairpin. For example, in
both simulations, glutamate and aspartate side chains moved
toward the center of the hairpin in order to form additional
hydrogen bonding or salt bridge interactions (Figure S3b,c in
the Supporting Information). This strongly suggests that the
distorted conformations represent a free energy well even when
tables are not used and the potential consists of the force field
and simple distance-dependent dielectric. Thus, they are not a

direct result of the effect of smoothing on the free energy
surface; rather, the smoothing serves to reduce the time scale
needed to reach this free energy well in the simulations. In the
Discussion, we propose possible improved solvation methods
that could be combined with the tables in order to overcome
this problem. We also examine other aspects of smoothing that
contribute to the distortion of the hairpin and discuss possible
ways of correcting for them.

3.3. Speedup in Energy Computation and Sampling.
Another important test for this new method is whether it offers
enough increase in speed to allow simulations of larger systems
for longer times than would be possible using more
conventional techniques. This speedup could come from two
possible sources: replacement of multiple energy-term calcu-
lations with a single look-up and smoothing of the energy
landscape. The increase in sampling was quantified in two ways:
using the rate of backbone transitions in Ramachandran space
and the rate of “excursions” to high backbone RMSD
conformations. Table 4 shows how sources of speedup
contribute to the overall increase in sampling per unit
computation time, in comparison with both Monte Carlo
simulation without tables and all-atom MD simulation as
described previously in section 2.6.
It turns out that no significant computational savings were

achieved in the energy calculation, relative to Monte Carlo
simulation of the underlying united-atom force field without

Table 4. Relative Computational and Sampling Speedup of Simulations As a Function of the Use of Tables and Degree of
Smoothinga

smoothing scale (deg) relative to MC without tables relative to all-atom MD

system interaction backbone energy sampling overall energy sampling overall

Leu12 no tables none 1.00 1.00 1.00 33.38 0.84 27.96
0 none 0.77 0.64 0.49 25.75 0.54 13.83
10 none 0.77 0.49 0.38 25.64 0.41 10.62
20 none 0.78 0.65 0.50 25.93 0.54 14.05
30 none 0.75 0.89 0.67 25.20 0.75 18.84
40 none 0.77 1.74 1.34 25.80 1.46 37.56
50 none 0.80 3.61 2.90 26.84 3.03 81.23
60 none 0.77 8.36 6.46 25.80 7.00 180.66
70 none 0.73 7.81 5.67 24.23 6.54 158.50
80 none 0.74 14.06 10.44 24.80 11.78 292.07
90 none 0.74 16.90 12.50 24.70 14.16 349.69
10 10 1.00 0.62 0.62 33.35 0.52 17.26
20 15 0.95 0.88 0.84 31.87 0.74 23.53
30 20 0.93 1.73 1.61 30.97 1.45 44.97
40 25 0.89 6.90 6.14 29.74 5.78 171.87
50 30 0.84 29.10 24.38 27.97 24.38 681.87

GB1 hairpin no tables none 1.00 1.00 1.00 9.60 0.75 7.22
0 none 1.10 0.46 0.51 10.58 0.35 3.70
5 none 1.17 0.53 0.62 11.23 0.40 4.48
10 none 1.10 0.82 0.90 10.60 0.62 6.53
15 none 1.18 0.69 0.81 11.34 0.52 5.84
20 none 0.97 0.71 0.68 9.27 0.53 4.93
25 none 1.09 1.09 1.20 10.51 0.82 8.64
30 none 1.08 0.86 0.94 10.41 0.65 6.77
10 10 1.19 0.92 1.10 11.46 0.69 7.96
20 15 1.04 1.90 1.97 9.95 1.43 14.22
30 20 0.96 5.75 5.51 9.21 4.32 39.80
40 25 0.94 3.42 3.21 9.02 2.57 23.22
50 30 0.94 8.39 7.90 9.05 6.31 57.09

aEnergy calculation speedup figures are based on total CPU time per MC or MD step. Sampling speedup figures compare the rate of backbone
dihedral transitions in Ramachandran space as defined in Table S3, Supporting Information.
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tables. One reason for this is the small size of the fragments (an
average of approximately four united atoms), which means that
only relatively few atomistic interactions can be replaced by a
table lookup. A detailed profiling analysis was conducted as
described in the Supporting Information to determine where
CPU time is being spent during each table lookup and in the
simulation as a whole. The profiling data, shown in Table S4 in
the Supporting Information, demonstrates that in a tabulated
simulation the CPU time is distributed among several tasks.
About 20−30% of the time is spent on calculating the
nontabulated terms, and the remaining 60−70% of the CPU
time is spent on table lookups and their supporting calculations.
The most time-consuming tasks within the table lookup
process are the computation of spherical coordinates and Euler
angles, which together take about 30−35% of the total time in a
simulation. By contrast, although in modern computers the
main memory is much slower than the CPU (and in the case of
table lookups the cache memory may not help much), the
actual lookup from a table appears to be taking less than 5% of
the total CPU time.
A much greater speedup in energy calculations is obtained

relative to all-atom MD simulations, although this is the result
of several factors not related to the use of tables. These include
the increased number of particles in an all-atom model,
compared with the united-atom model used here as a basis for
the new method, and some computational efficiencies related to
the use of Monte Carlo, such as not calculating the forces on
atoms.
Although the use of tables did not reduce the amount of time

needed to calculate the energy, the smoothing procedure for

the tables does result in a smoother free energy surface, as
indicated by increased conformational sampling in the
simulations. We quantify this increased sampling by comparing
the rates of Ramachandran transitions and RMSD excursions in
smoothed versus unsmoothed simulations. For Leu12, both of
these rates increase with the angular scale of smoothing, and
moderate levels of interaction smoothing (about 30−60°) are
able to counteract this effect (Figure 5). Depending on the
amount of smoothing applied, up to a 1 order of magnitude
increase in the rate of Ramachandran transitions and up to a 2
orders of magnitude increase in high-RMSD excursions could
be obtained for both systems, relative to Monte Carlo
simulations without tabulation. With more moderate levels of
interaction smoothing (about 40−50°), which do not distort
the structure of the system as significantly, an approximately
2.5-fold increase in the rate of Ramachandran transitions and a
10-fold increase in high-RMSD excursions may be possible. For
the GB1 hairpin, the rate of Ramachandran transitions does not
increase with increasing smoothing, but the rate of RMSD
excursions does. A 5−10-fold increase in the rate of RMSD
excursions is possible with moderate amounts of smoothing
(about 20−30°), although even these appear to introduce
significant deviations in the free energy surface as described
above. The use of tables alone, without smoothing, decreases
both of these sampling rates compared with simulations
without tabulation. This appears to be due to the finite
resolution of the tables, which causes discontinuous jumps in
energy that increase the roughness of the energy surface.
In a Monte Carlo simulation, the sampling rate also depends

on the types and sizes of trial moves used. All Monte Carlo

Figure 5. Overall speedup in sampling per unit CPU time as a function of the degree of interaction smoothing (a, b) for Leu12 or (c, d) for the GB1
hairpin relative to MC simulations without tabulation (red) or MD simulations (green). Sampling assessed based on rate of transitions between (a,
c) Ramachandran plot regions or (b, d) excursions to high RMSD (>2.5 Å for Leu12, > 2.0 Å for GB1 hairpin).
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simulations used the same types of trial moves, which are
described in detail in Table S2 in the Supporting Information
and which allowed sampling of both backbone and side chain
conformations. The acceptance rate of the moves was lower in
tabulated simulations without smoothing than in simulations
without tables, but increased with increasing smoothing. A
range of possible move sizes were tested to determine the size
that results in optimum sampling. To keep the number of
possible combinations from becoming overwhelming, in this
first study the maximum sizes of backbone dihedral rotations
and backrub moves were restricted to be the same, and the
maximum size of side chain dihedral rotations and fractions of
the various move types were not varied. For both Leu12 and
the GB1 hairpin the dependence of the transition rate on step
size turned out to be relatively weak (data not shown). Since
for the GB1 hairpin a maximum move size of about 20°
appeared to give slightly better sampling than other move sizes,
trajectories with this move size were selected for all of the
previously described studies on the relationship between
smoothing scale, structure preservation, and sampling. Further
optimization of the types, sizes, and mixture of Monte Carlo
moves to be used with this method will be the subject of future
work.
3.4. Hamiltonian/Resolution Exchange Simulations.

The first attempts at “resolution exchange” for a nontrivial
peptide involved trying to make exchanges between all-atom
and united-atom representations of Met-enkephalin.44 Direct
exchange between the two models resulted in a very poor
exchange rate due to the lack of overlap between the ensembles
sampled; consequently models of intermediate resolution were
needed in order to bridge the gap. The models of ref 44 were
constructed using “incremental coarsening” in which successive
replicas converted one amino acid at a time from the all-atom
to the united-atom representation. In this way, exchange rates
of 2−18% were obtained over a total of six replicas. This
approach is not uniform over the whole system, however, and
since every bead must map onto a whole number of atoms,
there are a limited number of discrete choices for this mapping.
The method described here allows for another approach to

constructing models at intermediate resolution, since the
angular scale of interaction smoothing can be adjusted to give
models ranging from a united atom model all the way to a
much more coarse-grained model. Consequently, an arbitrary
number of replicas with intermediate levels of smoothing can
be inserted, until the exchange rate between adjacent replicas is
adequate to obtain good sampling.
This method was tried with Met-enkephalin, Leu12, and the

GB1 hairpin (see section 2.8). For all three systems, replica 1
was made to simulate the protein without tables. For Leu12 and
the GB1 hairpin, it was found necessary to insert an additional
replica that used a 50/50 mixture of potentials with and without
tables (eq 10) to obtain adequate exchange rates to the fully
tabulated replica. The remaining replicas only used increasing
levels of smoothing. The resulting exchange rates are shown in
Table 3. We obtain exchange rates between 18% and 59% for
Met-enkephalin, higher than those obtained previously.44 In
addition, we obtain exchange rates for Leu12 and the GB1
hairpin similar to those obtained previously for Met-enkephalin,
even though both Leu12 and the GB1 hairpin are larger. Note
that the maximum smoothing level for the GB1 hairpin was
smaller than that for Leu12 because further smoothing was
found to significantly decrease the overlap in configurational
space (see Figure S2 in the Supporting Information). That said,

increased exchange rates between replicas do not necessarily
imply better sampling, and in the case of the GB1 hairpin, the
unphysical structural distortions in heavily smoothed simu-
lations may not have been helpful for enhancing sampling in
the replicas using less or no smoothing.
The trajectories obtained from the replica exchange

simulations were also analyzed for secondary structure using
STRIDE,65 and the fractions of secondary structure are shown
in Figure 4, alongside the corresponding fractions from the
trajectories not using exchange. The fractions of α-helical
structure were very similar for Leu12, whereas the replica
exchange simulations from the GB1 hairpin did not experience
as much deviation from their starting structures as did the
simulations using smoothing without exchange. This may have
been simply because the replica exchange simulations were not
long enough for the hairpin to drift away from its original
conformation as it did in the simulations without exchange.

4. DISCUSSION
The present report describes a generalization of an energy
tabulation and smoothing scheme to peptides. Using all semi-
rigid fragments found in proteins, we redesigned and extended
the orientation-dependent tables from our preliminary studies
on benzene37 to accommodate polypeptides. This new
application yielded promising results, but certainly there is
room for improvement. We tested the new method on α-helical
and β-hairpin peptides. We found that for the α-helix, there are
intermediate levels of smoothing that allow a significant
increase in sampling with only a small destabilization of the
secondary structure, while for the β-hairpin it is more difficult
to improve sampling without destabilizing the structure. We
stress that the present implementation represents a first effort
for proteins with the new strategy, and a number of significant
improvements should be possible, as discussed below.

4.1. Future Applications. The strengths of the new coarse-
grained model suggest a number of potential uses for
addressing biophysical problems where existing coarse-grained
models are insufficient. One possibility is to use orientation-
dependent tables in a setting in which it makes sense to assume
much larger rigid “fragments” than the ones used here. For
example, tables of the type described here could be used to
represent protein−protein aggregation, with a fragment
representing a whole protein or domain. Such a model could
then be used to study macromolecular crowding effects68,69 or
the assembly of subunits to form icosahedral viral capsids.70,71

This would have the advantage of allowing a single table lookup
to replace the calculation of a much larger number of
interatomic interactions, thus speeding up energy calculations
by a much greater factor than was obtained here.
Some multiscale procedures beyond exchange simulation

could be facilitated by the present approach. Because the
simulation keeps track of both the position and orientation of
the rigid fragments, it is relatively straightforward to map back
and forth from coarse-grained to atomistic coordinates.
Furthermore, since the coarse-grained model is derived from
an atomistic force field, it should incorporate similar physical
assumptions, and thus it should be possible to combine coarse-
grained and atomistic approaches without the complexities
involved in other attempts.72−74 Conseqeuntly, a mixed-
resolution model could be constructed simply by evaluating
the interaction energy for fragment pairs exactly when they are
both inside an atomistic region, and using a smoothed table
when one of the fragments is outside this region. Such a model
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could be useful for drug docking; we previously obtained
promising results with a mixed-resolution model based on
combining an atomistic force field with a much simpler Go̅
potential.61

Another useful characteristic of our model is its tunable
nature. By adjusting the amount of smoothing applied to the
tables, it is possible to construct models of different effective
resolution automatically. This makes the model potentially
suitable for situations in which it is not obvious at the outset
what resolution is most appropriate for capturing the essential
interactions in a system without expending excessive computa-
tional effort. Furthermore, as demonstrated by the resolution
exchange simulations presented here, the use of a tunable
model represents a major step toward making the resolution
exchange idea more practical. As pointed out earlier, although
an improvement in exchange rates was observed compared with
previous attempts at resolution exchange, achieving an actual
enhancement in sampling may require more work. We expect
that the improvements outlined below will make the smoothed
ensembles more similar to the unsmoothed ones and thereby
improve the effectiveness of resolution exchange as a sampling
method beyond what has been demonstrated here.
Since the tables used by our method incorporate orientation-

dependent interactions such as hydrogen bonds with sufficient
resolution to resolve protein secondary structures, the model
has the inherent ability to simulate secondary structure
transitions without incorporating additional biases toward
particular secondary structures. In addition, the approach
does not incorporate information described by experimental
structures or simulations, so it should be possible to use it in
situations where these might introduce inappropriate biases.
Although the coarse-grained model here is preliminary and
requires improvement, it shows significant potential for future
applications.
4.2. Measurement of Sampling. The effective speedup

demonstrated here depends entirely on a comparison of the
conformational sampling obtained in simulations with and
without smoothing. However, the assessment of conformational
sampling in biomolecular simulations is a complex problem and
cannot easily be reduced to a single measurement or simple
algorithm.45,75−80 Here the rates of Ramachandran angle
transitions and of RMSD excursions are used as measurements
of the overall rates of sampling in our simulations. The rate of
Ramachandran transitions measures the sampling of relatively
small, local conformational fluctuations, while the rate of high
RMSD excursions shows the effect on the sampling of more
global conformational fluctuations. These processes were
chosen because enough events of each type could be observed
in each simulation to permit a reasonably accurate estimate of
the rate. Many biomolecular simulation studies focus on larger
conformational changes than observed here (such as protein
folding), and thus the ability of our models to increase the rate
of these larger conformational changes would be of more
relevance. However, except for the structural distortion of the
GB1 hairpin (which was apparently irreversible), we were not
able to observe these kinds of conformational changes in our
simulations. Nevertheless, the increase in rate of small-scale
conformational fluctuations indicates that the overall free
energy surface is smoother, which in turn suggests that the
rate of larger-scale conformational changes should also be
enhanced.
Another problem in comparing sampling rates across

simulations is that, because of the smoothing, the simulations

are not all sampling the same free energy surface. If there is a
significant difference between free energy surfaces, transitions
sampled on the smoothed surface may not be representative of
corresponding transitions on the unsmoothed surface. Con-
sequently, an increased rate of transitions may not really
represent an improvement in sampling that would be relevant
to the unsmoothed system, and a comparison of these rates
may therefore not be meaningful. This is potentially a problem
for all coarse-grained models; because of the physical
approximations they make, the increased sampling they provide
may not be relevant for the all-atom system. For Leu12, it
appears that the deviations in the free energy surface
introduced by our smoothing techniques are modest, since
even heavily smoothed simulations still primarily sample the
starting α-helical basin. This suggests that it is still meaningful
to use rates of Ramachandran transitions or RMSD excursions
to compare sampling across Leu12 simulations with various
levels of smoothing, since the nature of the conformational
fluctuations are similar across the different simulations. For the
GB1 hairpin, the situation is less clear. The effective speedup
achieved by our measures is modest (a factor of 10 at most).
The smoothed simulations sample different conformations
from those without smoothing, so even this may not be a valid
indication of actual increase in sampling. However, the ability of
the smoothed simulations to reach a conformation (albeit a
distorted one) that was not reached except through a
temperature replica exchange simulation suggests that the
smoothing may be effective in improving sampling in ways that
are not captured by the measures adopted here.

4.3. Improving the Treatment of Solvation. The fact
that distorted conformations of the GB1 hairpin occurred in the
temperature replica exchange simulation strongly suggests that
the simple distance-dependent dielectric solvation is a major
reason for the unphysical conformations of the hairpin at high
smoothing and that it should therefore be improved.
The manner in which solvation effects are incorporated into

other coarse-grained models varies from one model to another.
Many other coarse-grained models (particularly knowledge-
based models) do not have a specific term in the potential
energy devoted to representing solvation effects. Instead,
solvation effects are reflected in the experimental structures
used to create the model.20−26 While it might be possible in
principle to tabulate such a potential in order to incorporate
solvation effects, this would defeat one of the purposes of the
research presented here, which was to create a coarse-grained
model that is free from biases introduced by incorporating
experimental structural information.
Here, the initial choice of a distance dependent dielectric was

made because more sophisticated solvation models such as
generalized Born (GB) models54,81 are not pairwise. In these
models, the contribution of pairs of atoms to the solvation free
energy is expressed in terms of their charges, the distance
between them, and the Born radii. These Born radii depend on
the positions of atoms in all the other fragments besides the
two being considered and are therefore not known during the
initial construction of a table of the type described here.
Consequently, it will be necessary to redesign the interaction
energy tables in order to incorporate a GB solvation energy.
Several strategies for implementing GB-type solvation may

be possible within the tabulation framework by building on
previously proposed approximate schemes. The calculation
would require two stages: estimation of Born radii and then
calculation of the overall energy. First, following ideas used in
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the PRIMO coarse-grained model,36 for example, fragment-
averaged radii could be estimated for each fragment.
Alternatively, estimates of the radii could be obtained using a
new (second) set of tables to calculate configuration-dependent
components of the radii based on fragment pair relative
positioning. Once Born radii are obtained, the overall energy of
a given configuration could be obtained from a modified set of
energy tables based on both rigid-body coordinates (as in our
current approach) and additionally on a parameter representing
the product of fragment-averaged radii; the latter parameter is
needed for the Still formula81 and would be obtained from the
initial estimates of the Born radii. This strategy is similar to an
approach used for computational protein design.82,83

Thus, although the tables considered in the present work are
only applicable to pairwise potentials, it may be possible to
apply orientation-dependent tables of a more complex design to
more accurate solvation potentials, which would be expected to
significantly improve the conformational dynamics of the GB1
hairpin. The construction and testing of tables that can
accommodate more accurate solvation models will be the focus
of future work. It is noteworthy that, although improved
solvation will necessarily increase the computational cost for
our approach, it is likely the tabulation platform can
accommodate an approximate GB scheme that is cheaper
than existing implementations. If so, the net result would be
that the speedup of the tabulation approach would improve
relative to traditional calculations.
4.4. Other Possible Improvements. Given that this is an

initial implementation of a nontraditional approach, there are
several avenues for improvement beyond incorporating a better
solvation model. The smoothing procedure employed here
does not preserve the shape of fragments or the packing of
amino acid side chains. In the limit of infinite smoothing, the
fragments become spherical particles that are generally smaller
than the original fragments in all directions as a result of the
Boltzmann averaging. This proved to be a particular problem
for the indole ring in the side chain of tryptophan. In early
versions of our fragmentation scheme, this ring was a single
fragment: smoothing caused this ring to become a small particle
whose size was approximately equal to the van der Waals
thickness of the ring. Consequently, other parts of the peptide
could overlap with the indole ring, causing distorted
conformations. This problem was overcome by splitting the
indole ring into two smaller fragments. Similar distortions likely
affected other nonspherical fragments, such as those containing
aromatic rings. Since fragments of these types were present in
the GB1 hairpin, but not in Leu12, this effect would have
impacted the GB1 hairpin simulations more than those of
Leu12. A more general way of overcoming this problem
(without making the fragments smaller) is to divide each
fragment into smaller “subfragments” comprising fewer atoms,
calculating the pairwise interaction energy between each pair of
subfragments, applying eqs 3 and 5 to these subfragment
interactions, then adding the results to obtain the full
interaction energy in a single table. In this way, it may be
possible to separately smooth the interactions between
subfragments, possibly allowing for better shape preservation
without reducing the size of the fragments.
There are several other possible improvements that could be

made to the model described here. Another weakness of the
smoothing formalism used here is the assumption that each pair
of fragments in the system to be simulated can assume any
relative position and orientation, as if the fragments were

isolated. However, many of these relative positions may not be
accessible when the two fragments are embedded in a larger
molecule. It should be possible to modify the smoothing
process to better incorporate this information, which could be
obtained from short simulations of model compounds.
The finite resolution of the table appears to cause a

slowdown in sampling when tables with only small amounts
of smoothing are used. Consequently a minimum of about 30−
40° of smoothing (in the present scheme) is required to
overcome this slowdown and obtain a net gain. Because the
tables are six-dimensional, it is diffciult to improve their
resolution without a substantial increase in the memory
requirements. Interpolation techniques may help here, although
they will necessitate additional computation. In addition, only a
limited effort was made here to optimize the Monte Carlo
moves; further optimization may also yield improvements in
sampling.
Other potential improvements focus on trying to obtain a

greater speedup than was obtained here, particularly in the
energy calculation, or on reducing the size of the tables in
memory. At best, the use of tables to calculate the
interfragment energy took only marginally less time than
calculating it directly, and in some cases the use of tables took
longer than an equivalent direct energy calculation (Table 4).
This was not the case for the tables used in the preliminary
studies on benzene37 because those tables were constructed in
terms of absolute orientations, which were restricted to a
predefined library. It should be possible to adopt a similar
approach here. A library of orientations would be constructed,
and for each fragment, the index of the closest orientation in
the library would be found. A separate “division table” would
then be used to obtain the index corresponding to a relative
orientation from the indices corresponding to two absolute
orientations. This would obviate the need to repeatedly convert
relative orientations to Euler angles (which is responsible for
approximately 20% of the total cost of a simulation). Some
discretization error would be introduced but presumably this
would be modest for sufficiently smoothed models of primary
interest.
It may also be possible to reduce the size of the tables in

memory by approximately 40% while maintaining their effective
resolution by indexing the tables according to cos θ or cos θ′,
rather than θ or θ′. This would eliminate the factors sin θ sin θ′
from the volume of a table cell, eliminating the waste of
memory that occurs because the table is denser where θ or θ′ is
close to 0 or π. In addition, this would produce a modest
computational savings (perhaps about 10% of the total time)
because it would no longer be necessary to calculate the
arccosine of cos θ or cos θ′ during each table lookup.

5. CONCLUSIONS
We present here a first effort toward a tunable coarse-grained
force field for proteins by extending our previous work on
tabulation for simulations of fluid benzene.37 We construct our
force field by dividing proteins into rigid fragments,
precomputing orientation-dependent interaction energy tables
for those fragments, and applying smoothing techniques to the
tables. The degree of smoothing can be adjusted to create
coarse-grained models with an effective resolution that can be
varied from a united-atom force field to a bead-like model. We
have tested this approach on an α-helix and a β-hairpin, and
found that it can give improvement in sampling while
preserving secondary structure. The approach has also been
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tested as part of the resolution exchange method, producing an
improvement in exchange rates over previous attempts.44 In
essence, resolution exchange is recast as Hamiltonian exchange
since all degrees of freedom are retained in all replicas.
The initial results are encouraging, but important challenges

remain. Thus, we have also proposed several improvements to
the appproach, regarding solvation model, smoothing strategy,
and computation speed, that could facilitate future applications.
Because this model has been constructed differently from other
coarse-grained models in the literature, it may prove useful for
simulations in which other models may fail, including
significant secondary structure changes as well as exchange
simulations and mixed-resolution models. The tabulation
approach could be particularly powerful at larger scales for
encoding protein−protein interactions in cellular and viral-
capsid contexts.
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