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End-stage renal disease (ESRD) patients exhibit clinical features of premature ageing,

including frailty, cardiovascular disease, and muscle wasting. Accelerated ageing also

concerns the immune system. Patients with ESRD have both immune senescence and

chronic inflammation that are resumed in the so-called inflammaging syndrome. Immune

senescence is particularly characterised by premature loss of thymic function that is

associated with hyporesponsiveness to vaccines, susceptibility to infections, and death.

ESRD-related chronic inflammation has multiple causes and participates to accelerated

cardiovascular disease. Although, both characterisation of immune senescence and its

consequences are relatively well-known, mechanisms are more uncertain. However,

prevention of immune senescence/inflammation or/and rejuvenation of the immune

system are major goal to ameliorate clinical outcomes of ESRD patients.
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INTRODUCTION

Patients with end-stage renal disease (ESRD) are especially prone to infection (1). Furthermore,
concordant data also report that immune responses against vaccines are considerably reduced
in this population (2). Concomitantly, ESRD patients exhibit aseptic low-grade inflammation
(3, 4). These clinical features are close to those observed in elderly and suggest that inflammaging
associating both premature senescence of the immune system and inflammation is a key part of the
ESRD-related immune phenotype. What is more, some convincing studies established evidences
of accelerated immune senescence in chronic kidney disease and dialysis patients compared to the
general population (5–7).

In this review, we analyze recent knowledge on ESRD-associated accelerated immune ageing
with a special focus on thymus involution. In addition, we speculate on therapeutic tools likely to
prevent or reverse these immune alterations.
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IMMUNE SENESCENCE IN AGEING

The term immune senescence clusters all the changes that occur
in the immune system during ageing. Although this process
mainly affects T lymphocytes, all aspects of innate and adaptive
immunity are concerned. Recently, immune ageing has been
suggested to be more appropriate to design all immune changes
associated with ageing. Indeed, the ageing of the immune system
is a more general concept including two different processes.
The first one is what specifically refers to immune senescence,
which is mainly linked to age-dependent thymic involution
leading to reduced immune repertoire diversity and compounded
oligo-clonal increase in memory immune cells. Sensitivity to
infections, reduced vaccine immunity, and defect in tumour
clearance observed in elderly are thought to be at least in
part linked to these immune alterations. Immune senescence
in T cells is sometimes called cellular exhaustion even if
the two phenomenon are not exactly identical. Exhausted T
cells are defined by the loss of CD28 and the concomitant
expression of Tim-3 and PD-1 (8). The second characteristics
of aged immunity is inflammaging. Old age is associated
with low-grade systemic inflammation. Chronic innate immune
activation, pro-inflammatory cytokine profile secretion, and
age-induced accumulation of self-reactive T cells contribute
to age-related inflammation. Inflammaging is supposed to
explain some degenerative disease associated with ageing. The
term “Inflammaging” is frequently proposed to include these
two aspects.

Immune Senescence: A Pivotal Role of
Thymic Involution
T cell immune senescence is mainly linked to physiologic thymic
involution. The thymus mainly serves to the development of
a large but self-tolerant T cell repertoire. Briefly, multipotent
hematopoietic stem cells (HSC) differentiate into common
lymphoid or myeloid progenitors. T lymphoids precursors go
to the thymus where they undergo several stages of maturation
resulting in the formation of naive T lymphocytes called recent
thymic emigrant (RTE) (9). These cells present a diversified
polyclonal T cell receptor (TCR). Central tolerance occurs in
the thymus via two mechanisms. The first one is thymocyte
negative selection. This step consists in deletion of most of self-
auto-reactive T cells via apoptosis (9). The second concerns the
generation of CD4 single positive FoxP3+ regulatory T cells,
which can eliminate auto-reactive T cells having escaped to
negative selection (9).

The ability to generate RTE in the thymus declines with age.
Thymic involution consists in reduction of both thymic size and
thymocyte number and reorganisation of thymic ultrastructure.
Soon after birth, functional tissue begins to be substituted by
fat (10). After 50 years, there is almost no output of naïve T
cells. The frequency of naïve T cells greatly diminishes both in
periphery and in lymphoid organ, especially for CD8+ T cells.
Nevertheless, homeostatic proliferation of previously generated
naïve T cells enables tomaintain a broad and diverse pool of naïve
T cells, especially for CD4+ T cells. Continuous involution of the
thymus with age finally causes a decrease in the thymic output

of naïve T cells and subsequently a reduction of the peripheral
TCR repertoire.

Two non-exclusive mechanisms account for thymus
involution. The first one is mainly based on a reduced production
of HSC. Indeed, self-renewal of HSC diminishes with age and
tends to favour myeloid lineage (11, 12). Reduction in HSC
production and switch toward myeloid lineage would both
contribute to decrease the output of common lymphoid
progenitors (13, 14). In addition, aged hematopoietic stem cells
have less lymphoid differentiation potential (15). The second
one depends on age-related reduction in stromal niches of the
bone marrow () and thymus (16, 17). Recent studies mainly
plead for the latter hypothesis. Stroma cells in the thymus are
mainly thymic epithelial cells (TECs) (18). Convincing data
show that age-associated thymic involution is dependent on
TEC transcription factors involved in TEC homeostasis, such as
Forkhead box N1 (19). Indeed, FOXN1 is essential for thymus
development and thymocyte formation (19). A null mutation
in the FOXN1 gene defines the “null mice” which phenotype is
characterised, amongst others, by the absence of thymus and T
cells (20). Reduction in thymic FOXN1 expression is observed as
one the first step of thymic involution in aged individuals (21).
Conditional KO mice studies have considerably explained the
causal role of FOXN1 in thymus involution. LoxP-floxed-FoxN1
mouse with the ubiquitous CreER(T) transgene have a low dose
of spontaneous activation and exhibit progressive loss of FOXN1
(22). Progressive loss of FOXN1 is associated with accelerated
thymic involution (22). Finally, intra-thymic supplementation in
FOXN1-cDNA partially reverses thymic involution and restores
peripheral CD4+ T cell population (22).

The decrease in T cell production is compensated by
homeostatic expansion of existing peripheral T cells occurs.
This leads to an increased proportion of memory T cells and
reduction in the diversity of TCR repertoire (23). Accumulation
of memory T cells is mainly due to life-long exposure to
chronic antigen stimulation by pathogens. The most important
is cytomegalovirus. However, expansion of CD8+ T cells is only
observed in CMV-exposed old patients (24).

Inflammaging
Somatic cellular senescence is defined by the permanent arrest
of cell cycle accompanied by lack of proliferation, expression
of anti-proliferative markers, and shortening of telomeres (25).
This biological process is likely to be protective against cancer
transformation (26).

Accumulation of somatic senescent cells contribute on
one hand to organ dysfunction, and on the other hand to
inflammation through induction of somatic cell senescence-
associated secretory phenotype (SASP). Immune senescence
favours increased production of SASP (27) due to decreased
chemotaxis of immune cells toward somatic senescent cells and
reduced phagocytosis by neutrophils and macrophages (28–31).

Many other mechanisms contribute to inflammation in
ageing. Chronic viral infections, especially with CMV, induce low
level of cytokines production (32).

Moreover, involution of the thymus is accompanied by a
decrease ability to negatively select self-auto-reactive T cells,
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which explain propension to certain autoimmune diseases in
the elderly (33). Paradoxically, peripheral Treg cells accumulate
during ageing. Thomas et al. (34) developed a mock-self-antigen
chimaera mouse model, in which membrane-bound ovalbumin
transgenic mice, carrying a FOXN1-floxed gene for induction of
conditional thymic atrophy, received ovalbumin-specific T cell
receptor transgenic progenitor cells. The authors showed that a
decreased number of ovalbumin-specific tTreg and pTreg, but
not polyclonal Treg cells in chimeric mice with thymus atrophy.
The ovalbumin-specific pTreg had less suppressive activity and a
lower expression of FoxP3. This suggest that although generation
of polyclonal pan-Treg is not affected by thymus involution,
certain specific Treg clones may have aberrant agonist selection
contributing to age-related chronic inflammation.

Thus, immune ageing is characterised by both immune
deficiency (immune senescence driven by thymus involution)
and inflammation leading to the concept of inflammaging.

IMMUNE AGEING IN END-STAGE RENAL
DISEASE

Chronic kidney disease phenotype is very similar to premature
ageing. Frailty, osteoporosis, muscle wasting, and cardiovascular
disease occur at younger age in CKD patients. Many factors
such as oxidative stress, accumulation of uremic toxins, and
inflammation are supposed to contribute to accelerated ageing
(35). The immune system undergoes a similar premature ageing.
Indeed, peripheral blood mononuclear cell relative telomere
length is shorter in CKD patients as compared to healthy
individuals (5). Furthermore, ESRD patients frequently exhibit
T cell lymphopenia (6) and concomitantly have both a marked
susceptibility for infections and a decreased response to vaccines
suggesting a T cell immune defect (7). Finally, ESRD patients
exhibit a low-grade inflammation status (36). This association is
typical of the “inflammaging” state observed in elderly.

Premature thymic involution is a key component of ESRD-
associated immune senescence. Others and we reported that
thymic output decreased with progression of CKD. Thymic
output is comparable between 40-year-old uremic patients and
80 year-old non-uremic patients (5). Our group recently reported
that, in ESRD patients, low thymic output was predictive of
severe infections (5). The decrease in RTE could be the result
of a reduction in the thymic output of naïve T cells and/or
of a reduction in homeostatic proliferation. Premature loss of
thymic function is likely to explain the decrease in naïve T cells
in young patients with ESRD. Indeed, decreased CD4 naïve T
cells percentage is also observed in paediatric CKD patients (37).
Moreover, concordant data in animals suggest that acute renal
failure accelerates thymus involution (38, 39).

However, there are few data documenting potential causes
for premature thymic involution during chronic kidney disease.
Chronic inflammation is likely to markedly contribute to
immune ageing. Of note, a recent study shows that CRP levels
inversely correlates with naïve T cells in haemodialysis patients
suggesting either that inflammation and immune senescence
evolve in parallel or that one is driving the other one (40).

Activation of innate immunity, characterised by monocyte
activation and overproduction of inflammatory cytokines such
as Il-6, is a key feature of the CKD immune system (4, 41, 42).
Thus, Jurk et al. (43) reported that knockout of the nfkb1 subunit
of the transcription factor NF-κB induces chronic low-grade
inflammation that leads to premature ageing in mice. Treating
reversible source of inflammation is obviously a goal in CKD
patients and such strategy may reduce premature ageing.

Main mechanisms of premature immune ageing are
summarised in Figure 1.

IMMUNE REJUVENATION: FACTS AND
PERSPECTIVES IN CKD

Immune senescence has deleterious consequences. Susceptibility
to infection, premature cardiovascular disease, and increased
cancer incidence are some of the most frequent and serious. A
number of measures, from the simplest to the more complex,
may be susceptible to reverse immune senescence, especially
premature thymic involution (Figure 2).

PHYSICAL ACTIVITY

The impact of physical activity in maintaining thymic activity
must not be neglected. It is one of the rare therapeutic strategies
with consistent results in both animal and human studies (44).

In an immunological ageing mouse model, 4 weeks of free-
wheel running increased naïve T lymphocytes and reduced
effector ratio of cytotoxic T lymphocytes (45). Concordant data
also exist in humans. Comparing adults (55–79 years) who had
intensive sportive practise (cycling), age-matched adults and
young sedentary adults, Duggal et al. (46) observed increased
frequency of naïve T cells and RTE in cyclists. Sportsmen had
also higher levels of IL-7 and lower levels of IL-6. By contrast,
CD28-CD57+CD8+T cell frequencies did not differ between the
three groups. Evenmore powerful are the evidence that sustained
physical activity in elderly improve immune responses against
influenza vaccine (47, 48).

Skeletal muscles express and secrete different cytokines, also
called myokines. Among them, IL-7 and IL-15 are released
during exercise (49, 50). IL-6 is also released by muscle during
exercise. Nevertheless, whereas IL-6 secreted through NF-KB
signalling is pro-inflammatory, IL-6 produced by muscles is
dependent on JUN N-terminal kinase and activator protein 1
signalling and exhibits anti-inflammatory properties (51, 52).
Proof of concept is supported by experiments showing that both
exercise and IL-6 infusion suppress inflammation induced by
endotoxin injection (53). Modulation of cytokine secretion by
muscles during exercise are likely to explain the link between
physical activity and thymopoiesis.

Physical activity is often reduced in CKD patients. Sedentary
life, socio-economics conditions, comorbidities, and uremia-
related asthenia contribute to the reduced physical activity.
Although a large number of studies reported the beneficial effects
of exercise in CKD patients, no data are available concerning
the potential consequences on immune status. However, other
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FIGURE 1 | End-stage renal disease-related inflammaging: main causes and potential consequences. CMV, Cytomegalovirus; SASP, senescence-associated

secretory phenotype.

benefits of physical exercise in ESRD patients have been
largely reported and physical rehabilitation programs should be
encouraged in these patients. Further studies should analyze
whether physical activity may at least in part reverse or prevent
thymic involution and inflammation.

HORMONES

Many hormonal pathways play a role in thymic physiology.
However, most of them are impaired during chronic renal failure.

IGF-1-GH Pathway
The IGF-1–GH pathway interferes with many aspects of thymus
biology. TECs express GH receptors (54) and IGF is expressed
in the thymus (55). Growth hormone supplementation increases
thymic cytokine production and T cell progenitor recruitment
into the thymus and can reverse thymic involution (56–
58). Hansen et al. (59) reported that treatment with rhGH
increased thymus size, T cell receptor excision circles (TREC)
frequency, and total TREC content in CD4T cells in HIV-
infected patients. GH withdrawal in patients receiving GH
treatment is followed by decreased thymic output and intra-
thymic T cell proliferation (60).

The IGF-1-GH axis is profoundly altered in dialysis patients.
ESRF patients have increased GH secretion, but normal IGF-1
concentrations, indicating GH resistance (61, 62). The resistant
state is related to alterations at several levels of GH/IGF-1
axis, GH signalling, and IGF-1 action (63, 64). Several studies
reported that GH administration might increase IGF-1 levels

in dialysis patients as in healthy subjects (65). Moreover, large
studies confirmed the safety of long-term administration of GH
in dialysis patients (66).

All these data suggest that GH may be a therapeutic hope to
reverse thymopoiesis defect in ESRD patients.

Sex Hormones
The effects of sex hormones on thymus are well-known. A
number of studies demonstrated that sex steroid ablation delay or
reverse thymus involution in both animals and humans (67, 68).
Sex steroids inhibit TEC expression of Notch ligand Delta-like 4
that promotes T cell differentiation and development (69).

Surgical castration is obviously not a therapeutic option in
humans, but LHRH analogues use is also associated with thymic
rejuvenation (70). Leuprolide desensitises LHRH receptors
and reduce the release of LH and FSH. Goldberg et al.
(71) showed that Leuprolide enhances T cell reconstitution
following allogeneic bone marrow transplantation in mice.
Similar data have been obtained in non-human primates (72).
Leuprolide induces thymic rejuvenation in aged male baboons
(72). Castration by Leuprolide is reversible and, due to the
use of LHRH agonists in a variety of human diseases, safety,
pharmacokinetics and efficacy are well-known.

Nevertheless, some studies also suggest that castration-
induced thymic rejuvenation is only transient and potentially
hazardous. Indeed, sex hormones deprivation favours self-
reactivity (73, 74). Concordant with this concern, castration
decreased CD4+CD25+ Treg and increased natural (NK) cells
in humans (75). Moreover, androgens increase autoimmune
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FIGURE 2 | Potential therapeutic interventions to prevent or reverse end-stage renal disease-related inflammaging. Black, interventions with evidences; Blue,

interventions without clinical evidence but with strong background and potentiality; Red, interventions with evidences of inefficacy.

regulator (AIRE) expression in mTEC and therefore enhance
negative thymocyte selection while estrogens have opposite
effects (76).

Despite some former results, the use of chemical castration to
enhance thymic rejuvenation is consequently not a safe option.

CYTOKINES

IL-7
IL-7 is produced by both thymic stromal cells and bone marrow.
IL-7 mediates lymphopoiesis of both T and B cells, and in the
thymus, promotes proliferation, differentiation, and survival of
thymocytes (77). IL-7 signals through its receptor IL-7R (78).
Loss of function mutations in IL-7R leads to severe combined
immunodeficiency (SCID) (78).

Administration of IL-7 in mice expand both naïve and
memory CD4 and CD8 peripheral T cells (79).

RhIL-7 has been used in different clinical settings and
constantly leads to increase circulating T cell populations, with
more specific expansion of RTE, naïve T cells and central memory
T cells (80–83). TCR repertoire diversification is also observed
in rhIL-7 treated patients (84). The increase in both CD4+ and

CD8+ T cell remain for months after the end of treatment by
rhIL-7 (85).

IL-7 concentrations have been found to be elevated in CKD
(86) suggesting a possible relative resistance to this cytokine.
Nevertheless, to date, there is no study assessing the effects of
rhIL-7 in lymphopenic CKD patients. Our group recently begun
a phase II study (INDIA Study NCT. . . ) using rhIL-7 to reverse
thymic involution in ESRD patients on dialysis.

IL-22
Interleukin-22, also called IL-10-related T cell-derived inducible
factor (IL-TIF) (87), is a member of the IL-10 family, including
IL-19, IL-20, IL-24, IL-26, IL-28, and IL-29. IL-22R1 determines
the cellular sensitivity toward IL-22. This receptor is restricted
to specific cell types and is absent on immune cells (88). Il-
22 interacts with IL-2R on the surface of TEC and allows both
survival and proliferation of thymocytes.

IL-22 administration to mice having received total body
irradiation increases both thymocytes and TEC recovery (89).
Similar observations have been done after murine allogeneic
hematopoietic cell transplant (90). IL-22 increases the number
of TEC via a stat3-dependent signalling (91). More recently, it
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was shown that, after allogeneic hematopoietic transplantation,
plasma IL-22 levels positively correlated with blood TREC
levels (92).

Limitations in the therapeutic use of rhIL-22 are based on
its dual effects, which strictly depend on the context. The pro-
regenerative effects of IL-22 could be counterbalanced by its
inflammatory and tumorigenic properties.

Keratinocyte Growth Factor
KGF belongs to the fibroblast growth factor family. This cytokine
is involved in epithelial cell proliferation and differentiation in
many tissues, including the thymus. KGF KOmice have impaired
thymopoiesis and peripheral T-cell recovery after allogeneic
bone marrow transplant (93). Moreover, KGF administration
to mice enhance thymopoiesis and accelerate thymic recovery
after irradiation (93, 94). In non-human primates, KGF
enhances immune reconstitution after autologous hematopoietic
progenitor cell transplantation (95, 96).

More recently, conflicting results made the benefits of KGF
less clear. Coles et al. (97) reported on treatment with Palifermin
(KGF) in patients having received alemtuzumab, a monoclonal
anti-CD52 antibody, which induces profound and sustained T
cell lymphopenia. Six months after treatment, individuals having
received Palifermin had fewer naïve CD4+ T cells and sjTREC,
leading to study discontinuation (97). Furthermore, in HIV-
infected patients, Palifermin was not effective in either improving
thymic function or rising circulating CD4+ T cells (98). Finally,
Palifermin was associated with worse clinical outcomes in
patients with acute respiratory distress syndrome (99).

All these results underline the difficulty to export results
obtained in animal studies to humans and are to make cautious
on KGF use.

FOXN1- AND TEC-BASED APPROACHES

Some studies tested whether TEC stem cell may help to restore
thymic function.

In a mouse model, Kim et al. (100) reported that engraftment
of young TEC allows thymic growth and increased T cell
production. FOXN1-induced TEC from fibroblasts support
CD4+ and CD8+ T cells development. Transplantation of such
cells allows the formation of a complete thymus containing
all the TEC subtypes required for T-cell differentiation (101).
Another group recently confirmed the feasibility and relevance of
such a strategy (102). Moreover, forced expression of FOXN1 in
involuted thymus results in thymic regeneration with increased
thymopoiesis and naïve T cell output (103). The structure of the
regenerated thymus was very close to young thymus in terms of
architecture and gene expression. These results suggests that up-
regulation of FOXN1 is sufficient to reverse age-related thymic
involution. Finally, recombinant FOXN1 protein fused with cell-
penetrating peptides increased the number of TEC and enhanced
thymopoiesis after hematopoietic stem cell transplantation in
mice (104).

All together, these studies suggest that the FOXN1 axis
research is a valuable strategy to reverse thymic involution. To
date, there are no evaluation of FOXN1 expression during CKD.

MICROBIOTA

Microbiota interferes with the immune system lifelong and
its dysregulation results in inflammation (105). After great
variations during the neonatal and early life periods, more
subtle changes occur in microbiota until middle age before final
stabilisation (106). Nevertheless, age-related changes in intestinal
functions, inflammation, and co-morbidities may contribute to
dysbiosis (107).

Whether microbiota interferes with immune senescence is
challenging because the relative part of microbiota and health
status are difficult to isolate. Moreover, even when dysbiosis may
favour inflammation, inflammation may also promote dysbiosis
asking the question of which came first the chicken or the egg?
Indeed, chronic inflammation is a potent driver of increased
gut permeability and microbial dysbiosis. For instance, age-
induced dysbiosis is reduced in TNF KO mice as compared with
wild type (108). Moreover, some cytokines decrease expression
of tight junction proteins favours gut permeability, bacterial
translocation, and systemic inflammation (109).

There are scarce but convincing data suggesting that aged
microbiota contributes to drive immune senescence. Young
germ-free (GF) mice raised with aged mice exhibit an
inflammatory profile characterised by elevated inflammatory
cytokines and macrophage activation (108). This effect was not
observed when young GF mice were co-housed with young
mice (108). Fransen et al. (109) reported on the transfer of gut
microbiota from conventional old mice to young GF mice. T cell
activation occurs in young GF mice after transfer of microbiota.
Inflammation was related to higher levels of Proteobacteria and
lower levels of Akkermansia in old CV mice. Once again, these
alterations in immune status were not observed after transfer of
microbiota from young conventional mice.

Short-chain fatty acid levels decreased in elderly. Yet,
SCFA lead to increase Treg cell differentiation (110). SCFA
supplementation, namely butyrate, suppresses arthritis in mice
by a Breg-dependent mechanism (111). Precisely, Butyrate
increases the levels of 5-HIAA (5-hydroxyindole-3-acetic acid)
which activates the ary-hydrocarbon receptor, a transcriptional
marker for Breg function (111).

Administration of high dose probiotics in elderly subjects
enhanced CD8+CD25+ T cells and NK cells while low dose
increased CD4+CD25+ and B lymphocytes (112). Amore recent
study reported that a probiotic mixture increased naive and
regulatory T cells and decreased memory T cells (113).

Finally, best evidence of interactions between microbiota
and immune senescence come from studies reporting better
vaccine responses against influenza after treatment with pre- or
probiotics. Akatsu et al. (114) performed a randomised study
in elderly receiving enteral tube feeding. Patients received either
a placebo or Bifidobacterium longum BB536. After influenza
vaccine, patients having received BB536 exhibited higher levels
of anti-H1N1 antibodies. Boge et al. (115) also showed increased
response to influenza vaccination in elderly following prolonged
administration of a probiotic. Other recent studies suggest that
probiotics and prebiotics are effective to improve seroconversion
and seroprotection after influenza vaccines (116, 117).
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Dysbiosis is a hallmark of chronic kidney disease (118).
Accumulation of uremic toxins in CKD leads to an insuatable
excretion of urea, uric acid, and oxalates in the intestinal
lumen (119). The enrichment in uremic toxins cause substantial
modifications in gut physiology mainly an increased in
permeability and in microbiota with an increase in uricase
and urease-producing bacteria (120). Proteolytic fermentation
leads to the formation of different uremic toxins such as p-
cresyl sulphate and indoxyl-sulphate potentially aggravating the
uremic status (120). Overgrowth of Bacteroidetes, Firmicutes,
Ruminococcaceae and clostridia together with low abundance
of Lactobacilli, Prevotellae, and bifidobacterium species depict
main characteristics of intestinal microbiota of CKD patients
compared to healthy subjects (121). Dysbiosis and increased
gut permeability take account for bacterial translocation and
inflammation (122). More recently, we reported (123) that the
proportion of the inflammatory 14-carbon chain lipid A-LPS
was increased in ESRD patients compared to healthy volunteers.
Conversely, proportion of anti-inflammatory 18-carbon chain
lipid A-LPS was decreased. Moreover, sera with predominance
of 14-carbon chain lipid A-LPS induced higher secretion of pro-
inflammatory cytokines than those with predominance of 18-
carbon chain lipid A-LPS. TLR4 or LPS antagonists decreased
LPS-induced cytokine production by monocytes, demonstrating
an LPS-specific effect. This suggests that septic inflammation
observed in ESRD is at least in part related to a shift toward more
inflammatory LPS subtypes from altered microbiota.

Different uremic toxins are generated in the intestine and
contribute to inflammation in CKD patients (124). p-Cresol
is a product of the bacteria metabolization of the aromatic
amino acid tyrosine in the colon. Increased levels of p-Cresol
in CKD patients correlate with the expansion of terminally
differentiated CD8+ T cells (125). A recent randomised study
reported that nutritional intervention based on very low protein
diet modifies microbiota toward a potential anti-inflammatory
profile and reduces p-Cresyl Sulphate (126). This suggests
that dietary interventions may mitigate uremic syndrome and
immune ageing through microbiota modulation.

KIDNEY TRANSPLANTATION

Successful kidney transplantation reverses renal failure
and increases life expectancy. Contrasting effects of kidney
transplantation have been observed on immune senescence.

Our group studied markers of immune senescence before
and after kidney transplantation. In patients not having
received polyclonal antithymocyte globulins (ATG), both T cell
relative telomere length and telomerase activity increased after
transplantation whereas they were not modified in ATG-treated
patients (127). This suggests that renal function recovery may
induce a partial reversion of immunesenescence. Nevertheless,
Meijers et al. (128) did not observe such changes in T cell RTL
after transplantation.

By contrast, concordant data exist to state that thymic output
do not increase in non-ATG treated patients and decrease in
those having received ATG (127, 128). In vitro, ATG binds

to TEC and exerts a complement-independent, dose-dependent
cytotoxicity (129). Nevertheless, Preville et al. (130) suggested
that ATG could not enter into the thymus. Indeed, the authors
observed a dose-dependent T cell depletion in spleen and lymph
nodes but not in the thymus. However, these first results were not
confirmed in a swine model in which lymphodepletion occurs
in the thymus after administration of ATG (131). Alternatively,
ATG may decrease lymphoid progenitors (127).

ESRD-associated CD8+ T cell expansion tends to marginally
increase after transplantation mainly due to CMV reactivation
(132). Nevertheless, inflammation measured by CRP or
different proinflammatory cytokines substantially dropped after
transplantation (122).

All together, these results suggest that kidney transplantation
does not reverse ESRD-associated accelerated thymus involution.
Whether this absence of effect is due to fixed immune changes
or competitive effects of immunosuppressive drugs is difficult
to ascertain.

DIALYSIS PROCEDURES

Dialysis procedure itself is a source of inflammation.
Bioincompatible membranes, prosthetic vascular accesses,
PD solution are potential sources of immune activation.

Peritoneal Dialysis vs. Haemodialysis
Whether PD results in systemic inflammation is not clear. Some
studies reported that longer PD duration results in higher IL-
6 concentrations (133, 134), but others did not observe any
increase in IL-6 or CRP levels (135). By contrast, a burst in
inflammation is well-described during HD procedure (136–138).
Expression of TLR2 and TLR4 on monocytes from patients
on haemodialysis is increased (139) whereas the expression of
TLR4 has been reported to be reduced on monocytes in patients
with CKD not receiving dialysis (140). Bioincompatible dialyzer
induces intermittent activation of monocytes and up-regulation
of TLR4. Accordingly, we observed higher inflammatory
monocytes counts in patients on HD as compared to those on
PD (141).

We also reported higher relative telomerase activity in
PD patients (141). Of note, some cytokines released during
haemodialysis session, such as IFN-α, may inhibit telomerase
activity in hematopoietic cells (142, 143).

Finally, T cell exhaustion was more pronounced in HD
patients, especially in those with previous exposure to CMV
(141). Different mechanisms may explain this difference.
Persistent low-grade inflammation in HD patients may
contribute to immune responses to self-antigens and pathological
ageing by promoting T cell exhaustion. Alternatively, repeated
antigenic stimulation of T cells during haemodialysis sessionmay
cause enhanced proliferation and accelerated ageing compared
to PD.

Dialysis Membranes Choice as a
Modulator of Inflammation
Bio-incompatible membranes induce sustained activation of
innate immunity. During a dialysis session, both neutrophils
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and monocytes are recruited and activated. After activation,
these cells release a number of pro-inflammatory cytokines
and complement pathways activators (144). Simultaneously,
their phagocytic functions are markedly altered (145, 146).
Dialysis membranes also mediate complement activation (147,
148). These phenomena induce persistent pro-inflammatory
and pro-coagulant states and partly explain the oxidative burst
observed in ESRD patients. Although a direct effect of bio-
incompatibility on adaptive immunity is more difficult to
demonstrate, inter-connexions between innate and adaptive
immunity may explain the consequences of bio-incompatibility
on T cell functions (149).

A major challenge to reduce immune activation
during dialysis is the development and use of more
biocompatible membranes.

Membranes may be modified to reduce oxidative stress. For
instance, vitamin E-coded dialyzers reduced indoleamine 2,3-
dioxygenase-1 activity and nitric oxide formation (150). Of
note, TEC are especially vulnerable to oxidative DNA damage.
Thymic stromal deficiency in catalase induces thymic atrophy
(151). Treatment with antioxidant can delay the onset of thymus
involution (151).

Recently, median cut-off (MCO) membranes characterised by
wider pores and more uniformity in pore size were developed.
These membranes reduce uremic toxins at a greater degree
(152). A randomised study showed that MCO significantly
decrease the expression of TNF-α mRNA and IL-6 mRNA
in PBMC compared to high-flux dialyzers (153). Polymethyl
methacrylate (PMMA) membranes can remove large-weight
molecular substances thanks to their adsorptive capacities (154).
PMMA membranes seem to be associated with lower pre-
dialysis values of IL-6 (155). Contrary to other dialyzers, PMMA
membranes are able to clear sCD40 which accumulation in ESRD
is associated with unresponsiveness to hepatitis B vaccine (156).

Even when dialysis membrane influence cytokines clearance,
complement and coagulation activation, and removal of uremic
toxins, a direct impact on immune senescence is not yet proven.
However, there are, as described above, several mechanisms
linking inflammation and immune ageing. Further studies
should examine the effects of different membranes on adaptive
immunity, vaccine responses, and clinical outcomes.

Iron Supplementation
Iron supplementation is widely used in HD (157). Intravenous
iron administration induces oxidative stress (158). Iron overload

is associated with shorter telomere length in ESRD patients (141).
Association between iron overload and telomere length has been
reported in different studies (159–161). Reduced telomere length
is associated with mortality in dialysis patients (5). Excessive iron
load enhances ferroptosis (162), which has an important role
in sterile inflammatory conditions such as tissue acute injury,
ischemic-reperfusion injury, and neurotoxicity.

CONCLUSION

Premature thymic involution and chronic inflammation
greatly contribute to increased morbidity and mortality in
CKD patients. Mechanisms are likely to be multiple and
interlinked. Even when the quest to fountain of youth is
a pipe dream, there are many scientific opportunities to
prevent or to, at least in part, reverse CKD-related immune
senescence. Further studies should precisely define most
important pathways driving premature immune ageing in
CKD patients and best therapeutic options to control them.
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