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Minimum inhibitory concentration (MIC) denotes the in vitro benchmark indicating the quantity 
of antibiotic required to inhibit proliferation of specific bacterial strains. Determining MIC values 
corresponding to the infecting bacterial strain is paramount for tailoring appropriate antibiotic 
therapy. In the interim between specimen collection and laboratory-derived MIC outcomes, clinicians 
frequently resort to empirical therapy informed by retrospective analyses. Here introduces two 
deep learning approaches, a Convolutional Neural Network (CNN)-based model and an Enformer-
based model, integrating genomic data of Klebsiella Pneumoniae and molecular structural data of 20 
antibiotics to anticipate the MIC value of the bacterium for each antibiotic under consideration. These 
models demonstrate enhanced raw accuracy over the existing state-of-the-art model, which rely 
exclusively on genomic data. The CNN-based model achieves a notable 20% increase in raw accuracy 
while further mirroring the 1-tier accuracy of the state-of-the-art model. Although the Enformer-based 
model does not quite reach the performance levels of the CNN-based model, it offers an advantage 
by eliminating the need for arbitrary data processing steps. This streamlining of the data processing 
pipeline facilitates fast updates and improves the model interpretability. It is expected that these deep 
learning paradigms can significantly inform and bolster clinician decision-making during the empirical 
treatment phase.
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Klebsiella pneumoniae (Kpn) is a member of the Enterobacteriaceae family, characterized as a gram-negative, 
encapsulated, non-motile bacterium1. Kpn has long been acknowledged as a significant pathogen in healthcare 
environments, accounting for 3–8% of all hospital-acquired infections in the United States1. Its pathogenicity is 
heightened by its capability to rapidly acquire resistance mechanisms against a broad spectrum of antibiotics. 
Over the years, there has been a discernible escalation in resistance rates of Kpn. Notably, regions including 
Eastern and South-Western Europe, along with Mediterranean nations, have become endemic to multi-drug 
resistant Kpn due to extended-spectrum beta-lactamase (ESBL) producing strains2. More concerning has been 
the emergence and propagation of Carbapenem-Resistant Klebsiella pneumoniae (CRKP). Carbapenems, often 
considered the last line of defense against multi-drug resistant pathogens, have become increasingly ineffective 
against these resilient strains3. While the majority of regions reported negligible non-susceptibility in 2005, by 
2015, there was a pronounced emergence of CRKP in several countries, including Romania, Italy, and Greece, 
with resistance rates ranging between 40% and 60%2.

Antimicrobial susceptibility test (AST) serves as the conventional method to ascertain the sensitivity of 
microbial isolates to specific antimicrobial agents, facilitating tailored therapeutic regimens. Central to AST’s 
methodology is the evaluation of bacterial growth in the presence of graded concentrations of antibiotics, 
typically employing broth microdilution or disk diffusion assays4. While AST remains a cornerstone in clinical 
microbiology, a pronounced limitation is the protracted turnaround time. The need to culture bacterial isolates 
until they reach a discernible growth phase can extend the diagnostic window by 24 to 48 h or even longer for 
slow-growing pathogens5. This inherent delay potentially compromises patient outcomes, as physicians may 
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need to administer empirical, broad-spectrum antibiotic therapy in the interim, which might inadvertently 
exacerbate the burgeoning antibiotic resistance crisis6.

Recently, sharing of whole genome sequence (WGS) data in conjunction with clinical antimicrobial resistance 
(AMR) metadata through public platforms has facilitated the application of machine learning (ML) and deep 
learning (DL) techniques to predict AMR phenotypes7. Davis et al. and Drouin et al. proposed reference-free 
methods using k-mer features and AMR phenotype labels to generate ML models predicting resistance traits 
in multiple bacterial species7–9. Other studies including Coelho et al., Stoesser et al., Niehaus et al., Bradley et 
al., Pesesky et al., and Jeukens et al. have employed AMR genes, SNPs, WGS data, or a mix of these to construct 
ML classifiers that demonstrate high accuracy7,10–15. Specifically, for Kpn, Nguyen et al.7 developed an XGBoost 
Regressor model grounded on 10-mer attributes and laboratory-sourced minimum inhibitory concentrations 
(MIC) value labels.

In a subsequent study, Nguyen et al.16 developed a deep learning (DL) model on the same Kpn dataset, albeit 
with 8-mer features. Because they used 8-mer features, rather than 10-mer features as in previous studies7, 
prediction accuracy of their CNN model was worse than that of XGBoost model. Reason for using shorter 
8-mer features was that computational cost for building a CNN model was prohibitively large if 10-mer sequence 
features were used.

Notwithstanding the contributions of the aforementioned studies, there has been a conspicuous absence of 
efforts to incorporate the properties of the antimicrobials in the prediction of AMR phenotypes. Nguyen et al.7 
employed a one-hot encoding approach for the 20 antibiotics and appended them to the 10-mer feature vector. 
Nguyen et al.16 devised distinct models for each of the 20 antibiotics.

In this study, we propose two DL approaches to integrate genomic and molecular structural data into the task 
of predicting laboratory derived MIC values of Kpn. The first model uses selected 10-mer features of Kpn genomes 
together with simplified molecular input line entry system (SMILES) data of 20 antibiotics. The integrated data 
matrix is processed through CNN layers to output the MIC value. The second model uses only AMR genes. 
The collection of AMR genes is integrated with SMILES data and processed through an Enformer architecture 
proposed by Avsec et al.17. Enformer is a DL architecture combining convolutional layers and transformer layers 
to allow memory efficient processing of long DNA sequences. The Enformer model’s ability to take holistic 
sequences as input enhances its interpretability by preserving the sequential context of the data. Two metrics 
were primarily assessed: raw accuracy and accuracy within a ± 1 two-fold dilution factor (termed 1-tier), in line 
with prior studies by Nguyen et al.7 and Nguyen et al.16. Both CNN and Enformer-based models outperformed 
the state-of-the-art model in raw accuracy, recording 0.84 and 0.77 respectively, compared to the state-of-the-
art’s 0.70. The CNN-based model demonstrated a 1-tier accuracy equivalent to the state-of-the-art model at 
0.92, while the Enformer-based model attained a 0.85 1-tier accuracy. The CNN-based model’s accuracies for 
individual antibiotics and error rates for predicting susceptibility profiles were also evaluated to enable a more 
comprehensive comparison with models from prior studies7,16. The interpretability of the Enformer model was 
assessed and illustrated by analyzing the attention matrices, providing insights into the significant positions 
within the input sequences.

Methods
Dataset preparation
The dataset used in this study is identical to the one used in Nguyen et al.7. The original dataset was obtained 
from Long et al.18,19. Over the course of 6 years (2011 ~ 2017) Kpn isolates from patients has been cultured by 
the Houston Methodist Hospital System18. Genomic assemblies were conducted using SPAdes20 via the PATRIC 
assembly platform7,21,22. MIC values have been measured by the BD-Phoenix test for 20 antibiotics for each 
of the strain. The resulting database had total 1667 genomic data and 32,312 genome-antibiotic pairs with a 
corresponding MIC value. WGS contigs for the 1667 Kpn strains were retrieved in the FASTA ‘.fna’ file format 
directly from the PATRIC FTP repository, using the specific PATRIC IDs enumerated in Nguyen et al.7.

For the purpose of classification, MIC labels underwent a data cleansing process to convert them into integer 
values. Values delineated as ‘> x’ were recalibrated to 2x, while those marked as ‘< x’ were adjusted to x/2. 
Labels such as ‘>= x’, ‘<= x’, and x remained unaltered and were represented as x. For compound antibiotics like 
‘Ampicillin/Sulbactam’, only the MIC of the primary antibiotic was considered, given that the value of the latter 
is either a constant or contingent upon the former7.

An overview of the dataset revealed that, from a total of 32,312 genome-antibiotic pairs, three specific data 
points (573.12878 - Meropenem, 573.12981 - Meropenem, and 573.12924 - Meropenem) did not have a MIC 
label corresponding to a power of two. To ensure the coherence of integer values after Log2 scaling, these three 
data points were excluded. The refined dataset, comprising 32,309 data points, was then partitioned into 11 
subsets of approximately equivalent size. A 10-fold cross-validation approach utilized ten of these sets to develop 
ten distinct models, reserving the eleventh set exclusively for testing across all models.

CNN-based model feature selection and encoding
The overall workflow of the CNN-based model is illustrated in Fig. 1c. In the process of feature engineering 
for the CNN-based model, we employed the k-mer strategy leveraging WGS data. The dataset, comprising 
1667 genomic samples, yielded 524,800 unique 10-mers. However, forming a matrix with these rows presents 
significant computational memory challenges.

Guided by the methodology described in Nguyen et al.7, we first constructed ten XGBoost Regressor models 
via 10-fold cross-validation on the WGS dataset. The 10-mer sequence counts were quantified utilizing KMC223 
software. Each 10-mer was allocated an index, spanning from 0 to 524,799, ordered alphabetically. Subsequently, 
20 antibiotics were attributed indices from 524,800 to 524,819, and the antibiotic corresponding to each data 
point was assigned a count value of 1. These files were integrated into the XGBoost model as a DMatrix, an 
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Fig. 1. Data encoding schematics in CNN based MIC prediction. (a) Representation of the encoding process 
for the 22,209 10-mer sequences derived from the XGBoost models. These sequences undergo log scaling with 
a base of 1.5529 before one-hot encoding, yielding a matrix of dimensions (22209, 20). (b) Configuration of 
the CNN model, which is designed in alignment with the architecture delineated by Nguyen et al.16. Layers 
within dotted areas represent modular components of the overall model. The first two dotted areas denote 
convolutional operations, each consisting of a convolutional layer followed by pooling and normalization. The 
last dotted area represents a dense layer operation followed by normalization and activation. (c) Overview of 
the data processing flow within the CNN-based model framework. The blue dotted area represents the data 
processing pipeline for Klebsiella pneumoniae WGS data, while the green dotted area represents the pipeline 
for antibiotic structural data. The yellow dotted area represents the training of the model with the integrated 
matrix resulting from the processing pipelines of WGS and antibiotic structural data.
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internal data structure of XGBoost optimized for both memory efficiency and training speed. Extensive grid 
search was performed to identify optimal hyperparameters by Nguyen et al.7. After conducting several grid 
search trials in our study, we confirmed that the hyperparameters reported by Nguyen et al.7 were optimal 
and adopted them for our work. XGBoost models were trained wherein the ‘objective’ was configured as ‘reg: 
squarederror’. The parameters ‘colsample_bylevel’ and ‘colsample_bytree’ were set to 1, ‘learning_rate’ to 0.0625, 
and ‘max_depth’ to 4, conducting the training over 695 epochs. Employing a 10-fold cross-validation technique 
yielded a set of ten distinct models (Supplementary Table 1). Next, the ‘weight’ feature importance of all 10-mer 
features was examined. ‘Weight’ represents the number of nodes where a feature was utilized to determine a 
split. This metric provides an integer value of importance for each input feature. A weight of 0 indicates that the 
feature was never used to determine a split in the ensemble tree, allowing to confidently discard such features 
with minimal loss of information. Only those 10-mer features with non-zero importance in at least one of the 
ten models were extracted and re-indexed from 0 to 22,208. Subsequent data preparations for the CNN-based 
model exclusively utilized these 22,209 10-mer sequences. This selective utilization of significant features made 
it possible to construct a CNN model.

Prior to the development of a CNN model, an initial trial was conducted to train the XGBoost model solely 
utilizing the isolated 22,209 features. Employing identical hyperparameters, a compact version of the XGBoost 
model was trained. The compact XGBoost model closely mirrored the performance of the original XGBoost 
model (Table 1 and Supplementary Table 2). These results affirmed the legitimacy of our attempts to construct a 
model that exclusively employs the selected features to further enhance accuracies.

Emulating the encoding procedure described in Nguyen et al.16, the log-scaled count values of each 10-mer 
were one-hot encoded, forming a matrix representation of the WGS data. With 10-mer count values ranging 
from 0 to 4,281, a logarithmic transformation of base 1.5529 effectively rescaled these values to lie between 0 
and 19.

 
N =

{
NaN, F = 0

⌈log1.5529F ⌉, F ≥ 1

Count values for each 10-mer were subjected to a log scale transformation and subsequently rounded up. This 
ensured all count values to range between 0 and 19, excluding those with an original count of 0. Instances with a 
count value of 0 were maintained as a zero-vector of (20,), whereas all others were one-hot encoded at the index 
corresponding to the log-scaled count value. This transformation led to the encoding of each WGS sample as a 
(22209, 20) matrix, with each row corresponding to a specific 10-mer sequence and each column reflecting the 
rescaled frequency of the associated 10-mer (Fig. 1a).

Antibiotic isomeric SMILES strings were retrieved from the PubChem24 database, utilizing the ‘pubchempy’ 
library, based on their chemical identifier (CID). Employing the SmilesVectorizer of the molvecgen25 library, 
conversion of the isomeric SMILES string into the RDKit26 mol object followed by one-hot character encoding 
yielded a (130, 20) matrix. The SMILES matrix was stacked repeatedly over itself to match the dimensions of the 
WGS matrix. Stacking 256 identical SMILES matrix vertically resulted in a (130 × 28, 20) matrix, which, upon 
cropping from index [11,071:], produced a (130 × 28 – 11071, 20) matrix, matching the dimensions of the WGS 
matrix (22209, 20) for subsequent addition and scaling.

Each genome-antibiotic pairing from the 32,309 samples was encoded through an additive combination of 
the WGS and SMILES matrices, followed by a linear scaling operation (division by 2). The rationale for adding 
the two matrices was to integrate genomic sequence and antibiotic structure information without disrupting 
their individual spatial organization. Previous studies, such as Hirohara et al.27 demonstrated that CNNs can 
effectively learn chemical motifs from one-hot encoded SMILES strings without prior knowledge of important 
substructures. Similarly, CNNs applied to 8-mer representations of WGS data16 confirmed the feasibility of 
using CNNs on k-mer representations. Other combination methods, including multiplication, concatenation, 
and separate CNN applications before combining at the Dense layer have been explored, but addition yielded 
the best performance. This is likely due to preserving the spatial organization of each matrix for effective feature 
extraction of sequences. To scale data points between 0 and 1, a linear scaling operation was applied. Adding 
two one-hot encoded matrices results in values ranging from 0 to 2, thus dividing by 2 ensured proper min-max 
scaling. Each of these integrated matrices was subsequently labeled with the integer equivalent to the Log2 of the 
laboratory-derived MIC value. This labeling framed our research as a multi-class classification task employing a 

Original XGBoost a Compact XGBoost b
8-mer CNN 
Model c CNN-based Model d Enformer-based Model e

Raw 1-tier Raw 1-tier Raw 1-tier Raw 1-tier Raw 1-tier

0.696  ± 0.002 0.920 ± 0.001 0.697 ± 0.003 0.923 ± 0.001 0.810 0.815 0.838 ± 0.002 0.922 ± 0.001 0.770 ± 0.005 0.854 ± 0.006

Table 1. Test accuracies obtained from five distinct models. a Original XGBoost model built based on the 
hyperparameters reported by Nguyen et al.7. b Compact XGBoost model trained with identical parameters as 
original XGBoost but trained only on significant 10-mer features. c 8-mer CNN model reported by Nguyen et 
al.16. The 95% confidence interval has not been reported in the original study. d CNN-based model trained on 
integrated matrix of important 10-mers data and antibiotics SMILES data. e Enformer-based model trained on 
integrated matrix of AMR gene sequences and antibiotics SMILES data.
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simple CNN framework. The MIC labels were one-hot encoded into an (11,) vector, with each cell representing 
integer values from − 3 to + 7.

CNN-based model architecture and training
The architecture of the CNN was principally modeled on the framework proposed by Nguyen et al.16. The 
input matrix of dimensions (22209, 20) was channeled through a sequence of layers, beginning with a 2D 
convolutional layer configured with 64 features, a kernel size of 3, and the incorporation of a Rectified Linear 
Unit (ReLU) activation function. Subsequently, the processed data navigated through a 2D Max-pooling layer 
featuring a kernel size of 2 and underwent batch normalization. A second convolutional layer, outfitted with 128 
features, was followed by an additional pooling and normalization procedure. The resultant matrix was then 
flattened and transitioned through a dense layer, engineered with an output size of 64, and underwent further 
batch normalization and ReLU activation. The ensuing (64,) vector was directed through a final dense layer, 
culminating in an output vector of dimensions (11,) (Fig. 1b). Softmax activation coupled with categorical cross-
entropy loss was employed, framing the problem as a multi-class classification task.

The training initiated with a learning rate set at 1e-5. If no enhancement in the validation loss was observed 
over a span of 2 epochs, the learning rate was scaled down by a factor of 0.25. Training was terminated should 
the validation loss remain stagnant over 4 consecutive epochs.

Enformer-based model feature encoding
Overview of the workflow of Enformer-based model is illustrated in Fig. 2b. The Enformer architecture was 
conceptualized by Avsec et al.17 to predict long-range enhancer-promoter interactions spanning up to 100 kb. 
This deep learning design incorporates three key modules: seven convolutional blocks, eleven transformer blocks, 
and a culmination of cropping with a final convolutional layer17. In our attempt to estimate MIC values from 
genomic and antimicrobial datasets, we adapted the Enformer model, tailoring it to our multi-class classification 
objectives (Fig. 2a). While transformers excel at discerning sequence dependencies, they encounter difficulties 
with extensive DNA sequences. Their predominant challenge is the quadratic space complexity, O(n2), stemming 
from the self-attention mechanism. Enformer integrates convolutional layers, introducing pooling prior to 
the transformer layers, which facilitates feature extraction from condensed sequence lengths, rendering them 
compatible with transformers. Such a strategy markedly diminishes the memory requisites for DNA sequence 
analysis.

The genomic size of Kpn typically spans between 5.34 and 5.58 Mb28. Despite utilizing the Enformer 
architecture, sequences exceeding 100 kb presents substantial computational demands. Consequently, to achieve 
computational efficiency, our Enformer based methodology was designed to primarily focus on AMR genes. 
AMR genes were derived from the primary ‘.fna’ file contigs utilizing the Resistance Gene Identifier (RGI) tool 
associated with the CARD29 database. Only genes that registered as ‘Perfect’ or ‘Strict’ hits within the CARD 
database were incorporated into the Enformer-based model input. The identified AMR genes for each isolate, 
along with their detailed information, are available in the GitHub repository. From this data we discerned that a 
single Kpn strain’s aggregated AMR genes averaged a length of 49.2 kb, with a range from 17.5 kb to a maximum 
of 69.9 kb. To standardize the AMR genes of each strain to a consistent length of 98,304 bp, the genes were 
padded with ‘N’ sequences. Specifically, if a given strain contained n AMR genes, n + 1 paddings of equal length 
were interspersed between the genes and at both ends of the sequence to achieve the designated total length. The 
lengths of ‘N’ sequences were determined by the formula:

 
⌊ 98,304 −

∑
ilen (genei)

total number of genes + 1
⌋

For the one-hot encoding process nucleotide bases ‘A’, ‘C’, ‘G’, ‘T’, and ‘N’ were respectively encoded as ‘[1, 0, 0, 
0]’, ‘[0, 1, 0, 0]’, ‘[0, 0, 1, 0]’, ‘[0, 0, 0, 1]’, and ‘[0, 0, 0, 0]’. This procedure yields a 98,304 × 4 matrix for each of the 
1,667 genomic datasets. The molecular structure of each antibiotic was initially represented as a 130 × 20 matrix, 
analogous to the procedure employed in the CNN-based model. This matrix underwent reshaping into a (650, 
4) matrix, which was repeatedly stacked upon itself until its size exceeded 98,304 rows. Subsequent cropping 
delivered a matrix of dimensions (98304, 4). The genomic data matrix and antibiotic data matrix were added 
and linearly scaled by 2. Consistent with the CNN-based model, MIC values were encoded as an (11,) vector.

Enformer-based model architecture and training
The Enformer-based model is instantiated with a default configuration of 192 channels, two transformer layers, 
eight attention heads, and ‘max’ as the pooling type. The ‘stem’ section of the model comprises a sequence of 
convolutional, pooling, and residual layers. It commences with a 1D convolutional layer with a kernel size of 
7, followed by a series of max-pooling with window size 2 and convolutional blocks. Each convolutional block 
comprises of a cross-replica batch normalization layer, Gaussian Error Linear Unit (GELU) activation, and a 
1D convolutional layer with specified kernel size. After three convolutional blocks with kernel size 7, 3, and 
3 respectively, each followed by a max-pooling layer, one last residual convolutional block with kernel size 1 
and a max-pooling layer is applied. Following the stem, the model transitions into the transformer section, 
which contains 2 transformer blocks. Each block comprises of a residual layer of layer normalization, multihead 
attention module of Avsec et al.17, and subsequent layers of layer normalization, ReLU activation, and Dense 
layer of output size 192. Subsequent to the transformer, the architecture integrates a final pointwise layer. This 
segment comprises another max-pooling module, a GELU activation function, and a flattening operation, 
rendering the output suitable for the subsequent dense layers. The architecture culminates by applying a final 
dense module. This module consists of a dense layer with 256 units, followed by a batch normalization layer, a 
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ReLU activation function, a dropout layer with a rate of 0.4, and concludes with an 11-unit dense layer equipped 
with a softmax activation function, generating the final predictions (Fig. 2a).

The model training was instantiated with an initial learning rate of 1e-14. Throughout a warm-up phase 
comprising two epochs and extending over 3,304 steps, the learning rate was linearly escalated to achieve a value 
of 0.002. Upon encountering a stagnation in the enhancement of validation 1-tier accuracy over a duration of 
4 epochs, the learning rate was subsequently diminished by a factor of 0.5. Training was terminated after 100 
epochs or in the event that the validation 1-tier accuracy failed to exhibit improvement for a successive span of 
16 epochs.

Fig. 2. Data encoding schematics in Enformer based MIC prediction. (a) Enformer-based model architecture: 
A tailored version of the Enformer architecture, originally outlined by Avsec et al.17, adjusted for the specific 
needs of the MIC prediction task. Layers within dotted areas represent modular components of the overall 
model. The first dotted area represents the ‘stem’ section, a series of convolutional operations. The model then 
transitions into the transformer section, depicted by the second dotted area. The third dotted area prepares the 
output of the transformer section (pooling and activation) before it is flattened and passed into the final dense 
layer section to output the predicted MIC. (b) Overview of the data processing flow within the Enformer-based 
model framework. The blue dotted area represents the data processing pipeline for Klebsiella pneumoniae 
WGS data, which is notably shorter compared to Fig. 1c. The green dotted area represents the data processing 
pipeline for antibiotic structural data. The yellow dotted area represents the training of the model with the 
integrated matrix resulting from the processing pipelines of WGS and antibiotic structural data.
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Results
Learning curves
Utilizing a hardware setup equipped with a 256GB RAM CPU and eight 11GB GeForce RTX 2080 Ti GPUs, the 
CNN-based model training required an average of 21.4 epochs (Supplementary Fig. 1). The duration for these 
processes was approximately 4.19 h.

Under the same hardware setup, Enformer-based model training required an average of 54.8 epochs, 
consuming 13.23 h (Supplementary Fig. 2).

Overall model accuracies
Two accuracy metrics were employed: raw accuracy which evaluates the prediction of the precise MIC label, and 
1-tier accuracy capturing predictions within a ± 1 two-fold dilution factor of the actual MIC label. Measuring 
accuracy within this two-fold dilution factor is consistent with the current FDA standards for diagnostic tools 
and established practices in clinical microbiology7,30,31. Utilizing 10-fold cross-validation for CNN-based models, 
the mean validation raw accuracy was found to be 0.846 (± 0.005, 95% CI), the validation 1-tier accuracy 0.920 
(± 0.003, 95% CI), the test raw accuracy 0.838 (± 0.002, 95% CI), and the test 1-tier accuracy 0.922 (± 0.001, 
95% CI).

The achieved raw accuracy of 0.838 represents a significant improvement, marking a 20% increase from the 
accuracy (0.696) set by the state-of-the-art XGBoost model7. In addition, the 1-tier accuracy closely paralleled 
the XGBoost model’s performance at 0.922. Compared to the 8-mer CNN model, the raw accuracy of the 
CNN-based model increased by 3.4%, rising from 0.810. Additionally, the 1-tier accuracy showed a substantial 
improvement of 13%, increasing from 0.815 (Table 1 and Supplementary Table 3).

In accordance with the methodology of the CNN-based model, both raw accuracy and 1-tier accuracy were 
assessed in the Enformer-based model. A 10-fold cross-validation yielded a mean validation raw accuracy of 
0.783 (± 0.004 95% CI), a validation 1-tier accuracy of 0.866 (± 0.003 95% CI), a test raw accuracy of 0.770 
(± 0.003 95% CI), and a test 1-tier accuracy of 0.854 (± 0.004 95% CI). Despite the inability to emulate the 1-tier 
accuracy of the state-of-the-art XGBoost model7, the Enformer model exhibited an 11% increase in test raw 
accuracy (Table 1). Compared to the 8-mer CNN model, although the Enformer-based model did not surpass 
the raw accuracy of the 8-mer CNN model, it demonstrated a 4.7% improvement in 1-tier accuracy (Table 1 and 
Supplementary Table 4).

Individual antibiotics accuracies
The CNN-based model exhibited the highest overall performance in both metrics of accuracies. Further 
examination was conducted to evaluate the raw and 1-tier accuracies of the CNN-based model individually 
across the spectrum of 20 antibiotics. The model achieved raw accuracies exceeding 0.900 for seven antibiotics, 
while another seven exhibited accuracies between 0.800 and 0.900. A smaller fraction, comprising two antibiotics, 
showed raw accuracies within the range of 0.700–0.800, followed by three antibiotics with accuracies between 
0.600 and 0.700, and one with an accuracy ranging from 0.500 to 0.600. In terms of 1-tier accuracy, a significant 
majority, sixteen antibiotics, recorded accuracies over 0.900. Two antibiotics presented 1-tier accuracies between 
0.800 and 0.900, and another two fell into the range of 0.700–0.800. Ampicillin and Cefuroxime sodium were 
notable standouts, each achieving 1-tier accuracies surpassing 0.990, and raw accuracies of 0.972 and 0.981, 
respectively. In contrast, Cefepime displayed the lowest model performance, with a raw accuracy of 0.589 and a 
1-tier accuracy of 0.764 (Supplementary Tables 5 and 6).

Ablation study and comparative analysis
As compared to the model proposed by Nguyen et al.16, our CNN-based model exhibits two primary distinctions. 
First, it employs 10-mer sequences as features, deviating from the 8-mers employed by Nguyen et al.16. Second, 
our model incorporates molecular structure data of antibiotics into the data matrix. To understand the factors 
contributing to the enhanced performance, we conducted an ablation study.

We first compared the performance of our 10-mer CNN-based model against the 8-mer model proposed by 
Nguyen et al.16. Our model demonstrated a marked improvement in performance compared to Nguyen et al.'s 
model, as evidenced in the pairwise comparison plot (Fig. 3a). Among the 20 antibiotics analyzed, 19 showed an 
increased test 1-tier accuracy relative to the previous model, with an average improvement of 11.1%p.

To quantify the impact of integrating antibiotic structural information into MIC value prediction, we created 
and 10-fold cross-validated 20 separate models without this information. The performance of these ablated 
models was then compared with the CNN-based model (Fig. 3b). Out of 20 antibiotics, 12 showed improved 
test 1-tier accuracies in our CNN-based model in comparison to the models without antibiotic structural data, 
achieving an average enhancement of 6.2%p. Notably, the most significant improvement was observed in the 
prediction of MIC for Nitrofurantoin, where the 1-tier accuracy surged from 51.2 to 95.7% upon inclusion of 
antibiotics structural data.

Susceptibility profile error rates
Given that a primary application of these deep learning tools is to predict which Klebsiella pneumoniae isolates 
are resistant, assessing sensitivity and specificity is necessary. For comprehensive comparison with previous 
studies7,16, we evaluated the very major error (VME) rate and major error (ME) rate of our models. The VME 
rate, defined as 1 − sensitivity, represents the percentage of resistant isolates incorrectly predicted as susceptible. 
The ME rate, defined as 1 − specificity, represents the percentage of susceptible isolates incorrectly predicted 
as resistant. MIC thresholds for resistance and susceptibility were determined based on the CLSI breakpoints 
reported in 202332.
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Direct comparison with previous studies is challenging due to the multiple updates to the CLSI breakpoints 
since 2017, which Nguyen et al.7 used for their susceptibility profiles. Moreover, Nguyen et al.16 did not specify 
which clinical breakpoint standards they utilized and did not report the overall VME/ME rates for the entire 
dataset, focusing instead on individual antibiotics. Additionally, Nguyen et al.16 excluded Ampicillin from their 
VME/ME rate evaluation due to the limited number of susceptible samples (4 out of 1639).

Despite these limitations, a side-by-side comparison of VME and ME values for each model is provided 
in Table 2. The CNN-based model achieved a VME rate of 0.034, comparable to the state-of-the-art XGBoost 
model7, which reported a VME rate of 0.031 (± 0.003, 95% CI). The CNN-based model outperformed the 
XGBoost model in 6 antibiotics including Amikacin, Cefazolin, Ciprofloxacin, Levofloxacin, Nitrofurantoin, 
and Trimethoprim/Sulfamethoxazole (Table 2). When compared to the 8-mer CNN model, our CNN-based 
model showed substantial improvements across all 19 antibiotics available for comparison (Table 2).

The ME rate for the CNN-based model was 0.131, higher than the XGBoost model’s ME rate of 0.037 (± 0.004, 
95% CI). This indicates a bias in the CNN-based model towards predicting higher MIC values, potentially due to 
the imbalanced dataset, where resistant data points outnumber susceptible data points by over a factor of three 
(Table 2). Antibiotics with an ME rate exceeding 0.5 included Ampicillin and Nitrofurantoin, with ME rates of 
1.0 and 0.8, respectively. Ampicillin had only 4 susceptible datapoints out of 1639, and Nitrofurantoin had 55 
out of 774, representing the lowest counts of susceptible data points among the 20 antibiotics. The bias may be 
attributed to framing the task as a multi-class classification rather than a regression task, as the former penalizes 
solely based on the correctness of predictions rather than the margin of error. Future research should focus on 
expanding the dataset and achieving a more balanced distribution to mitigate these biases.

Attention analysis
The Enformer architecture compresses input sequences into “bins” using convolutional layers while preserving 
their sequential order17. As a result, the output matrix from the convolutional operation (the input for the 
transformer) maintains the original sequence order. In the transformer layer, each row of the input matrix 
is treated as an embedded token. By examining the attention matrix, the level of attention allocated to each 
position in the original input sequence can be evaluated (Fig. 4a).

To illustrate this, the attention matrices for the genomic sequence of PATRIC ID: 573.12902 combined with 
the SMILES data of 20 antibiotics were analyzed. Isolate 573.12902 was randomly selected from those with data 
points for all 20 antibiotics. Each row and column of the attention matrix directly extracted from the model 
represents a 32-bp bin of the corresponding position in the input sequence (Fig. 4b and c). We calculated the 
mean value of each column to measure the overall attention allocated to each bin. The attention distribution 
across the sequence is shown in a line graph (Fig. 4d and Supplementary Fig. 3).

The resulting graphs indicate that for all 20 antibiotics, the Enformer model focuses extensively on the AMR 
gene regions (Supplementary Fig. 3). The input sequence comprises alternating [‘N’ padding + SMILES] and 
[AMR gene + SMILES] regions. Given that the SMILES data is uniformly distributed across the input sequence, 
the model’s selective attention to regions containing both AMR gene and SMILES data suggests it is identifying 
significant positions with abundant information relevant to MIC prediction.

Positions with the highest attention peaks were further analyzed. Out of 3,072 positions, the top 15 positions 
(less than 0.5% of the entire sequence) with the highest attention were extracted and their corresponding 

Fig. 3. Comparative analysis of model performance (a) Pairwise comparison plot demonstrating the 
enhanced performance of our 10-mer CNN-based model against the 8-mer model proposed by Nguyen et 
al.16. (b) Performance comparison between the CNN-based model and the antibiotics-ablated 10-mers model, 
indicating the effect of incorporating antibiotic structural information.
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positions in the original input sequence were examined. For 18 out of the 20 antibiotics, at least one of these top 
15 positions corresponded to an AMR gene related to resistance against the respective antibiotic. For example, 
for 573.12902 - Piperacillin/Tazobactam, 6 out of the 15 highest attention peaks corresponded to AMR genes 
responsible for penam resistance (acrB, marA, KpnH, and pbp3). Similarly, for 573.12902 - Ciprofloxacin, 5 
out of the 15 highest attention peaks corresponded to AMR genes responsible for fluoroquinolone antibiotic 
resistance (adeF, oqxA, emrR, and KpnG). This demonstrates that the Enformer-based model allocates high 
attention to AMR genes related to the specific drug class in question.

Discussion
Approaches utilizing ML and DL can significantly enhance clinician decision-making during the empirical 
treatment phase, bridging the gap between specimen collection and laboratory-derived MIC outcomes from 
AST. Traditional AST requires culturing bacterial isolates until a discernible growth phase is reached, extending 
the diagnostic window by 24 to 48 h or longer for slow-growing pathogens5. In contrast, with a well-established 
sequencing pipeline, WGS data can be obtained within 8–15  h from the initiation of sample preparation, 
including DNA extraction33,34. Once the WGS data is ready and aligned, a pre-trained model can predict the 
MIC value almost instantaneously.

Among the methodologies examined in this study, the CNN-based model exhibited the highest performance. 
Notably, a raw accuracy of 0.838 represents a 20% improvement from Nguyen et al.'s7 state-of-the-art XGBoost 
model. This enhancement underscores the benefit of applying CNN to 10-mer genomic features, in contrast to 
XGBoost model and 8-mer based CNN model. By comparing with 8-mer CNN model, we showed that high 
performance of our CNN-based model primarily stems from effective genomic feature selection procedure. This 
process enabled the construction of the CNN model using longer 10-mer genomic sequence features, which was 
hindered by the prohibitively high computational cost in a previous study. We also demonstrated that integrating 
antibiotic structural data in the model was beneficial. To our understanding, this marks the first effort to integrate 
antibiotic structural data into antibiotic resistance prediction. The ablation of antibiotic structural information 
data indicates that the adoption of 10-mers along with the incorporation of antibiotic structural data, collectively 
contributes to the enhancement of the model’s accuracy.

While predicting MIC values within a ± 1 two-fold dilution adheres to FDA guidelines and conventional 
standards, this margin of variability could pose challenges for clinical application. The model’s predictions 
are intended to support clinicians in determining the appropriate antibiotics and their concentrations for 

Antibiotic Resistant Susceptible

XGBoost7 a
8-mer CNN16 
b

10-mer 
CNN c

VME ME VME ME VME ME

All 22,393 7044 0.031 0.037 N/A N/A 0.034 0.131

Amikacin 454 155 0.298 0.000 0.300 0.023 0.013 0.006

Ampicillin 1635 4 0.000 0.000 N/A N/A 0.000 1.000

Ampicillin/
Sulbactam 1455 90 0.003 0.032 0.014 0.056 0.008 0.111

Aztreonam 1407 216 0.001 0.398 0.099 0.318 0.013 0.444

Cefazolin 1570 97 0.060 0.018 0.032 0.200 0.004 0.289

Cefepime 963 418 0.007 0.137 0.175 0.171 0.109 0.392

Cefoxitin 828 667 0.077 0.009 0.157 0.075 0.122 0.133

Ceftazidime 1488 136 0.005 0.123 0.074 0.143 0.006 0.272

Ceftriaxone 1528 80 0.000 0.188 0.0013 0.000 0.001 0.013

Cefuroxime sodium 1469 91 0.002 0.010 0.061 0.111 0.004 0.154

Ciprofloxacin 1506 0 0.005 0.025 0.028 0.100 0.000 NaN

Gentamicin 741 752 0.072 0.009 0.147 0.054 0.082 0.061

Imipenem 478 1160 0.040 0.032 0.0142 0.052 0.103 0.028

Levofloxacin 1335 0 0.016 0.020 0.039 0.000 0.000 NaN

Meropenem 481 1130 0.048 0.027 0.083 0.061 0.112 0.020

Nitrofurantoin 719 55 0.018 0.227 0.069 0.333 0.000 0.800

Piperacillin/
Tazobactam 1230 272 0.025 0.012 0.143 0.116 0.035 0.342

Tetracycline 778 739 0.114 0.008 0.195 0.095 0.175 0.153

Tobramycin 1077 566 0.040 0.012 0.151 0.051 0.095 0.081

Trimethoprim/
Sulfamethoxazole 1251 416 0.119 0.108 0.095 0.122 0.039 0.197

Table 2. VME and ME rates of three distinct models. a VME and ME rate of the XGBoost model reported by 
Nguyen et al.7. b VME and ME rate of the 8-mer CNN model reported by Nguyen et al.16. The values for overall 
antibiotics and Ampicillin were omitted. c VME and ME rate of the CNN-based model.
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prescription. A substantial uptick in raw accuracy is anticipated to facilitate clinicians in leveraging these 
predictions for tailored patient decisions.

To evaluate the model’s capability in predicting susceptibility profiles, VME and ME rates were assessed. The 
CNN-based model demonstrated VME rates comparable to the state-of-the-art XGBoost model. Notably, the 
CNN-based model significantly outperformed the 8-mer CNN model across all antibiotics (Table 2). The ME 
rate was higher than that of the XGBoost model. This discrepancy is likely due to the imbalance in the dataset, 

Fig. 4. Analysis of attention matrices of the Enformer-based model. (a) Transformation of input sequence 
features. After five convolution and pooling operations, the input sequence is compressed into a matrix with 
1/32 the original number of rows. Since both convolution and pooling operations are one-dimensional, the 
sequential order of the original sequence is preserved. (b) Heatmap representation of the attention matrix for 
input 573.12902-Piperacillin/Tazobactam, showing distinct lines that indicate positions of high attention. (c) 
Heatmap representation of the attention matrix for input 573.12902-Ciprofloxacin. (d) Attention distribution 
depicted in a line graph. For AMR gene positions, plotted in black, high positions correspond to [AMR 
gene + SMILES] regions, while low positions correspond to [‘N’ padding + SMILES] regions. The mean 
attention for each column of the attention matrix 4b and 4c is plotted in blue and green respectively.
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with resistant data points outnumbering susceptible ones by over a factor of three. Additionally, the multi-
class classification approach may be inherently more vulnerable to the effects of such imbalances. Despite these 
issues, we used the dataset without balancing to maintain consistency with previous studies by Nguyen et al.7 
and Nguyen et al.16. Utilizing the same datas allows for a direct comparison of the performance of our novel 
approaches with those used in earlier research. Future studies should aim to train models on more enriched and 
balanced datasets to effectively address this issue. Despite having a higher ME rate compared to the XGBoost 
model, VME is considered a more critical error than ME in clinical applications.

The CNN approach is not without limitations. The extraction of significant 10-mers to structure the genome 
data matrix relies on preceding XGBoost models. This prolongs the data processing pipeline and renders the 
model cumbersome for iterative enhancements. Relying on XGBoost’s feature importance to select 10-mers 
adds an additional layer of opacity, impeding straightforward model interpretation. As such, extended model 
architectures suffer from diminished explainability and interpretability.

To address these constraints of the CNN-based model, we turned our attention to Enformers. By deploying 
Enformers, genomic sequences were used without extensive feature engineering, enhancing model explainability. 
While the Enformer-based model failed to surpass the state-of-the-art model in 1-tier accuracy, it delivered 
satisfactory performance in raw accuracy. It presents a noteworthy improvement, marking an 11% enhancement 
(Table 1).

Several factors may account for the model’s subdued performance relative to the 10-mer CNN approach. Most 
prominently, the Enformer-based model incorporated only AMR gene data. Despite the Enformer’s architecture, 
the entire WGS of Kpn exceeded the memory capacity of our hardware configuration. In selectively extracting 
AMR genes, potentially crucial data, such as AMR gene regulatory regions or even unidentified AMR genes, 
might have been overlooked. Furthermore, streamlining the genomic data to include only AMR genes increases 
the model’s vulnerability to low genomic diversity within the dataset. Nguyen et al.7 reported the phylogenetic 
tree of Klebsiella pneumoniae strains in the dataset, constructed by aligning seven housekeeping genes (phoE, 
tonB, rpoB, pgi, gapA, mdh, and infB), and analyzed the AMR gene content of each strain. They also examined 
the variability in MIC values across 20 antibiotics within the same MLST types. Their findings indicated that in 
the dataset closely related strains can exhibit significant diversity in AMR gene content, and nearly clonal strains 
of the same MLST type can have varying MIC values for the same antibiotic. For example, 27 isolates of the 
same MLST type had five different MIC values for Piperacillin/Tazobactam, while 56 isolates in another MLST 
type had seven different MIC values. Moreover, among the 1,667 clinical isolates, 1,133 were in the top five most 
common MLST types. This lack of genomic diversity across isolates may negatively impact the effectiveness 
of MIC prediction models, particularly the Enformer model, which relies on a streamlined genomic dataset 
consisting only of AMR genes. This approach increases the likelihood of similar inputs for strains with different 
MIC values for the same antibiotic. Additionally, the model’s structural simplicity could have influenced its 
performance. The decision to implement five convolutional blocks and two transformer blocks was, in part, a 
concession to hardware constraints. As such, future endeavors that incorporate supplementary DNA regions, like 
the AMR gene’s regulatory regions, combined with more advanced hardware to examine deeper architectures, 
could elevate the accuracy of the Enformer-based model.

Albeit these limitations, introducing the Enformer model in this study was aimed at demonstrating the 
potential of holistic models that require minimal preprocessing and can handle longer genomic sequences 
directly. The Enformer model was proposed as a solution to the extensive and somewhat arbitrary preprocessing 
pipeline required by the CNN-based model. Training 10 XGBoost models requires approximately 24 h with 
the hardware setup utilized in this study. Additionally, the process of splitting the WGS data into 10-mers, a 
number chosen partly due to hardware constraints, and then selectively extracting portions of these 10-mers 
fragments the genomic sequence data, adding an extra layer of complexity and opacity to the model. The ability 
to analyze long sequences holistically provides a more transparent model architecture and reduces the need 
for pre-selecting features. Analysis of attention matrices of the Enformer-based model highlights the model’s 
transparency and interpretability. The Enformer-based model exemplifies a holistic and interpretable approach 
that AMR prediction model research should strive to advance. The model’s promising performance, even when 
trained exclusively on AMR gene regions, indicates its potential to replace traditional ML or CNN models 
in the near future. Future research should focus on enhancing the Enformer model by including additional 
relevant genomic regions, such as regulatory regions, and utilizing more advanced hardware configurations to 
fully exploit its capabilities. In a high-stakes environment such as clinical decision-making, where outcomes can 
directly impact patient health, the ability of clinicians to understand and trust AI-driven recommendations is 
crucial35. Therefore, future iterations of MIC prediction models must prioritize the development of interpretable 
frameworks that clinicians can navigate and utilize with confidence.

Data availability
The datasets and codes generated for the CNN-based model are available at  h t t p s : / / g i t h u b . c o m / B y e o n g g y u R y u / 
C N N _ M I C _ P r e d i c t i o n     . The datasets and codes generated for the Enformer-based model are available at  h t t p s : / 
/ g i t h u b . c o m / B  y e  o n  g g y u R y u / E n f o r m e r _ M I C _ P r e d i c t i o n     .  
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