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Abstract: Microbial natural products are a major source of bioactive compounds for drug discovery.
Among these molecules, nonribosomal peptides (NRPs) represent a diverse class of natural products
that include antibiotics, immunosuppressants, and anticancer agents. Recent breakthroughs in nat-
ural product discovery have revealed the chemical structure of several thousand NRPs. However,
biosynthetic gene clusters (BGCs) encoding them are known only for a few hundred compounds.
Here, we developed Nerpa, a computational method for the high-throughput discovery of novel
BGCs responsible for producing known NRPs. After searching 13,399 representative bacterial
genomes from the RefSeq repository against 8368 known NRPs, Nerpa linked 117 BGCs to their prod-
ucts. We further experimentally validated the predicted BGC of ngercheumicin from Photobacterium
galatheae via mass spectrometry. Nerpa supports searching new genomes against thousands of known
NRP structures, and novel molecular structures against tens of thousands of bacterial genomes.
The availability of these tools can enhance our understanding of NRP synthesis and the function
of their biosynthetic enzymes.

Keywords: natural products; nonribosomal peptides; genome mining; biosynthetic gene clusters;
bioinformatics; mass spectrometry; software; machine learning

1. Introduction

Nonribosomal peptides (NRPs) are promising natural sources of antibiotics, im-
munosuppressants, anticancer agents, toxins, siderophores, pigments, and cytostatics [1].
Starting from penicillin [2], researchers revealed the chemical structure of several thousand
NRPs [3]. However, the mechanism of their biosynthesis remained unclear until the end
of the 20th century [4,5]. Currently, only 10% of known NRPs are associated with genes
encoding them [6].

In contrast to regular ribosomal peptides encoded by short genes (about 1000 nucleotides
long for prokaryotes), NRP production involves the coordinated action of giant biosynthetic
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gene clusters (BGCs) spanning hundreds of thousands of nucleotides. These BGCs encode
multi-modular proteins, NRP synthetases (NRPSs), responsible for the assembly of NRP
products. An NRPS BGC consists of one or more genes composed of NRPS modules wherein
each module incorporates an amino acid into a final product [7]. Each module usually contains
an Adenylation (A) domain responsible for recognizing and activating the specific amino acid.
Modules also require Peptide Carrier Protein (PCP) and Condensation (C) domains that load
and elongate the NRP scaffold. Modules may include Epimerization (E), Methylation (M),
and other domains responsible for modifications of the incorporated amino acid. The first
(initiation) module of an NRPS BGC may start with a specialized C Starter (CS) domain
acylating the first amino acid with a fatty acid [8]. The last (termination) module often ends
with a thioesterase (TE) domain releasing the NRP product.

The cracking of nonribosomal code [5] enabled the appearance of software for pre-
dicting NRP products from microbial genomes, such as NP.searcher [9], PRISM [10,11]
and the currently state-of-the-art and actively maintained antiSMASH pipeline [12–16].
The core element of these genome mining pipelines is substrate specificity predictors
trained on a set of A domains with known specificities, for example, NRPSpredictor2 [17]
and SANDPUMA [18]. These algorithms report a list of substrates possibly recruited by
the A domains and scores reflecting the confidence that the particular amino acid was
selected. However, many of the NRP substrates are under-represented in the training data
of annotated domains used by these algorithms. As a result, the tools may generate low
score (unreliable) specificity predictions if an observed A domain sequence differs from
all A domains in the training data. Moreover, even if all the A domain specificities are
correctly identified in a BGC, it might be difficult to predict the final compound due to
ambiguities in the order of domains in the assembly line.

In non-collinear NRPS assembly lines, the order of genes in a BGC may deviate
from their activation order due to rearrangement, skipping, stuttering, and iterative reuse
of genes [19,20]. Besides that, a linear peptide sequence produced by an NRPS assembly
line often undergoes macrocyclization or other tailoring reactions, resulting in a cyclic,
branch-cyclic, or even more complex structure [21]. Thus, predicting the correct NRP
structures solely from genomics data remains a challenge despite progress in genome min-
ing [11,16,22]. As a result, genome-based predictions require validation through orthogonal
data, such as mass spectra [23–25] or chemical structure databases [6,26].

In a recent landmark study, MIBiG, a community-driven database of BGCs and their ex-
perimentally validated molecular products has been collected [27]. As of August 2021, MIBiG
has 605 NRP-related BGCs [28]. At the same time, the database of antiSMASH-predicted
gene clusters contains almost 12,000 NRPS BGCs fragments, predominantly without links
to known compounds [29]. Moreover, this number is rapidly growing with advances in se-
quencing technologies and genome mining software. Linking these automatically generated
predictions to databases of previously isolated NRPs, such as Norine [30], is a challenging
computational problem. In particular, antiSMASH only allows slow semi-manual queries
of roughly predicted NRP scaffolds to the Norine search engine. The feature is restricted to
the single database and lacks the support for non-collinear NRPS assembly lines.

The SeMPI web server addressed some of the antiSMASH limitations [26]. It pro-
vides a genome mining pipeline focusing on high-quality scaffold predictions for NRPs
and type I polyketides. The authors demonstrate their tool outperforms antiSMASH v5
in cluster detection and domain substrate prediction accuracy. The SeMPI pipeline can
screen the predicted scaffolds in public natural product databases, such as MIBiG, Norine,
and StreptomeDB [31]. However, the tool is available only as a web server, and it is not
applicable to high-throughput searches.

GARLIC is a three-step approach to linking known NRPs and polyketides to their
BGCs [6]. First, PRISM v2 [10], detects BGCs and predicts the scaffolds. Next, the known
chemical structures are reduced to linear sequences of residues using the GRAPE retro-
biosynthetic engine [6]. Finally, GARLIC matches the two sets of retrieved sequences
against each other using global alignment [32]. In contrast to the previous methods,
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GARLIC is available as a command-line tool and thus applicable to arbitrary databases and
genomes. It also accounts for non-collinear NRPS assembly lines by trying various gene
permutations within multi-gene BGCs. However, iterative NRPs and other non-collinearity
features are ignored. Moreover, GARLIC is prohibitively slow for large BGCs.

Here we present Nerpa, a method for screening genomes against NRP databases
and linking predicted BGCs to their products. The tool works with non-collinear NRPS
assembly lines and outperforms GARLIC in accuracy and efficiency. We demonstrate
Nerpa performance by searching 13,399 bacterial genomes against 8368 NRPs. The run
revealed known and novel BGC-NRP pairs, including a putative ngercheumicin BGC,
experimentally validated via mass spectrometry. Nerpa is freely available as a command-
line tool from http://cab.spbu.ru/software/nerpa (accessed on 30 September 2021).

2. Results
2.1. Outline of the Nerpa Pipeline

Nerpa takes as input an NRP database and nucleotide sequences including complete
genomes and draft assemblies (Figure 1). The pipeline starts by detecting (i) linear represen-
tations of the database structures (Figure 1a,b), and (ii) tentative NRPS assembly lines along
with respective sequences of genome-predicted residues (Figure 1c,d). Afterward, Nerpa
(iii) aligns the retrieved sequences against each other in an all-vs-all manner (Figure 1e),
and (iv) reports best matches per genome or per NRP (Figure 1f). All steps are described
in detail in the Materials and Methods Section. In (i) and (ii), Nerpa relies on the leading
third-party NRP retro-biosynthesis and genome mining software, namely rBAN [33] and
antiSMASH v5 [16], integrated with the pipeline.

Steps (i)–(iii) operate with NRP building blocks (monomers), which include amino
acids, lipid tails, and other types of residues. We distinguish between the monomers
that originated from the decomposition of NRP structures (NRP monomers), and those
predicted by genome mining (BGC monomers). Each monomer is typically identified by
the core amino acid, its stereochemistry (D-/L-configuration), and whether it is methylated
or not. BGC monomers additionally include specificity prediction scores. The alphabet
of supported core amino acids is the same for both NRP and BGC monomers, and contains
58 residues (Supplementary Table S1).

2.2. Database of Putative NRPs

We constructed a database of putative NRPs, further referred to as pNRPdb, by com-
bining all compounds from PNPdatabase [34], peptidic compounds from the NP Atlas [35],
entries with SMILES from Norine [30], and NRP-related structures from MIBiG [28]. Dupli-
cate compounds were removed based on their InChiKey values. Since the PNPdatabase
and NP Atlas metadata lacks the classification into NRPs and non-NRPs, some compounds
represent other classes of peptidic natural products such as ribosomally synthesized and
post-translationally modified peptides (RiPPs). We partially addressed this problem by
excluding from pNRPdb all compounds identical to known RiPPs from MIBiG and RiP-
PDB [36] along with their stereoisomers. We also constrained the database to compounds
that include at least two NRP monomers as identified by rBAN.

The resulting database contains 8368 compounds (Supplementary Figure S1). Most
of them are putative NRPs and only 1261 are reliably classified as an NRP or NRP-PK hybrid.
Source databases metadata allowed us to link most of the compounds to their original produc-
ers (Supplementary Figure S2). Nerpa successfully identified the NRP monomer sequence
of 7677 (92%) pNRPdb compounds producing 6961 unique sequences. The processing of the
remaining 691 compounds failed due to ambiguous monomer graphs resulting from errors
in the monomer recognition or complex post-assembly line modifications.

http://cab.spbu.ru/software/nerpa
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Figure 1. Nerpa pipeline. Structures of nonribosomal peptides (NRPs) are annotated into NRP building blocks (monomers)
via retro-biosynthesis (a). Nerpa represents the annotated NRPs as monomer graphs. Graph nodes include core amino
acids (shown with the three letter code), their stereochemistry (black/white semicircles) and methylation state (black/white
triangles). A node may also designate an unknown monomer, such as a lipid tail (grey; labeled ‘unk’). Then, Nerpa
linearizes graphs into sequences of monomers (b). Parallel to this, genome mining software processes input genome
sequences to identify tentative biosynthetic gene clusters (BGCs) of NRP synthetases (NRPSs) (c). The software annotates
core NRPS genes into modules and domains. Adenylation (A) domains are responsible for selection of the amino acids,
while methylation (M) and epimerization (E) domains are responsible for modifications. The thioesterase (TE) domain is
the last domain in the NRPS assembly line. For each A domain, predicted amino acids and their scores are also shown.
Nerpa stores NRPS gene annotations as short strings of monomers. Here, black, grey, and white circles stand for specificity
predictions with high, mediocre and low scores. These strings are further combined into complete monomer sequences
reflecting the putative assembly lines of the BGC (d). Next, all NRP and BGC monomer sequences are aligned against
each other and scored (e). The scoring consists of three independent components reflecting the alignment of core amino
acids, their methylations and stereochemistry. Nerpa selects the best scoring combination of sequences as a representative
alignment for the given BGC-NRP pair. Top scoring pairs between a single NRP and all genomes, a single BGC and all
NRPs, or all genomes against all NRPs are reported (f).
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2.3. Benchmarking Nerpa Accuracy

A dataset of annotated NRPS BGCs was used to benchmark Nerpa against GARLIC.
To exclude hybrid clusters, we constructed the dataset by selecting all MIBiG entries marked
as producing NRPs and lacking other annotations. BGCs from nonbacterial sources were
also excluded. The final dataset, further referred to as MIBiGNRP, contains 194 BGCs.
Some of the 194 corresponding NRPs do not contain two rBAN monomers, and therefore
are filtered out in pNRPdb. To make the subsequent benchmarking experiment fair, we
extended pNRPdb with the 81 missing compounds and refer to the resulting database with
8368 + 81 = 8449 structures as pNRPdb+.

Nerpa and GARLIC were used to search MIBiGNRP against pNRPdb+ in an all-vs-all
manner. The running commands and software versions for this and following experiments
are in Appendix A. A BGC was considered as correctly identified by the tool if the corre-
sponding ground truth NRP is among the ten best-scoring hits per the BGC. Such a relaxed
definition is needed to account for the presence of close structural variants of a correct NRP
in pNRPdb+. These similar structures may belong to the same NRP family and therefore
be produced by the same or analogues BGC. As a result, some of the NRP variants may
match a BGC with scores better than the score SGT of the ground truth NRP making its
rank rGT among the BGC hits greater than 1. Still, SGT should be close to the score Sbest
of the best hit, that is, their ratio SGT/Sbest should be close to 1.0. In the benchmarking
experiment, mean SGT/Sbest for all correctly identified BGCs is 0.85 (SD = 0.20) for Nerpa
and 0.90 (SD = 0.13) for GARLIC; mean rGT is 3.7 (SD = 2.8) for Nerpa and 3.0 (SD = 2.5)
for GARLIC.

For each correctly identified BGC, we picked the ground truth identification along
with its score as the BGC representative. For the remaining BGCs, the best hit was selected.
We further sorted all selected BGC-NRP pairs by score in descending order, separately
for Nerpa and GARLIC. For each prefix i of the sorted list, we count the number of correctly
identified BGCs Numcor[i] and compute the tool’s false discovery rate (FDR) as

FDR[i] =
i− Numcor[i]

i

Figure 2 shows FDR curves for Nerpa and GARLIC. Nerpa identified 46 correct BGC-
NRP pairs with an FDR below 50%. This FDR level corresponds to the Nerpa score of 6.0,
which we further selected as the default minimum score threshold. Overall, our tool
correctly linked 57 BGCs to their NRPs with a score above 0, which is compatible with
the GARLIC result (66). The GARLIC FDR consistently exceeds 50%, meaning our tool
better prioritizes correct identifications. For the top 40 matches, Nerpa demonstrates a two
times lower FDR than GARLIC (35% versus 78%).

We examined all 23 GARLIC’s false positive matches with the highest possible score
(1.0) and revealed its vulnerability towards short BGCs with uncertain A domain specifici-
ties (Supplementary Materials). Such uncertain predictions may result from, for example,
uncommon substrates (rare amino acids), promiscuous A domains, and shortcomings of the
substrate prediction software. Nerpa accounts for scores of the substrate specificity predic-
tions and uses complementary information—substrate’s stereochemistry and methylation
state—to successfully deal with BGCs containing uncertain predictions (Section 4).

2.4. Benchmarking Nerpa Performance

We downloaded all 13,399 reference and representative bacterial genomes from
the NCBI RefSeq database [37] (Supplementary Figure S3). We further sampled five
random sets of 100 genomes and matched them against pNRPdb. On average, Nerpa
processed the samples 15 times faster than GARLIC and required three times less memory
(Table 1). Our tool screened the full set of genomes in less than three days and 20 GB RAM.
Using the same computational facilities, processing these data with GARLIC would take
approximately three months (Table 1).
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Figure 2. Nerpa (blue) and GARLIC (orange) accuracy in the MIBiGNRP (194 biosynthetic gene
clusters, BGCs) against pNRPdb+ (8449 nonribosomal peptides, NRPs) experiment. The y-axis
shows the tool false discovery rate (FDR) for x top-scoring BGC-NRP matches. Matches with tied
scores were assigned the common FDR value computed for all these matches together.

Table 1. Running time and memory usage of GARLIC and Nerpa in the search of the RefSeq genomes against pNRPdb.
The resource consumption is given separately for each step of the GARLIC (GRAPE, PRISM, and GARLIC) and Nerpa (rBAN,
antiSMASH, and Nerpa) pipeline and in total. The first row in each group shows means and standard deviations in the five
independent runs, 100 genomes each. The second row gives estimated (∼) and exact values for the full dataset processing
(13,399 genomes). The structure parsing step was done once for the entire database (8368 structures). All benchmarking was
done on a server node with 16 Intel Xeon X7560 2.27 GHz CPUs.

# Genomes Structure Parsing Genome Mining Matching The Full Pipeline
GRAPE rBAN PRISM antiSMASH GARLIC Nerpa GARLIC Nerpa

Running Time (d-h:m)

100 3:41 0:17 3:52 ± 1:41 0:05 ± 0:01 13:00 ± 1:09 0:57 ± 1:24 20:33 ± 2:41 1:19 ± 1:25
13,399 ∼21-14:08 23:36 ∼72-14:00 1-16:14 ∼94-04:08 2-16:07

Peak RAM Consumption (GB)

100 16.3 13.1 40.2 ± 1.2 3.6 ± 0.4 2.5 ± 0.9 0.6 ± 0.4 40.2 ± 1.2 13.1
13,399 ∼40.2 4.8 ∼2.5 18.6 ∼40.2 18.6

2.5. Linking Known and Novel BGCs to Their Products with Nerpa

Nerpa identified numerous tentative connections between the RefSeq genomes and
pNRPdb structures. We limited our analysis to the BGC-NRP pairs where the BGC genome
is the best hit for the particular NRP structure and the NRP structure is also the best
hit for the BGC. To be conservative, we kept only the pairs where the genome matches
the genus of the original producer of the compound retrieved from the pNRPdb metadata.
The resulting set links 117 BGCs to their putative products (Supplementary File S1).
For manual validation, we selected pairs with the NRP origin known to the genus level
only. The absence of the species level annotation either means a deficiency in the pNRPdb
metadata or the current lack of knowledge.

Table 2 represents four BGC-NRP pairs that passed the filtration. Three of the under-
lying compounds are NRPs and microcystin-LR is an NRP-polyketide hybrid. MIBiG
contains one of the identified clusters, the microcystin-LR BGC in Microcystis aerugi-
nosa, albeit without a link to the particular compound variant reported by Nerpa (<L-
MeSer7>microcystin-LR). NCBI BLAST [38] matched two other cluster sequences to ohmA
and sphA (coverage > 95%, identity > 90%), core NRPS genes of recently discovered
ohmyungsamycin and stephensiolide BGCs [39,40]. We manually confirmed the Nerpa
alignments of the corresponding BGC-NRP pairs are fully inline with the proposed biosyn-
thetic pathways of ohmyungsamycin and stephensiolide. Note that a single run of Nerpa
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instantly achieved the same goal as the time-consuming semi-manual discoveries of the
respective BGCs. The remaining cluster for a putative ngercheumicin BGC in Photobac-
terium galathea is novel since no analogs can be found in any database.

Table 2. Selected BGC-NRP pairs from the RefSeq experiment. The first three columns are from the chemical structures input,
the next two are from the genomic counterpart. Compound producer and reference are given according to the pNRPdb
metadata. The score stands for the Nerpa score. The last column contains IDs in the MIBiG or NCBI protein database if
similar NRPS genes were found, gene names are given in parenthesis. Microcystin-LR’ is for <L-MeSer7>microcystin-LR.

ID pNRPdb Compound Producer ID GenBank Species Score Known Analog

NPA011095 Ohmyungsamycin A Streptomyces sp. [41] GCA_013364095.1 S. harbinensis 27.31 QGA70148.1 (ohmA)

NPA014983 Microcystin-LR’ Microcystis sp. [42] GCA_000010625.1 M. aeruginosa 13.88 BGC0001017
(mcyA,B,C,E)

NPA002702 Ngercheumicin F Photobacterium sp. [43] GCA_000695255.1 P. galatheae 12.76 —
NPA024438 Stephensiolide F Serratia sp. [40] GCA_017309605.1 S. ureilytica 11.69 ATD12179.1 (sphA)

2.6. Experimental Validation of Putative Ngercheumicin BGC

We cultured P. galathea S2753 [44] in different cultivation conditions and analyzed
their extracts by mass spectrometry (experimental details are in Appendix B). The tan-
dem mass spectra (MS/MS) were uploaded to the GNPS platform [45] as part of the
MSV000086428 dataset and inspected with the Dereplicator [46], Dereplicator+ [47], and
Molecular Networking [45] workflows.

The ngercheumicin family comprises structurally similar variants A-B and F-I pro-
duced by Photobacteria spp. [43]. Dereplicator annotated numerous P. galathea mass spec-
tra as ngercheumicins A and B and their derivatives with p values down to 1.1× 10−26.
Manual validation of the selected spectra confirmed peaks corresponding to the character-
istic fragmentation (Figure 3). Dereplicator+ found all six known ngercheumicin variants
in MSV000086428 with scores above 30. We deposited their annotated spectra to the GNPS
library (accession IDs: CCMSLIB00006710023; 25–28; 33). The ngercheumicin molecular
network in MSV000086428 contains all these spectra (Figure 3). The network also contains
13 unannotated nodes that likely represent novel ngercheumicin variants yet to be discovered.

Figure 3. Molecular network for ngercheumicins observed in P. galathea extracts (MSV000086428)
and the key fragment ions produced for ngercheumicin A and A1. Nodes represent spectral clusters,
node size corresponds to the number of clustered spectra, the m/z value is specified under the node.
Edges connect clusters with a cosine similarity score above 0.7. Purple borders highlight annotated
nodes, letters inside the nodes designate particular ngercheumicin variants.
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Our experiment validates the production of ngercheumicins by P. galathea while
the Nerpa alignment suggests its tentative biosynthetic pathway (Supplementary Figure S4).
Still, the ultimate confirmation of the putative BGC correctness requires more complex
gene knockout or heterologous expression studies.

3. Discussion

Breakthroughs in sequencing technologies enabled genome sequencing of thousands
of NRP-producing organisms. Although the development of genome mining software,
such as antiSMASH, facilitated high-throughput search for BGCs in these data, genes
responsible for synthesis of most of the known NRPs still remain undiscovered. Currently,
MIBiG, the largest community-curated BGC database, represents a minuscule fraction
of all potentially known BGC-NRP pairs. While the expansion of MIBiG is of utmost
importance for natural product research, it requires a lot of time-consuming manual work.
Here, we demonstrate how a single push-of-a-button Nerpa run can be used for populating
the MIBiG repository. First, our tool automatically finds known NRPS BGCs currently
missing in MIBiG, such as ohmyungsamycin and stephensiolide. Second, Nerpa reveals
novel BGC-NRP connections, which can further undergo experimental validation as shown
for ngercheumicin.

The small size of the available training data limits Nerpa accuracy. At the same
time, our tool could be used for an iterative extension of the training set via collecting
new trustable BGC-NRP pairs in a semi-automated fashion. This will allow both retrain-
ing of the current Nerpa parameters and development of a more sophisticated scoring.
For instance, we may consider additional monomer modifications such as formylation.
Furthermore, the enhanced training data will help to improve Nerpa’s capability to analyse
NRP-polyketide hybrids and even polyketides. Still, besides being primarily designed
for NRPS BGCs, the current tool correctly linked microcystin-LR, an NRP-polyketide
hybrid, to its gene cluster.

We envision two main Nerpa applications in routine NRP research. Nerpa may
match recently sequenced bacterial genomes against NRP databases to differentiate BGCs
producing known versus novel compounds and thus prioritizing strains for the follow-up
studies. Our tool may also screen recently elucidated NRP structures against large genomic
databases to find their putative producers NRPS BGCs. The revealed BGCs could be
useful for enhancing the NRP synthesis via heterologous expression and for searching
or bioengineering novel variants of the compound. To make the tool application fast and
convenient, we provide all Nerpa-preprocessed chemical and genomics datasets used
in this study. For further convenience, we are preparing a Nerpa web interface that will
be integrated with the antiSMASH web services. We believe our software will benefit
the community and facilitate the search and discovery of novel bacterial NRPs. Further
development of genome mining software will help to extend the Nerpa functionality to
other NRP producers such as fungi, plants, and sponges.

4. Materials and Methods
4.1. Processing of NRP Structures

NRP processing normally starts with a database of chemical structures in the isomeric
SMILES format and consists of several steps explained in detail below (Figures 1a,b and 4).
Non-isomeric SMILES are also supported, but their use may later lead to a less accurate
matching of NRPs to predicted BGCs (Figure 1e). A user may also provide NRPs in a
custom monomer graph format described in the Nerpa documentation. In this case, Nerpa
skips the pre-processing and proceeds to the matching step (Figure 1e). The latter format
could be useful for analysing compounds from Norine [30], since many of them lack
SMILES representation.
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Figure 4. Linearization of didemnin B [48]. (a) The structure is analyzed with rBAN producing
the monomer graph representation. (b) Edges are classified into backbone (orange) and tailoring
(grey). Nodes are classified into supported by Nerpa (blue) and all others (grey). (c) All tailoring
bonds are removed and (d) candidate linear representations of the peptide are generated. The (a)
part of the figure was created using the rBAN web server at https://web.expasy.org/rban/ (accessed
on 30 September 2021).

4.1.1. Monomer Graph Construction

Nerpa converts the input structures into monomer graphs using rBAN [33]. The monomer
graph represents NRP structures as directed graphs with nodes representing monomers and
edges representing bonds and heterocycles linking the monomers (Figure 4a,b). rBAN builds
a monomer graph by breaking the structure according to a built-in set of fragmentation rules,
and matches fragments to a database of known monomers. rBAN outputs the monomer graph
and its mapping to the original atomic structure. The built-in rBAN database includes 909
monomers extracted from annotated compounds from the Norine database [30] and comple-
mented with their common modifications. We further expanded this database by adding 35
in-house monomers. The full list of supported monomers is available from the Nerpa website.

4.1.2. Monomer Post-Processing

Nerpa post-processes the rBAN output to infer monomer stereochemistry and recog-
nize unidentified monomers. While rBAN ignores the stereochemistry, Nerpa inspects all
chiral centers in the original chemical structure, allowing it to determine the stereoisomeric
configuration (D-/L-) of the monomers. While rBAN performs the retro-biosynthesis
of NRPs only, Nerpa supports NRP-polyketide hybrids [49]. rBAN ignores carbon-carbon
bonds between NRP and polyketide monomers that result in unidentified monomers
consisting of an amino acid attached to a polyketide chain. By inspecting the atomic struc-
ture of each unidentified monomer, Nerpa recognizes the chains and scans the remaining

https://web.expasy.org/rban/
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substructures against the database of known NRP monomers. Using this strategy Nerpa
recovers correct NRP monomers that are not identified by rBAN.

4.1.3. Linear Representation of Monomer Graphs

We classify edge annotations in the monomer graph into the backbone and tailoring
classes. The backbone class consists of bond types that can be attributed to the activity
of core NRPS modules. This class includes amide and double amide bonds and heterocy-
cles such as thiazole, oxazole, and pyrimidine. All other bond types form the tailoring
class. We also classify all graph nodes into Nerpa-supported and unsupported monomers.
The former category contains monomers that can be predicted from a BGC (Figure 1c,d).
The latter category contains all the rest monomers from the rBAN database.

Nerpa starts linearization of a monomer graph by removing all tailoring bonds
(Figure 4). Then the tool independently processes all weakly connected graph components
(Figure 4c,d). Components including less than a certain number of supported monomers
(user-configurable, default is 2) are discarded. Nerpa proceeds with finding a Hamiltonian
path or a Hamiltonian cycle within the component. In the former case, the path is consid-
ered as a candidate NRP monomer sequence. In the latter case, all possible linearizations
starting from each node of the cycle are considered. Further, if the graph lacks cycles and
includes at most three linear components, Nerpa considers all their permutations as addi-
tional candidate sequences. By permuting the components, Nerpa supports non-collinear
NRPS assembly lines; by considering each component as a separate candidate sequence,
Nerpa supports short iterative NRPs (Supplementary Figure S5).

4.2. Processing of Genome Sequences

Nerpa accepts genome sequences in the FASTA or GenBank format and processes
them with the antiSMASH v5 genome mining pipeline [16]. Users can also directly provide
the tool with antiSMASH outputs. Nerpa extracts NRPS genes, modules, and domains
along with substrate specificity predictions from the antiSMASH output. Then, Nerpa
combines specificity predictions into assembly lines, corrects misassembled BGCs, and
handles non-collinear NRPS assembly lines (Figure 1c,d).

4.2.1. BGC Monomers

Nerpa converts each NRPS module into a BGC monomer. The tool considers A
domains, which define the core amino acids, and M and E domains, which determine
whether the amino acid is methylated and its stereochemistry. A module may also contain
a dual function C/E domain [8] that is treated as a regular C domain and an E domain
in the previous module. Nerpa relies on the NRPSPredictor2 specificity predictions for A
domains [17] generated in the antiSMASH v5 pipeline. NRPSPredictor2 reports a list
of tentative amino acids complemented with two types of prediction scores. The first score
assesses the sequence similarity between the ten-letter nonribosomal code of the domain
and the database of known codes (the Stachelhaus score [5]). The second score relies on a
Support Vector Machine (SVM) trained on previously annotated A domains (the SVM
score [50]). Similar to the previous approaches [23,25], Nerpa ranks predicted amino acids
by the mean of their Stachelhaus and SVM scores and selects the top one as the core amino
acid of the BGC monomer.

4.2.2. Monomer Strips

We define a BGC monomer strip, or simply a strip, of an NRPS gene as a sequence of BGC
monomers corresponding to the gene’s modules. A strip may also include additional
information, such as the presence of CS and TE domains in the gene (Figure 1c). CS and
TE domains assist in determining the strip position inside the NRPS assembly line. Nerpa
fixes the order of BGC monomers within a strip since the order of modules in a gene is
always conserved during the NRP synthesis.
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After forming the initial strips from all typical NRPS modules, Nerpa analyses seem-
ingly deficient modules to infer additional strip variants. As previously described [51],
a deficient module without an A domain may stutter, i.e., reuse an A domain of the previ-
ous typical module and thus recruit the same amino acid one or more times. A deficient
module comprising a sole PCP domain and located last in an NRPS gene may iteratively
reuse the entire gene [52]. Nerpa complements the initial strip of a gene having deficient
module(s) with alternative strip variants to account for these events. The variants include
up to three BGC monomer copies per each deficient module without an A domain and up
to three copies of the entire strip per each deficient module with a sole PCP domain.

4.2.3. BGC Splitting

Occasionally, antiSMASH v5 incorrectly identifies BGC boundaries in BGC-rich
genome sequences and reports two or more adjacent BGCs as a single large cluster. Such
errors are even present in manually curated datasets, for instance, the syringomycin BGC
in MIBiG (BGC0000437) actually contains two clusters responsible for synthesis of sy-
ringomycin and syringopeptin (also available in MIBiG as a separate entry BGC0000438).
Erroneously merged BGCs complicate downstream analysis and deteriorate Nerpa results.
To address this problem, we process each multi-gene BGC with two simple heuristics.

First, Nerpa calculates the distances between adjacent NRPS genes in a BGC and if
a distance exceeds a user-configurable threshold MAX_BGC_DIST (10,000 nucleotides
by default) the BGC is split between the genes. Next, we check the consistency of CS and
TE domains in the remaining BGCs. Usually, if a BGC contains a CS (TE) domain, this
domain belongs to the cluster’s very first (last) gene. Nerpa splits BGCs before (after) genes
containing a CS (TE) domain to meet this condition. At the same time, an inconsistent
CS/TE domain location may also indicate a BGC with a non-collinear NRPS assembly line.
To account for this possibility, Nerpa keeps the unsplit copies of such BGCs to be processed
with the non-collinearity handling algorithm.

4.2.4. Handling of NRPS Assembly Lines

The final step of the genome post-processing is the generation of a BGC monomer se-
quence or a set of plausible sequences reflecting the (unknown) NRPS assembly line of a BGC
(Figure 1d). Under the collinear assembly line assumption, the BGC monomer sequence is
simply a concatenation of all respective BGC monomer strips ordered the same as their
corresponding NRPS genes in the BGC. However, the sequence generation may become
extremely challenging when non-collinear NRPS assembly lines are taken into account.
In this case, all possible permutations of the strips should be considered. The number
of the permutations grows super-exponentially and the downstream processing becomes
computationally prohibitive even for a relatively small number of genes.

Nerpa uses a heuristic approach to determine whether to apply the collinear or non-
collinear NRPS assembly line for a given BGC and to effectively reduce the number
of possible permutations in the latter case. The method analyses optional domains in the
inward and outward (i.e., the first and the last) BGC monomer strips. In addition to CS
and TE domains discussed above, Nerpa also considers communication-mediating (COM)
domains [53]. COM domains consist of N-terminal and C-terminal subtypes named accord-
ing to the domain location on the respective terminus of an NRPS gene. Two NRPS genes
remotely located in a BGC could be linked in the NRPS assembly line thanks to the in-
teraction between their C-terminal and N-terminal COM domains. However, currently it
is impossible to computationally predict the proclivity of a C-terminal COM domain to
a specific N-terminal COM domain. Nerpa classifies a sequence of BGC monomer strips
as consistent if (i) CS domain (if present) is located in the first strip; (ii) TE domain (if
present) is located in the last strip; (iii) the first strip lacks an N-terminal COM domain; and
(iv) the last strip lacks a C-terminal COM domain.

Given a BGC, Nerpa first assumes the collinear NRPS assembly line and constructs
the BGC monomer sequence accordingly. If the sequence is consistent, the processing is
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complete. If the inconsistency is caused solely by violation of conditions (i) or (ii), the tool
puts the corresponding strip to the very beginning or ending of the sequence (Supplementary
Figure S6). Otherwise, Nerpa considers all strip permutations resulting in consistent BGC
monomer sequences. That is, the strips containing CS and TE domains (if present) are located
at the beginning and end, and the rest of positions are subject to permutations. Additionally,
a strip starting with N-terminal COM domain cannot be the first and a strip ending with
C-terminal COM domain cannot be the last (Supplementary Figure S7).

4.3. Scoring of Monomer Sequences

The Nerpa scoring module takes as an input one or several possible NRP and BGC
monomer sequences (Figure 1e). We perform the global alignment between all sequence
pairs and report the best scoring pair as the most likely explanation of the NRP by the BGC.
Without loss of generality, below we define the Nerpa score for a given global alignment
of a monomer sequence pair. The optimal (best-scoring) global alignment for each pair is
computed using the Needleman–Wunsch algorithm [32].

4.3.1. General Notations

LetA be the alphabet of Nerpa-supported amino acids, ∅ be a special sign designating
any unsupported amino acid. Many distinct unsupported amino acids are possible, so we
assume ∅ 6= ∅. The extended alphabet of NRP/BGC monomer core amino acids is defined
as Ā = A ∪ {∅}. We use the notation MNRP = (aNRP, mNRP, eNRP) to denote an NRP
monomer with a core amino acid aNRP ∈ Ā, mNRP = 1 if the amino acid is methylated and
−1 otherwise, eNRP = 1 if the amino acid is in the D-configuration and −1 if it is in the
L-configuration; eNRP could also be equal to 0 if it is impossible to enquire amino acid stereo-
chemistry from the NRP structure or if it is irrelevant, e.g., for glycine, which is a non-chiral
amino acid. Analogously, we designate a BGC monomer as MBGC = (s, aBGC, mBGC, eBGC),
where aBGC ∈ A, mBGC, eBGC ∈ {−1, 1} and s ∈ [0 . . . 100] corresponds to the specificity
prediction score. Here s = 0 is a special value corresponding to a completely unreliable
prediction and s > 0 is a software-generated score with s = 100 being the most trustworthy
prediction. We also define an undefined BGC monomer as M̄BGC = (0,∅, 0, 0), where
mBGC = 0 (eBGC = 0) indicates undefined genomic prediction of the methylation state
(stereochemistry). For convenience, we further use ∅NRP = (-, -, -) and ∅BGC = (-, -, -, -) to
designate the absence of a monomer in a global sequence alignment with indels.

A string NRP = MNRP
1 MNRP

2 · · ·MNRP
n is an NRP monomer sequence, its length is

|NRP| = n, ith monomer is NRP[i] = MNRP
i . Similarly, BGC = MBGC

1 MBGC
2 · · ·MBGC

m is
a BGC monomer sequence of length m. A global alignment of NRP and BGC is a pair
(NRP′, BGC′) such that |NRP′| = |BGC′| = l, n + m ≥ l ≥ max(n, m), NRP (BGC)
is a subsequence of NRP′ (BGC′), the supersequence may additionally contain only
monomers equal to ∅NRP (∅BGC) and if NRP′[i] = ∅NRP then BGC′[i] 6= ∅BGC and
vice versa.

4.3.2. Nerpa Score Summary

Given an NRP monomer sequence NRP, a BGC monomer sequence BGC and their
global alignment (NRP′, BGC′) we estimate the probability P(NRP′|BGC′) of the NRPS
assembly line encoded in BGC to synthesize NRP as prescribed in the alignment. That
is, a BGC module corresponding to BGC′[i] is responsible for incorporating a residue
NRP′[i] into the NRP structure. We also formulate a null hypothesis that NRP is syn-
thesised by an undefined BGC monomer sequence NULL such that |NULL| = |NRP|
and NULL[i] = M̄BGC ∀i ∈ [1 . . . n]. We further compute the null hypothesis probability
P(NRP|NULL) and define the Nerpa score as a log odds ratio of the two probabilities

Score(NRP′, BGC′) = log
P(NRP′|BGC′)
P(NRP|NULL)

(1)

We assume the independence of the aligned monomer pairs and rewrite Equation (1) as:
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Score(NRP′, BGC′) = log
∏l

i=1 P(NRP′[i]|BGC′[i])
∏n

i=1 P(NRP[i]|NULL[i])

=
l

∑
i=1

log P(NRP′[i]|BGC′[i])−
n

∑
i=1

log P(NRP[i]|NULL[i])

=
l

∑
i=1

log P(aNRP
i , mNRP

i , eNRP
i |si, aBGC

i , mBGC
i , eBGC

i )

−
n

∑
i=1

log P(aNRP
i , mNRP

i , eNRP
i |0,∅, 0, 0).

(2)

For simplicity, we also assume that the matches of core amino acids, their methylations
and stereochemistry affect the total probability independently. Therefore, Equation (2) is
a sum of three components:

Score(NRP′, BGC′) = ScoreA(NRP′, BGC′) + ScoreM(NRP′, BGC′) + ScoreE(NRP′, BGC′),

where

ScoreA(NRP′, BGC′) =
l

∑
i=1

log P(aNRP
i |si, aBGC

i )−
n

∑
i=1

log P(aNRP
i |0,∅)

ScoreM(NRP′, BGC′) =
l

∑
i=1

log P(mNRP
i |mBGC

i )−
n

∑
i=1

log P(mNRP
i |0)

ScoreE(NRP′, BGC′) =
l

∑
i=1

log P(eNRP
i |eBGC

i )−
n

∑
i=1

log P(eNRP
i |0).

(3)

4.3.3. Scoring Matches and Mismatches

Consider an alignment without indels. We compute the probability of a BGC module
with substrate prediction aBGC and specificity score s to synthesize a core NRP monomer
amino acid aNRP as

P(aNRP|s, aBGC) =

PA
match(s) if aNRP = aBGC

(1− PA
match(s)) ·

PA(aNRP)
1−PA(aBGC)

if aNRP 6= aBGC,
(4)

where PA(a) determines how likely amino acid a may appear in an NRP by random
chance, that is, how frequent a is comparing to all other NRP amino acids, ∑a∈Ā PA(a) = 1.
For the null hypothesis component of ScoreA we thus obtain

P(aNRP|0,∅) = (1− Pa
match(0)) ·

PA(aNRP)

1− PA(∅)
=

PA(aNRP)

1− PA(∅)
,

since Pa
match(0) = 0 by convention.

We simplified Equation (4) to keep the number of Nerpa parameters reasonable.
For instance, here we assume the match probability depends only on the specificity score
but not the underlying amino acid. In practice, the probabilities vary for different amino
acids but the size of Ā is too large to account for all possible options. In contrast, m
and e monomer components have at most three different states (−1, 0, 1), so we defined
the corresponding probabilities in ScoreM and ScoreE more flexibly than in (4). Below is
the formula for the m component of the score. We compute the e counterpart similarly with
the only difference being that eNRP could be 0. This case is uninformative regardless of the
eBGC value, so we define P(0|eBGC) = 1 resulting in no contribution to the log score.
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P(mNRP|mBGC) =


PM

match(m) if mNRP = mBGC = m ∈ {−1, 1}
PM

mismatch(m) if mNRP = −mBGC = m ∈ {−1, 1}
PM(mNRP) if mBGC = 0, mNRP ∈ {−1, 1},

(5)

where PM(m) determines how often NRP residues are methylated (m = 1) or not methy-
lated (m = −1). Thus, the null hypothesis component of ScoreM is PM(mNRP).

4.3.4. Scoring Indels

By the null hypothesis formulation, indels may only occur in the P(NRP′|BGC′)
component of the Nerpa score (1). For a monomer pair (MNRP, MBGC) in the alignment,
we compute the probability of an insertion, that is, MBGC = ∅BGC, as

P(MNRP|∅BGC) = P(a, m, e|∅BGC) = Pinsertion · PA(a) · PM(m) · PE(e),

where Pinsertion is the insertion probability and PA, PM, PE have the same value and
meaning as in Equations (4) and (5). In contrast, we assume deletions are independent
from specific amino acids, methylation and stereochemistry and may occur by random
chance with the uniform probability P(∅NRP|MBGC) = Pdeletion.

4.3.5. Learning Nerpa Parameters

The Nerpa scoring relies on two major groups of parameters. The first group consists
of PA, PM, and PE, describing average frequencies of core amino acids, methylations and
stereochemistry configurations in NRP monomers, respectively. All curated and putative
NRP structures available in the SMILES format in the latest version of Norine [30] were
used to estimate these parameters. The training dataset #1 was comprised of 625 structures
grouped in 182 NRP families.

The training of the remaining parameters requires known BGC-NRP alignments.
For this purpose, we formed a dataset of 64 representative NRPS BGCs from MIBiG
v2 [28]. For each entry, we extracted the corresponding monomer sequences and manually
constructed their global alignment based on the referenced publications. The resulting
training dataset #2 comprised 607 monomer pairs including matches, mismatches, and
indels (Supplementary File S2).

Before the training, the real specificity score scale [1 . . . 100] was discretized into five
score levels to reduce the number of Nerpa parameters. We estimated parameters using
frequencies of the corresponding events. For example, PE

mismatch(−1, 1) is the number
of alignment sites having the NRP monomer in the L-configuration (eNRP = −1) and
the BGC monomer suggesting epimerization (eBGC = 1) to the total number of non-indel
sites where the NRP monomer stereochemistry is determined (eNRP 6= 0).

We generated 100 equally-sized bootstrap samples from the training dataset #2 and
used them for parameter learning. Supplementary Figure S8 shows parameter distribu-
tions; the final parameter values for both groups are in Supplementary Tables S1 and S2.
All parameters are also available online in the Nerpa configuration files. A user may form
a custom dataset of BGC-NRP alignments and re-calculate the parameters using training
scripts from the tool repository.

4.4. Reporting of Results

In the final step of the pipeline, Nerpa summarizes scoring results for all inputs
(Figure 1e). First, BGC-NRP matches having a score below a user-specified threshold
MIN_SCORE (6.0 by default) are discarded. Next, the remaining hits are grouped by
compound and by genome and reported together with the underlying alignments. We also
compose a combined report with the most promising matches overall. A simple list of the
best scoring hits could be misleading here. Sometimes, a large dataset includes a few
peculiar BGCs (NRPs) producing high-scoring matches with many distinct compounds
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(genomes). As a result, the list becomes uninformative since it is dominated by these few
BGCs (NRPs). To address this issue, Nerpa includes a BGC-NRP match in the combined
report only if the corresponding NRP is among the best hits per the matching BGC, and
the BGC is among the best hits per the NRP simultaneously.

4.5. Software Implementation

Nerpa is implemented in C++ and Python v3. The NRP structure decomposition and
linearization relies on rBAN [33], the RDKit framework [54] and the NetworkX library
for graph manipulation [55]. Genome mining is made with the antiSMASH v5 pipeline [16]
utilizing NRPSpredictor2 [17] for the substrate specificity prediction. The Nerpa combined
report is in a plain tab-separated format. The detailed per NRP and per genome reports are
in a custom text format depicting linearized NRP and BGC monomer sequences and their
Nerpa alignment along with the scores for each monomer pair.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11100693/s1, Figure S1: Contribution of source databases to pNRPdb (8368 com-
pounds), Figure S2: Distribution of pNRPdb compounds producers, Figure S3: Taxonomic group
distribution of 13,399 reference and representative NCBI RefSeq [37] bacterial genomes visual-
ized with Krona [56], Figure S4: Ngercheumicin structure, putative biosynthetic gene cluster and
their Nerpa alignment, Figure S5: Linearization of iterative nonribosomal peptide bacillibactin [57],
Figure S6: Processing of colistin A biosynthetic gene cluster (BGC) from Paenibacillus alvei (MIBiG
BGC0001192) [58], Figure S7: Processing of amychelin biosynthetic gene cluster (BGC) from Strepto-
myces sp. AA4 (MIBiG BGC0000300) [59], Figure S8: Distributions of the Nerpa parameters estimated
from 100 bootstrap samples from the training dataset, Table S1: Core amino acids supported by
Nerpa along with their PubChem CIDs [60] and scores, Table S2: Nerpa scoring parameters, Note:
Inspection of GARLIC false positive identifications (Supplementary_Material.pdf), File S1: 117 BGCs
from the RefSeq representative bacterial genomes linked by Nerpa to their putative products (Sup-
plementary_File_S1.tsv), File S2: Nerpa training dataset with the global alignments of 64 BGC-NRP
pairs from MIBiG (Supplementary_File_S2.tsv).

Author Contributions: Conceptualization, A.G. and H.M.; methodology, O.K., A.M.T., A.K. and
A.G.; software, O.K., A.M.T., and A.G.; validation (in silico), O.K., A.M.T., and A.G.; microbial culture
and data acquisition (MS/MS), A.M.C.-R.; validation (MS/MS), L.-F.N.; data curation, O.K. and
A.M.T.; writing—original draft preparation, O.K., A.M.T., and A.G.; writing—review and editing,
A.G. and H.M.; supervision, A.G. and H.M.; funding acquisition, A.K. and P.C.D. All authors have
read and agreed to the published version of the manuscript.

Funding: O.K., A.M.T., A.K., and A.G. were supported by RFBR, project number 19-34-51017. H.M.
was supported by a research fellowship from the Alfred P. Sloan Foundation, a National Institutes
of Health New Innovator Award DP2GM137413, a U.S. Department of Energy award DE-SC0021340
and a National Science Foundation award DBI2117640. A.M.C.-R., L.-F.N., and P.C.D. were supported
by the Gordon and Betty Moore Foundation through grant GBMF7622, the U.S. National Institutes
of Health for the Center (P41 GM103484 and R01 GM107550) and NIH sub-award 1DP2GM137413-01.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Nerpa source code is available from GitHub at http://github.com/ablab/
nerpa (accessed on 30 September 2021). The training dataset and results of the RefSeq experiment are avail-
able in the Supplementary Materials. The MS/MS data used in this study were deposited in the GNPS Mas-
sIVE repository as MSV000086428 (accessed on 30 September 2021). The pNRPdb database, metadata of the
MIBiGNRP and RefSeq experiments, and Nerpa-preprocessed source data: pNRPdb structures, MIBiGNRP
and RefSeq genomes are openly available in Zenodo at https://doi.org/10.5281/zenodo.5503984 (accessed
on 30 September 2021). Dereplicator annotations of ngercheumicin spectra in MSV000086428 can be ac-
cessed at https://gnps.ucsd.edu/ProteoSAFe/result.jsp?task=e6d6116ce525405ba46ec61dbdef96ef&view=
view_significant_unique#%7B%22main.Name_input%22%3A%22nger%22%7D (accessed on 30 Septem-
ber 2021), Dereplicator+ annotations at https://gnps.ucsd.edu/ProteoSAFe/result.jsp?task=069cd972b8
eb460e892e9023ff339a80&view=view_significant_unique#%7B%22main.Name_input%22%3A%22nger%
22%7D (accessed on 30 September 2021), and the ngercheumicin molecular network at https://gnps.ucsd.

https://www.mdpi.com/article/10.3390/metabo11100693/s1
https://www.mdpi.com/article/10.3390/metabo11100693/s1
http://github.com/ablab/nerpa
http://github.com/ablab/nerpa
https://gnps.ucsd.edu/ProteoSAFe/result.jsp?task=cb55d78037c94f0c8a21836389f251f9&view=advanced_view
https://doi.org/10.5281/zenodo.5503984
https://gnps.ucsd.edu/ProteoSAFe/result.jsp?task=e6d6116ce525405ba46ec61dbdef96ef&view=view_significant_unique#%7B%22main.Name_input%22%3A%22nger%22%7D
https://gnps.ucsd.edu/ProteoSAFe/result.jsp?task=e6d6116ce525405ba46ec61dbdef96ef&view=view_significant_unique#%7B%22main.Name_input%22%3A%22nger%22%7D
https://gnps.ucsd.edu/ProteoSAFe/result.jsp?task=069cd972b8eb460e892e9023ff339a80&view=view_significant_unique#%7B%22main.Name_input%22%3A%22nger%22%7D
https://gnps.ucsd.edu/ProteoSAFe/result.jsp?task=069cd972b8eb460e892e9023ff339a80&view=view_significant_unique#%7B%22main.Name_input%22%3A%22nger%22%7D
https://gnps.ucsd.edu/ProteoSAFe/result.jsp?task=069cd972b8eb460e892e9023ff339a80&view=view_significant_unique#%7B%22main.Name_input%22%3A%22nger%22%7D
https://gnps.ucsd.edu/ProteoSAFe/result.jsp?view=network_displayer&componentindex=5&task=786ef25ff82d4872951fe7d26a72c4f6&show=true
https://gnps.ucsd.edu/ProteoSAFe/result.jsp?view=network_displayer&componentindex=5&task=786ef25ff82d4872951fe7d26a72c4f6&show=true
https://gnps.ucsd.edu/ProteoSAFe/result.jsp?view=network_displayer&componentindex=5&task=786ef25ff82d4872951fe7d26a72c4f6&show=true


Metabolites 2021, 11, 693 16 of 20

edu/ProteoSAFe/result.jsp?view=network_displayer&componentindex=5&task=786ef25ff82d4872951fe7
d26a72c4f6&show=true (accessed on 30 September 2021).

Acknowledgments: We thank Bahar Behsaz and Pavel Pevzner for insightful suggestions and
fruitful discussions. We would also like to thank Marnix Medema and Kai Blin for advice on using
antiSMASH and interpreting its output. Research was carried out in part by computational resources
provided by the Computer Center of Research park of St. Petersburg State University.

Conflicts of Interest: H.M. is a co-founder and has equity interest from Chemia.ai, LLC. The remain-
ing authors declare no competing interests.

Abbreviations
The following abbreviations are used in this manuscript:

BGC biosynthetic gene cluster
FDR false discovery rate
GB gigabyte
GNPS Global Natural Product Social molecular networking
MS/MS tandem mass spectra
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Appendix A. Running Commands

In this appendix, we provide running commands of GARLIC, Nerpa, and their
pipeline components used in benchmarking.

PRISM version 2.1.5, downloaded from https://github.com/magarveylab/prism-releases/
releases/download/v2.1.5/prism.jar (accessed on 30 September 2021)

java -jar <PATH_TO_PRISM_JAR > -a -p \
-f <PATH_TO_GENOME_FASTA > -w 10000 \
-tt -o <OUTPUT_DIR > -r <PATH_TO_WEBCONTENT >

GRAPE version 2.9.1, downloaded from https://github.com/magarveylab/grape-release/
archive/refs/tags/2.9.1.tar.gz (accessed on 30 September 2021)

java -jar <PATH_TO_GRAPE_JAR > -s <SMILES_STRING > \
-img -json -txt -o <OUTPUT_DIR >

GARLIC version 1.0.2, downloaded from https://github.com/magarveylab/garlic-release/
archive/refs/tags/1.0.2.tar.gz (accessed on 30 September 2021)

java -jar <PATH_TO_GARLIC_JAR > -q <PATH_TO_PRISM_OUT > \
-a <PATH_TO_GRAPE_OUT > -o <OUTPUT_DIR >

antiSMASH version 5.2.0, downloaded from https://dl.secondarymetabolites.org/releases/
5.2.0/antismash-5.2.0.tar.gz (accessed on 30 September 2021)

run_antismash.py <PATH_TO_GENOME_FASTA > \
--genefinding -tool prodigal --minimal \
--skip -zip -file --enable -nrps -pks \
--output -dir <OUTPUT_DIR >

rBAN version 1.0, downloaded from https://bitbucket.org/sib-pig/rban/downloads/
rBAN-1.0.jar (accessed on 30 September 2021)

https://gnps.ucsd.edu/ProteoSAFe/result.jsp?view=network_displayer&componentindex=5&task=786ef25ff82d4872951fe7d26a72c4f6&show=true
https://gnps.ucsd.edu/ProteoSAFe/result.jsp?view=network_displayer&componentindex=5&task=786ef25ff82d4872951fe7d26a72c4f6&show=true
https://gnps.ucsd.edu/ProteoSAFe/result.jsp?view=network_displayer&componentindex=5&task=786ef25ff82d4872951fe7d26a72c4f6&show=true
https://github.com/magarveylab/prism-releases/releases/download/v2.1.5/prism.jar
https://github.com/magarveylab/prism-releases/releases/download/v2.1.5/prism.jar
https://github.com/magarveylab/grape-release/archive/refs/tags/2.9.1.tar.gz
https://github.com/magarveylab/grape-release/archive/refs/tags/2.9.1.tar.gz
https://github.com/magarveylab/garlic-release/archive/refs/tags/1.0.2.tar.gz
https://github.com/magarveylab/garlic-release/archive/refs/tags/1.0.2.tar.gz
https://dl.secondarymetabolites.org/releases/5.2.0/antismash-5.2.0.tar.gz
https://dl.secondarymetabolites.org/releases/5.2.0/antismash-5.2.0.tar.gz
https://bitbucket.org/sib-pig/rban/downloads/rBAN-1.0.jar
https://bitbucket.org/sib-pig/rban/downloads/rBAN-1.0.jar
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java -jar <PATH_TO_RBAN_JAR > \
-monomersDB <PATH_TO_MONOMERS > \
-inputFile <PATH_TO_INPUT_JSON > \
-outputFileName <OUTPUT_FILE_NAME > \
-outputFolder <OUTPUT_DIR >

Nerpa version 1.0.0, downloaded from https://github.com/ablab/nerpa/releases/tag/
v1.0.0 (accessed on 30 September 2021)

nerpa.py -a <PATH_TO_ANTISMASH_OUTPUTS > \
--smiles -tsv <PATH_TO_STRUCTURES > \
--col -smiles <COL_SMILES > --col -id <COL_ID > \
--sep <SEP > --process -hybrids -o <OUTPUT_DIR >

Appendix B. MS/MS Experiment Details

Appendix B.1. Microorganism Culturing

Photobacterium galatheae DSM 100496 [44] was purchased from the Leibniz-Institut
DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH. Media 514
and 830 (with 3% NaCl) were prepared as recommended by the strain provider (https://
www.dsmz.de/collection/catalogue/microorganisms/culture-technology/list-of-media-
for-microorganisms) (accessed on 30 September 2021). The microorganism was initially
grown in 50 mL Erlenmeyer flasks containing 25 mL of media in a rotary shaker (MaxQ
4450, Thermo Scientific, Waltham, MA, USA) at 200 rpm with controlled temperature
28 or 30 °C for two days. A 100 uL microbial inoculum from a two-days culture was
transferred into 900 uL culture in 96-deepwell plates and cultured at 28 and 30 °C during
six days at static conditions.

Appendix B.2. Extraction of Metabolites

The microbial cultures were submitted to three freeze-thaw cycles of 10 min each.
After that, two methods of extraction were performed. One method consisted of directly
adding methanol, followed by sonication for 15 min (Branson 5510, Marshall Scientific,
Hampton, NH, USA), centrifugation for 15 min at 2000 rpm (865× g) (Sorvall Legend RT,
Marshall Scientific, Hampton, NH, USA), transferring of supernatant to a clean 96-well
plate and dried out in Centrifugal Vacuum Concentrator, Centrivap (Labconco, Kansas
City, MO, USA). A second method consisted in Solid Phase Extraction (Hypersep C18
50 mg/1 mL, Thermo Scientific, Waltham, MA, USA). Extract was recovered with methanol,
dried out under vacuum and prepared for LC-MS.

Appendix B.3. Sample Preparation and LC-MS/MS Conditions

Samples were resuspended with 200 uL of 80% methanol containing 1uM amitriptyline
as internal standard and LC-MS/MS analysis was performed in an UltiMate 3000 UPLC
system (Thermo Scientific, Waltham, MA, USA) using a Kinetex 1.7 µm C18 reversed
phase UHPLC column (50 × 2.1 mm) and Maxis-II Q-TOF mass spectrometer (Bruker
Daltonics, Billerica, MA, USA) equipped with ESI source. The column was equilibrated
with 5% solvent B (LC-MS grade acetonitrile, 0.1% formic acid) for 1 min, followed by
a linear gradient from 5% B to 100% B in 8 min, held at 100% B for 2 min. Then, 100–5% B
in 0.5 min and maintained at 5% B for 2.5 min at a flow rate of 0.5 mL/min throughout
the run. MS spectra were acquired in positive ion mode in the range of 100–2000 m/z.
A mixture of 10 mg/mL of each sulfamethazine, sulfamethizole, sulfachloropyridazine,
sulfadimethoxine, amitriptyline, and coumarin was run after every 48 injections for quality
control. An external calibration with ESI-Low Concentration Tuning Mix (m/z 118.086255;
322.048121; 622.028960; 922.009798; 1221.990637; 1521.971475; 1821.952313) (Agilent Tech-
nologies, Santa Clara, CA, USA) was performed prior to data collection. An internal
calibrant Hexakis (1H,1H,2H-perfluoroethoxy) phosphazene (CAS 186817-57-2) was used

https://github.com/ablab/nerpa/releases/tag/v1.0.0
https://github.com/ablab/nerpa/releases/tag/v1.0.0
https://www.dsmz.de/collection/catalogue/microorganisms/culture-technology/list-of-media-for-microorganisms
https://www.dsmz.de/collection/catalogue/microorganisms/culture-technology/list-of-media-for-microorganisms
https://www.dsmz.de/collection/catalogue/microorganisms/culture-technology/list-of-media-for-microorganisms
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throughout the runs. The capillary voltage of 4500 V, nebulizer gas pressure (nitrogen)
of 2 bar, ion source temperature of 200 °C, dry gas flow of 9 L/min source temperature,
spectral rate of 3 Hz for MS1 and 10 Hz for MS2 was used. For acquiring MS/MS fragmen-
tation, the 6 most intense ions per MS1 were selected, MS/MS active exclusion parameter
was enabled, set to 2 and to release after 30 s, precursor ion was reconsidered for MS/MS
if current intensity/previous intensity ratio >2. Advanced stepping function was used
to fragment ions according to the Table A1 settings. Used CID energies are specified in
Table A2. The mass of the internal calibrant was excluded from the MS/MS list using
a mass range of m/z 621.5–623.0.

Table A1. Instrument settings for data-dependent acquisition of samples.

Time Collision RF Transfer Time Collision

0 450.0 70.0 125
25 550.0 75.0 100
50 800.0 90.0 100
75 1100.0 95.0 75

Table A2. CID energies for MS/MS data acquisition.

Type Mass Width Collision Charge State

Base 100.00 4.00 22.00 1
Base 100.00 4.00 18.00 2
Base 300.00 5.00 27.00 1
Base 300.00 5.00 22.00 2
Base 500.00 6.00 35.00 1
Base 500.00 6.00 30.00 2
Base 1000.00 8.00 45.00 1
Base 1000.00 8.00 35.00 2
Base 2000.00 10.00 50.00 1
Base 2000.00 10.00 50.00 2
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