
Journal of Mathematical Biology (2022) 85:62
https://doi.org/10.1007/s00285-022-01810-7 Mathematical Biology

The influence of a transport process on the epidemic
threshold

Christian Kuehn1,2 · Jan Mölter1

Received: 9 December 2021 / Revised: 27 April 2022 / Accepted: 5 July 2022 /
Published online: 28 October 2022
© The Author(s) 2022

Abstract
By generating transient encounters between individuals beyond their immediate social
environment, transport can have a profound impact on the spreading of an epidemic. In
this work, we consider epidemic dynamics in the presence of the transport process that
gives rise to a multiplex network model. In addition to a static layer, the (multiplex)
epidemic network consists of a second dynamic layer in which any two individuals
are connected for the time they occupy the same site during a random walk they
perform on a separate transport network. We develop a mean-field description of
the stochastic network model and study the influence the transport process has on the
epidemic threshold.We show that any transport process generally lowers the epidemic
threshold because of the additional connections it generates. In contrast, considering
also random walks of fractional order that in some sense are a more realistic model of
human mobility, we find that these non-local transport dynamics raise the epidemic
threshold in comparison to a classical local random walk. We also test our model on
a realistic transport network (the Munich U-Bahn network), and carefully compare
mean-field solutions with stochastic trajectories in a range of scenarios.
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1 Introduction

Transport processes such as the movement through a network of airlines on a
global (Hufnagel et al. 2004; Colizza et al. 2007) or a network of different public
transport modes on a local scale (Balcan and Vespignani 2011; Ruan et al. 2015) play
a crucial role in the spread of an epidemic, and in recent years, there has been an
increasing amount of work on that topic (Li et al. 2021). Events that transiently bring
together people that would not otherwise meet and interact in the community impose
a genuine risk and can imply a surge of infections driving the epidemic (McCloskey
et al. 2020; Parnell et al. 2020; Gilat and Cole 2020).

Traditional modelling of epidemics goes back to the seminal work of Kermack
et al. (1927), who considered a population divided into different compartments, the
susceptible (“S”), the infected (“I”), and the recovered (“R”) (or removed – in the sense
that they do not contribute the epidemic spread anymore). The dynamics between the
different compartments are governed by a set of ordinary differential equations that
can be used to accurately describe the dynamics of many real epidemics in the last
century (Kermack et al. 1927; Anderson and May 1992; Chang 2017; Dehning et al.
2020; Prodanov 2021). The classical SIR-model has been subsequently extended to
account for more features of epidemic spreading (Batista et al. 2021), ranging from
the addition of single compartments, e.g. for individuals that have been exposed to the
contagion and are carriers but not yet infectious (Li et al. 2001;Aleta andMoreno 2020)
or for individuals that are in quarantine (Horstmeyer et al. 2020), to intricate models
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that include different disease progressions (Romano et al. 2020; Abrams et al. 2021),
intervention and containment strategies (Dashtbali and Mirzaie 2021), and age (Zhao
2020).Usingdata-drivenmethods, thesemodels canbeused tomakepredictions for the
course of an epidemic and to assess differentmitigation strategies (Dehning et al. 2020;
Parino et al. 2021; Reiner 2021). A fundamental assumption of these deterministic,
compartmentalmodels is population-wide randommixing, even though in a population
every individual only has a finite number of contacts (Keeling and Eames 2005). Thus,
an alternative and more realistic way to model an epidemic is as a stochastic process
on a network of social relationships (Pastor-Satorras et al. 2015; Kiss et al. 2017).
Akin to the compartmental models, the nodes of the network, generally representing
individuals in a population, can be in one of several discrete states, in the classical
case, susceptible (“S”), infected (“I”), or recovered (“R”). The disease is transmitted
along the links of the network, e.g. representing social relationships, in a probabilistic
way. While these network models are considerably more complex than the traditional,
compartmental models, depending on the topology of the underlying network, their
mean-field limits can often still be reduced to differential Eq. (Kiss et al. 2017), which
aremore complex as they have to take the network topology into account. In particular,
it has been shown that network structure can give rise to new phenomena, such as a
vanishing epidemic threshold (Pastor-Satorras and Vespignani 2001).

The effect of transport processes on epidemic spreading has so far mostly been
considered in meta-population models (Hufnagel et al. 2004; Colizza et al. 2007;
Balcan and Vespignani 2011; Colizza et al. 2007; Brockmann and Helbing 2013;
Ruan et al. 2015; Linka et al. 2020; Calvetti et al. 2020; Chang et al. 2021). In these
models, one considers a set of communities in each of which the epidemic spreading
is modelled by one of the classical compartmental models together with a network
that connects these communities and governs the interactions between the epidemic
in the different communities via a flux of the contagion. Importantly, it has been
demonstrated that data-driven models of this kind can inform government policies
and mitigation strategies (Chang et al. 2021). In another recent study, a framework
for epidemic spreading on a network model of time-varying encounter networks was
developed and used to deduce control policies for public transport (Mo et al. 2021).

In studying complex systems and dynamical systems on networks in general as
well as epidemics and contact processes in particular, multilayer network structures
have recently attracted an increasing amount of interest (De Domenico et al. 2013;
Kivelä et al. 2014; Boccaletti et al. 2014; De Domenico et al. 2016; Bianconi 2018).
As a special kind of these complex structures, multiplex networks combine several
classical networks on top of the same set of nodes in a layered structure together with
interlayer links between corresponding nodes in the individual layers (Boccaletti et al.
2014). In the context of epidemic dynamics, multiplex structures have e.g. been used
to study the spread across multiple layers (Saumell-Mendiola et al. 2012; Ferraz de
Arruda et al. 2017), the interplay between awareness of an epidemic and the epidemic
itself (Granell et al. 2013), or the competition of two contagions that spread in indi-
vidual layers (Darabi Sahneh and Scoglio 2014; Sanz et al. 2014). Overall, multilayer
network structures do generally give rise to a much richer phenomenology than their
classical counterparts (De Domenico et al. 2016).
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Transport dynamics are a central aspect of thiswork, especially those corresponding
to human mobility (Barbosa et al. 2018) and it has been recognised that the latter fol-
lows simple reproducible patterns (González et al. 2008). One key observation inmany
studies has been that the distribution of jump-sizes tends to be heavy-tailed (Brock-
mann et al. 2006; Jiang et al. 2009), which is specifically reminiscent of Lévy flights
that have been a popular model for human mobility (Barbosa et al. 2018; Zaburdaev
et al. 2015). At the same time, it has also been shown that popular continuous-time
random walk and Lévy-flight models do not satisfactorily describe certain features of
humanmobility such as the tendency to preferentially return to previously and recently
visited sites as well as ultraslow diffusive exploration (Song et al. 2010; Barbosa et al.
2015). These features correspond to non-Markovian dynamics and microscopic mod-
els that account for those have been shown to reproduce mobility patterns observed in
data more accurately.

In this work, we introduce a model of epidemic dynamics on a network in the
presence of a transport process that will give rise to a multiplex structure. In view
of many epidemics for which recovery only leads to temporary immunity, we will
consider SIRS-epidemic dynamics, develop a mean-field description and study it from
a dynamical systems’ point of view, considering its equilibria and how the transport
process affects the epidemic threshold.

2 Model and results

In the following, we will define the model and subsequently derive a mean-field
description of first and second order, i.e. at the level of individuals and pairs, respec-
tively. We will then go on and show that the mean-field solutions provide very good
approximations for direct stochastic simulation of the network dynamics. We will
characterise the long-term behaviour of the dynamics towards equilibrium in terms of
an epidemic threshold and study the effect transport dynamics have on this threshold.

2.1 Themodel

Weconsider an epidemic in a population,whose individuals also take part in a transport
process, moving through a transport network. In addition to the links every individ-
ual has to other individuals, e.g., through social relationships in the population, the
transport process will generate additional transient links along which the contagion
can spread from one individual to the other.

Themodel the consists of two networks. On one sidewe have the epidemic network,
a multiplex network structure of two layers,

(N ,
{Ec., E t.

})
with N the common set

of nodes of the multiplex structure and Ec., E t. ⊆ N × N and on the other side the
transport network (X ,A) withA ⊆ X ×X . The two layers of the epidemic network,
(N , Ec.) and

(N , E t.
)
, are referred to as the community and transport layer, respec-

tively (Fig. 1). In terms of the topology, the community layer of the epidemic network
is assumed to be a static, undirected, unweighted, simple network, while the topology
of the transport layer is not fixed and subject to the transport process on the trans-
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Fig. 1 A model combining epidemic dynamics on a network with a transport process. The model consists
of two networks, the epidemic network

(N ,
{Ec.,E t.}), a two-layer multiplex network structure, on the left

and a transport network (X ,A) on the right. The two layers of the epidemic network are the community
layer

(N ,Ec.) and the transport layer
(N ,E t.). While the topology of the former is assumed to be static,

the one of the latter is dynamically changing. The epidemic network as a whole supports the SIRS-epidemic
dynamics, where the contagion can spread from one individual to another via either links in the community
or the transport layer. At the same time, the individuals of the epidemic network are assumed to move
through the transport network, performing a random walk so that whenever two of them occupy the same
site they will generate by a link in the transport layer of the epidemic network that persists for as long as
they both occupy the same site

port network (see below). The transport network is assumed to be a static, undirected,
connected, weighted network, with (weighted) adjacency matrix A. Corresponding to
the adjacency matrix, we define a transition matrix P = K−1A as a (right-) stochastic
matrix where K := diag(k(x))x with k(x) = ∑x ′ A(x, x ′) is the (weighted) degree-
matrix. Regarding the notation, by A(x, x ′) we mean the entry of A corresponding at
nodes x and x ′ ∈ X .

While the epidemic network, the multiplex structure, will support the epidemic
dynamics, the transport networkwill support a transport process.More specifically, we
will consider SIRS-epidemic dynamics across the multiplex epidemic network while
at the same time letting the individuals perform a Poissonian node-centric continuous-
time random walk on the transport network (Masuda et al. 2017). This process then
defines the topology of the transport layer of the epidemic network. Whenever any
two individuals occupy the same site in the transport network, they generate a link
between them in the transport layer that persists until one of them leaves the site. As
a result of that, the transport layer is a collection of complete networks on subsets of
the population corresponding to the individuals at the different sites of the transport
network.

To make all this more precise, with every individual n ∈ N , we associate a state(
Xn
t , H

n
t

) ∈ X × {S, I,R} tracking its site in the transport network and its state of
health in the epidemic network through time. As for the dynamics, for every individual
n,

• Xn
t : x → x ′ with probability P(x, x ′) independently at a uniform, exponential

rate μ and
• either Hn

t : S → I at an exponential rate βc. for every n′ such that (n′, n) ∈ Ec.

and, in addition, at an exponential rate β t. for any n′ such that (n′, n) ∈ E t., i.e.
Xn
t = Xn′

t with n �= n′, provided that Hn′
t = I, or Hn

t : I → R at an exponential
rate γ , or Hn

t : R → S at an exponential rate σ .
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The latter process describing SIRS-dynamics can be seen as a generalisation of the
more frequently studied SIS- and SIR-dynamics. More specifically, we recover those
in the limits σ → ∞ and σ → 0, respectively. We will make this precise once we
have derived a mean-field description. Intuitively, however, 1

σ
is the average time an

individual spends in the state R once it has transitioned into this state. Thus, in the case
of SIS-epidemic dynamics where upon recovery an individual becomes immediately
susceptible again, this time can be thought of as arbitrarily small. In contrast, in the
case of SIR-epidemic dynamics where an individual gains permanent immunity, it can
be thought of as arbitrarily large. These two extremes correspond to the limits σ → ∞
andσ → 0, respectively.Moreover, it isworthwhile noting thatwe introduceddifferent
rates for infections via the community and the transport layer. This is to account for
the fact that encounters in the community are generally different to the ones in public
transport in terms of the risk of transmission of a contagion that depends on the external
circumstances.

In addition to the epidemic parameters βc., β t., γ , and σ for the infection rates
in the community and transport layer, the recovery rate and the immunity loss rate,
respectively,wehave introducedparametersμ for the rate atwhichnodesmove through
the transport network to control their mobility. Also, we remark that since all of the
transitions are subject to homogeneous Poisson-point-processes, the overall process
is Markovian.

2.2 Derivation of themodel’s mean-field description

Ifwedisregard the transport process and thus assume the transport layer of the epidemic
network to be static, the mean-field description of the epidemic dynamics can be
deduced via standard techniques after projecting the epidemicmultiplex network down
onto a single layer (Kiss et al. 2017). Now, since all transitions are governed by
homogeneous Poisson-point-processes, at any point in time at most one transition
can occur. Therefore, we can take the mean-field description that we obtained by
considering the transport process to be frozen in time and add the missing terms
for a complete description by conversely considering the dynamics of the transport
process in isolation with the epidemic frozen in time. Since the transport process
dynamically changes only the links in the transport layer of the epidemic network
and consequently does not affect the state of health of the individual nodes, it will
manifest itself exclusively in the evolution of the expected number of pairs and, in
general, higher-order motifs of the transport layer.

In order to simplify notation, we adopt the notation of Kiss et al. (2017) and write

[h]t for the expected number of individuals in state of health h, [h λ∼ h′]t for the
expected number of pairs of individuals in state of health h and h′ connected via a link
in layer λ, as well as [h λ∼ h′ λ′

∼ h′′] for the expected number of triples of individuals
in state of health h, h′, and h′′ connected via links in layer λ and λ′, respectively. As
we will show in the following, the transport process and with it the varying number
of pairs in certain state of health gives rise to the additional approximate transition
terms (∂t ‖pt‖2)[h]t [h′]t to every pair of individuals in state of health h and h′ in
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Fig. 2 Mean-field transition diagrams for SIRS-epidemic dynamics in a multiplex network up to pair-
motifs. These diagrams capture the mean-field transition rates between individual- and pair-motifs for
SIRS-epidemic dynamics adapted to the case of a multiplex network where in layer λ the infection rate
along S-I-links is βλ (cf. Kiss et al. 2017) and where additionally links in a transport layer (ω = t.) are
subject to changes due to the transport process studied in this work. The expected number of (directed) pairs

of individuals in state of health h and h′ connected via a link in layer λ is denoted as [h λ∼ h′]. Importantly,
in this case links whose incident nodes have the same state of health are counted twice. Similarly, the
expected number of (directed) triples of individuals in states h, h′ and h′′ with the first two connected via a
link in layer λ and the second two via a link in layer λ′ is denoted as [h λ∼ h′ λ′

∼ h′′]. The transport process
manifests itself in the additional approximate transition terms (∂t ‖pt‖2)[h]t [h′]t to every pair of nodes in
states h and h′ connected via a link in the transport layer (ω = t.), where ∂t pt = −μ�
 pt and � = 1−P
the graph Laplacian of the transport network
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the transport layer, where ∂t pt = −μ�
 pt and � = 1 − P the graph Laplacian
of the transport network. The full transition diagrams for a mean-field description of
SIRS-epidemic dynamics from which we will later deduce the mean-field differential
equations are thus given by the diagrams in Fig. 2.

Indeed, denoting the number of individuals in a state of health h occupying a site
x at time t as ht (x), we have that for any τ > 0 sufficiently small,

ht+τ (x) = ht (x) +
∑

n

(δx,Xn
t+τ

− δx,Xn
t
)δh,Hn

t . (1)

Since by assumption, individuals occupying the same site generate links between
them in a transitive way, denoting the number of links in the transport layer between

individuals in state of health h and h′ at site x at time t as {h t.∼ h′}(x), we consequently
also have that

{h t.∼ h′}t+τ (x) = {h t.∼ h′}t (x) +
(

ht (x)
∑

n

(δx,Xn
t+τ

− δx,Xn
t
)δh′,Hn

t

+ h′
t (x)

∑

n

(δx,Xn
t+τ

− δx,Xn
t
)δh,Hn

t

)

+
∑

n,n′:n �=n′
(δx,Xn

t+τ
− δx,Xn

t
)(δx,Xn′

t+τ
− δx,Xn′

t
)δh,Hn

t
δh′,Hn′

t
. (2)

Indeed, suppose individual nmakes a transition Xn
t → Xn

t+τ . Then, provided H
n
t = h,

Xn
t = x , and Xn

t+τ = x ′, ht (x) → ht+τ (x) = ht (x) − 1 and ht
(
x ′) → ht+τ

(
x ′) =

ht
(
x ′) + 1 while everything else remains constant. Thus the net change of ht (x) is

(δx,Xn
t+τ

− δx,Xn
t
)δh,Hn

t
. Since at every point in time each individual can make such a

transition, we sum this across all the individuals and obtain the overall net change as

claimed in Eq. (1). For links, note that {h t.∼ h′}t (x) = ht (x)
(
h′
t (x) − δh,h′

)
so that

with φ[ht (x)] =∑n(δx,Xn
t+τ

− δx,Xn
t
)δh,Hn

t
, we have

{h t.∼ h′}t+τ (x) = ht+τ (x)
(
h′
t+τ (x) − δh,h′

)

= {h t.∼ h′}t+τ (x) + (ht (x) φ[h′
t (x)] + h′

t (x) φ[ht (x)]
)

+φ[ht (x)]
(
φ[h′

t (x)] − δh,h′
)

(3)

and since

φ[ht (x)]φ[h′
t (x)] =

∑

n,n′:n �=n′
(δx,Xn

t+τ
− δx,Xn

t
)(δx,Xn′

t+τ

−δx,Xn′
t
)δh,Hn

t
δh′,Hn′

t
+ φ[ht (x)]δh,h′ (4)
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we obtain the expressions as claimed in Eq. (2). At this point, it might be worthwhile
mentioning that we are counting the pairs as directed links following the convention
of Kiss et al. (2017). In particular, this means that any h-h-link is counted twice.

Now, recalling that for the random walk every individual performs independently
through the transport network we have

P
[
Xn
t+τ = x ′∣∣ Xn

t = x ∧ Hn
t = h

] = δx,x ′ − μτ�(x, x ′) (1 + O(τ )) (5)

where � = 1 − P is the graph Laplacian of the transport network, we compute, by
the law of total expectation,

E

[
∑

n

(δx,Xn
t+τ

− δx,Xn
t
)δh,Hn

t

]

=
∑

n

∑

h′

∑

x ′,x ′′
P
[
Xn
t+τ = x ′′∣∣ Xn

t = x ′ ∧ Hn
t = h′]

P
[
Xn
t = x ′ ∧ Hn

t = h′]

× E

[
(δx,Xn

t+τ
− δx,Xn

t
)δh,Hn

t

∣∣
∣ Xn

t = x ′ ∧ Hn
t = h′ ∧ Xn

t+τ = x ′′]

=
∑

x ′,x ′′

(
δx ′,x ′′ − μ�(x ′, x ′′)τ (1 + O(τ ))

) (
δx,x ′′ − δx,x ′

)
E[ht (x ′)]

= −μτ (1 + O(τ ))
∑

x ′,x ′′
�(x ′, x ′′)

(
δx,x ′′ − δx,x ′

)
E[ht (x ′)]

= −μτ (1 + O(τ ))

(
∑

x ′
�(x ′, x)E[ht (x ′)] −

(
∑

x ′′
�(x, x ′′)

)

E[ht (x ′)]
)

= −μτ (1 + O(τ ))
∑

x ′
�
(x, x ′)E[ht (x ′)] (6)

where in the last step we used that
∑

x ′′ �(x, x ′′) = 1−∑x ′′ P(x, x ′′) = 0 since P is
a stochastic matrix.

Essentially along the same lines, we also find that

E

[

ht (x)
∑

n

(δx,Xn
t+τ

− δx,Xn
t
)δh′,Hn

t

]

= −μτ (1 + O(τ )) E[ht (x)]
∑

x ′
�
(x, x ′)E[h′

t (x
′)] (7)

and

E

⎡

⎣
∑

n,n′:n �=n′
(δx,Xn

t+τ
− δx,Xn

t
)(δx,Xn′

t+τ
− δx,Xn′

t
)δh,Hn

t
δh′,Hn′

t

⎤

⎦ = O(τ 2). (8)
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Thus,

E[ht+τ (x)] = E[ht (x)] − μτ (1 + O(τ ))
∑

x ′
�
(x, x ′)E[ht (x ′)] (9)

and

E[{h t.∼ h′}t+τ (x)] = E[{h t.∼ h}t (x)] − μτ (1 + O(τ ))

(

E[ht (x)]
∑

x ′
�
(x, x ′)E[h′

t (x
′)]

+ E[h′
t (x)]

∑

x ′
�
(x, x ′)E[ht (x ′)]

)

+ O(τ 2) (10)

so that after passing to the limit τ → 0, we finally arrive at

∂t E[ht (x)] = −μ
∑

x ′
�
(x, x ′)E[ht (x ′)] (11)

and

∂t E[{h t.∼ h′}t (x)] = −μ

(

E[ht (x)]
∑

x ′
�
(x, x ′)E[h′

t (x
′)]

+E[h′
t (x)]

∑

x ′
�
(x, x ′)E[ht (x ′)]

)

. (12)

Since we are only interested in the overall number of h-h′-links in the transport layer,
we obtain that from the latter by the simply taking the sum across all sites x . Hence,
with [h(x)]t = E[ht (x)],

∂t [h t.∼ h′]t = −μ
∑

x,x ′
(�
(x, x ′) + �
(x ′, x))[h(x)]t [h′(x ′)]t . (13)

While this equation is exact, it depends on the precise number of individuals at
every site and in every state of health which is not suitable for a complete mean-
field description at the population level. Thus, assuming the site a given individual is
occupying is independent of its state of health, we make the approximation [h(x)]t ≈
pt (x) [h]t , where pt (x) is the probability that an individual performing a randomwalk
through the transport network occupies site x at time t , and find using Eqs. (11) and
(13)

{
∂t pt = −μ�
 pt

∂t [h t.∼ h′]t ≈ (∂t ‖pt‖2)[h]t [h′]t
(14)
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to describe the effect of the transport process on the epidemic network. This completes
the argument and explains the additional transition terms in the diagrams in Fig. 2.

From these diagrams, we can now deduce the mean-field equations, which are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t pt = −μ�
 pt

∂t [S]t = −
∑

λ

βλ[S λ∼ I]t + σ [R]t

∂t [I]t =
∑

λ

βλ[S λ∼ I]t − γ [I]t

∂t [R]t = γ [I]t − σ [R]t
∂t [S ω∼ S]t = −2

∑

λ

βλ[S ω∼ S
λ∼ I]t + 2σ [S ω∼ R]t + (∂t ‖pt‖2)[S]2t δω,t.

∂t [S ω∼ I]t =
∑

λ

βλ([S ω∼ S
λ∼ I]t − [I ω∼ S

λ∼ I]t ) − βω[S ω∼ I]t − γ [S ω∼ I]t + σ [I ω∼ R]t

+ (∂t ‖pt‖2)[S]t [I]tδω,t.

∂t [I ω∼ I]t = 2

(
∑

λ

βλ[I ω∼ S
λ∼ I]t + βω[S ω∼ I]t

)

− 2γ [I ω∼ I]t + (∂t ‖pt‖2)[I]2t δω,t.

∂t [S ω∼ R]t = −
∑

λ

βλ[R ω∼ S
λ∼ I]t + γ [S ω∼ I]t

+ σ([R ω∼ R]t − [S ω∼ R]t ) + (∂t ‖pt‖2)[S]t [R]tδω,t.

∂t [I ω∼ R]t =
∑

λ

βλ[R ω∼ S
λ∼ I]t + γ ([I ω∼ I]t − [I ω∼ R]t )

− σ [I ω∼ R]t + (∂t ‖pt‖2)[I]t [R]tδω,t.

∂t [R ω∼ R]t = 2γ [I ω∼ R]t − 2σ [R ω∼ R]t + (∂t ‖pt‖2)[R]2t δω,t.

(15)

for ω ∈ {c., t.}, where we do not explicitly highlight that the transition terms due to
the transport process are only approximations in view of other approximations that
are going to be introduced down the line in the form of moment closures.

These equations are valid for any topology of the epidemic network. However, as
indicated earlier, these equations are not closed in the sense that the evolution equations
for motifs of first or second order, in turn, depend on motifs of the next higher order.
This gives rise to a hierarchy of models that will only terminate at motifs of system
size and at this point defeating the point of mean-field equations as a low-dimensional
description of the macroscopic behaviour of a system (House and Keeling 2011). This
is where moment closures enter the scene (Kuehn 2016). By expressing higher-order
motifs in terms of lower-order ones, one breaks the hierarchy and obtains a closed
system of ordinary differential equations.

In this work, we will only focus on first- and second-order mean-field equations,
i.e. equations that have been closed at the level of individuals and at the level of pairs,
respectively (Kiss et al. 2017). In order to do so, we will from now on assume that
the community layer of the epidemic network is a k-regular network, i.e. that all its
nodes have degree k, which greatly simplifies the analysis (for the irregular case, see
Appendix).
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62 Page 12 of 39 C. Kuehn, J. Mölter

2.2.1 First-order mean-field equations

In order to derive first-order mean-field equations, we will use the well-known pair-
closure (Kiss et al. 2017). For that, we first note that, in addition to the community
layer, also the transport layer of the epidemic network is in expectation regular with
degree ‖pt‖2 |N |.

Indeed, one can verify that the probability for any individual n to have degree k
in the transport layer is given as

(|N |−1
k

)∑
x pt (x)k+1 (1 − pt (x))|N |−1−k . From that

we conclude that the expected degree is ‖pt‖2 (|N | − 1) ≈ ‖pt‖2 |N | independent
of n, for |N | large.

Thus, the pair-closure is given as

[S ω∼ I]t ≈ κω(pt )

|N | [S]t [I]t (16)

where κc.(p) = k and κ t.(p) = ‖p‖2 |N | are the (expected) degree of the networks
in the community and transport layer, respectively.

Applying this moment closure to the system of Eq. (15), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t pt = −μ�
 pt

∂t [S]t = −
∑

λ

βλ κλ(pt )

|N | [S]t [I]t + σ [R]t

∂t [I]t =
∑

λ

βλ κλ(pt )

|N | [S]t [I]t − γ [I]t

∂t [R]t = γ [I]t − σ [R]t

(17)

as the first-ordermean-field equations that describe the dynamics at the level of individ-
uals with initial conditions p0 some probability distribution on the transport network
and [S]0, [I]0, and [R]0 such that |N | = [S]0 + [I]0 + [R]0.

Since ∂t
∑

h[h]t = 0, the total number of individuals
∑

h[h]t is a conserved quan-
tity. Therefore, these first-order equations are not independent and the total number
of individuals as a constant of motion can be used to derive a reduced system of dif-
ferential equations that equivalently describe the system by eliminating one of the
equations for the susceptible, infected, and recovered individuals.

2.2.2 Second-order mean-field equations

Since we have described the dynamics up to the level of pair motifs, we can go one
step further and also derive the second-order mean-field equations. For that, we need
to close the system of Eq. (15) at the level of pairs. In order to do so, we will use the
closure

[h ω∼ S
ω′
∼ I]t ≈

(
1 − δω,ω′

κω(pt )

) [S ω∼ h]t [S ω′
∼ I]t

[S]t (18)
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which is frequently used for regular networks (Kiss et al. 2017) and where as before
we have κc.(p) = k and κ t.(p) = ‖p‖2 |N |.

With that,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t pt = −μ�
 pt

∂t [S]t = −
∑

λ

βλ[S λ∼ I]t + σ [R]t

∂t [I]t =
∑

λ

βλ[S λ∼ I]t − γ [I]t

∂t [R]t = γ [I]t − σ [R]t

∂t [S ω∼ S]t = −2
∑

λ

βλ

(
1 − δω,λ

κω(pt )

)
[S λ∼ I]t [S

ω∼ S]t
[S]t + 2σ [S ω∼ R]t

+(∂t ‖pt‖2)[S]2t δω,t.

∂t [S ω∼ I]t =
∑

λ

βλ

(
1 − δω,λ

κω(pt )

)
[S λ∼ I]t [S

ω∼ S]t − [S ω∼ I]t
[S]t

− βω[S ω∼ I]t − γ [S ω∼ I]t + σ [I ω∼ R]t + (∂t ‖pt‖2)[S]t [I]tδω,t.

∂t [I ω∼ I]t = 2

(
∑

λ

βλ

(
1 − δω,λ

κω(pt )

)
[S λ∼ I]t [S

ω∼ I]t
[S]t + βω[S ω∼ I]t

)

− 2γ [I ω∼ I]t

+ (∂t ‖pt‖2)[I]2t δω,t.

∂t [S ω∼ R]t = −
∑

λ

βλ

(
1 − δω,λ

κω(pt )

)
[S λ∼ I]t [S

ω∼ R]t
[S]t + γ [S ω∼ I]t

+ σ([R ω∼ R]t − [S ω∼ R]t ) + (∂t ‖pt‖2)[S]t [R]tδω,t.

∂t [I ω∼ R]t =
∑

λ

βλ

(
1 − δω,λ

κω(pt )

)
[S λ∼ I]t [S

ω∼ R]t
[S]t

+ γ ([I ω∼ I]t − [I ω∼ R]t ) − σ [I ω∼ R]t + (∂t ‖pt‖2)[I]t [R]tδω,t.

∂t [R ω∼ R]t = 2γ [I ω∼ R]t − 2σ [R ω∼ R]t + (∂t ‖pt‖2)[R]2t δω,t.

(19)

for ω ∈ {c., t.} are the second-order mean-field equations that describe the dynamics
at the level of pairs with initial conditions p0 some probability distribution on the
transport network and [S]0, [I]0, and [R]0 such that |N | = [S]0 + [I]0 + [R]0, as well
as [S ω∼ S]0 = κω(p0)

|N | [S]20, [S ω∼ I]0 = κω(p0)
|N | [S]0[I]0, [I ω∼ I]0 = κω(p0)

|N | [I]20,
[S ω∼ R]0 = κω(p0)

|N | [S]0[R]0, [I ω∼ R]0 = κω(p0)
|N | [I]0[R]0, and [R ω∼ R]0 =

κω(p0)
|N | [R]20.
As it has been for the first-order mean-field equations, these equations are not inde-

pendent. Indeed, there are several conservation relations with which one can derive a
reduced set of differential equations that equivalently describe the full system. Besides
the total number of individuals also the (expected) total number of links in both layers

of the epidemic network is conserved since ∂t

(∑
h,h′ [h ω∼ h′]t − κω(pt ) |N |

)
= 0.
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In addition, we also have pair-conservation so that
∑

h′ [h ω∼ h′]t = κω(pt )[h]t for
every h. To see that, note that

∂t

⎛

⎜
⎝

∑
h′ [S ω∼ h′]t − κω(pt )[S]t∑
h′ [I ω∼ h′]t − κω(pt )[I]t∑
h′ [R ω∼ h′]t − κω(pt )[R]t

⎞

⎟
⎠ =

⎛

⎝
−Uω

t 0 σ

Uω
t −γ 0
0 γ −σ

⎞

⎠

⎛

⎜
⎝

∑
h′ [S ω∼ h′]t − κω(pt )[S]t∑
h′ [I ω∼ h′]t − κω(pt )[I]t∑
h′ [R ω∼ h′]t − κω(pt )[R]t

⎞

⎟
⎠ (20)

where Uω
t = 1

[S]t
∑

λ βλ
(
1 − δω,λ

κω(pt )

)
[S λ∼ I]t from which the claim follows via

standard arguments (Kiss et al. 2017, Proposition 4.2).

2.2.3 SIS- and SIR-epidemic mean-field equations in a singular limit

As mentioned in the beginning, we can derive the corresponding mean-field descrip-
tions for SIS- and SIR-epidemic dynamics by taking the limits σ → ∞ and σ → 0,
respectively. While in the case of the latter, one can simply set σ = 0, the procedure
is more involved in the case of the former and to actually perform the limit one might
draw on results from geometric singular perturbation theory. More specifically, as σ

becomes large, we observe a time-scale separation in the system with the transition
R → S occurring on a fast and the remaining transitions on a slow time scale, so
that in the limit σ → ∞ only the slow dynamics remain. The mean-field equations
describing them are then given as (see Appendix)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t pt = −μ�
 pt

∂t [S]t = −
∑

λ

βλ[S λ∼ I]t + γ [I]t

∂t [I]t =
∑

λ

βλ[S λ∼ I]t − γ [I]t

∂t [S ω∼ S]t = −2
∑

λ

βλ

(
1 − δω,λ

κω(pt )

)
[S λ∼ I]t [S

ω∼ S]t
[S]t + 2γ [S ω∼ I]t

+ (∂t ‖pt‖2)[S]2t δω,t.

∂t [S ω∼ I]t =
∑

λ

βλ

(
1 − δω,λ

κω(pt )

)
[S λ∼ I]t [S

ω∼ S]t − [S ω∼ I]t
[S]t

− βω[S ω∼ I]t − γ ([S ω∼ I]t − [I ω∼ I]t )
+ (∂t ‖pt‖2)[S]t [I]tδω,t.

∂t [I ω∼ I]t = 2

(
∑

λ

βλ

(
1 − δω,λ

κω(pt )

)
[S λ∼ I]t [S

ω∼ I]t
[S]t + βω[S ω∼ I]t

)

− 2γ [I ω∼ I]t

+ (∂t ‖pt‖2)[I]2t δω,t.

(21)

The corresponding first-order mean-field equations can be obtained analogously
or, alternatively, by simply applying the pair-closure from before in Eq. (16) to these
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Fig. 3 Comparison between stochastic trajectories of the model and first- and second-order mean-field
solutions. Stochastic trajectories together with their corresponding mean-field solutions for the fractions of
susceptibles, infected, and recovered are shown for SIS-, SIRS- and SIR-epidemic dynamics in a population
of 1000 individuals in a 10-regular network as the community layer of the epidemic network and theMunich
U-Bahn network that consists of approximately 100 sites as the transport network. The epidemic parameters
are set to βc. = 1

6 , β
t. = 1

20βc., γ = 1, and, in case of SIRS-dynamics, σ = 1
5 . The mobility rate is varied,

with μ = 1 in A and μ = 10 in B. In each case, the mean initial prevalence is set to 5% and, at t = 0, the
individuals are all located at a single site (“Marienplatz”) on transport network. The stochastic trajectories
are shown without having been time-shifted

equations. We remark that the reduced slow limiting systems are relatively straight-
forward in our context but far more complicated singular limits have recently emerged
as well in epidemic dynamics depending on which singular perturbation parameters
are considered (Jardón-Kojakhmetov et al. 2021; Li et al. 2016; Schecter 2021).

2.2.4 Numerical comparison of first- and second-order mean-field equations with
the stochastic process

Having derivedmean-field equations to describe the dynamics of the stochastic process
at a macroscopic level, obviously raises the question as to how well they describe the
full stochastic process. For that, we computed stochastic trajectories by simulating the
stochastic process using a discrete-event simulation (Kiss et al. 2017; Law 2015). A
numerical comparison between stochastic trajectories and the corresponding first- and
second-order mean-field solutions for SIRS-, SIS- and SIR-epidemic dynamics in a
populationwith 1000 individuals in a 10-regular network as the community layer of the
epidemic network and the Munich U-Bahn network which consists of 96 sites as the
transport network shows overall good agreement between the stochastic trajectories
and the mean-field solutions (Fig. 3). However, as expected, the second-order mean-
field solutions are generally in better agreement with the stochastic trajectories.

2.3 The epidemic threshold in the presence of transport

Due the transport process the individuals are transiently linked to other individuals that
they would not have been otherwise and as such exposed to a higher risk of infection.
Theway the transport process increases the infection pressure can be seenmost directly
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Fig. 4 The presence of the transport process lowers the epidemic threshold. The equilibrium prevalence
near the epidemic threshold between disease-free and endemic state is shown as a function of the relative

strength of the infection rate in the transport layer βt.

βc. and the basic reproduction number in the absence

of transport βc.k
γ (in first-order approximation) for the first- and second-order mean-field description in

A and B, respectively, as well as for the mean of stochastic simulations in C. For simplicity, this is done
for SIS-epidemic dynamics (for SIRS-epidemic dynamics one can obtain qualitatively similar plots) in a
population of 1000 individuals in a 10-regular network as the community layer of the epidemic network and
the Munich U-Bahn network consisting of approximately 100 sites as the transport network. The recovery
rate and the mobility rate are set to γ = 1 and μ = 10, respectively. As the infection rate in the transport
layer βt. is increased, an increasing number of infections occurs via the transport layer which in turn has
as a consequence that the epidemic threshold is lower

in the first-order mean-field models. In fact, the effective infection rate in the presence

of the transport process turns out to be
∑

λ βλ κλ(pt )
|N | = βc.

|N |
(
k + β t.

βc. ‖pt‖2 |N |
)
. In

other words, the transport process effectively amounts to β t.

βc. ‖pt‖2 |N | ≥ β t.

βc.
|N |
|X |

additional contacts for the average individual. These additional, transient contacts
can considerably alter the fate of the epidemic. If, e.g. in case of SIS-dynamics, the
community layer alone is just sufficiently sparsely connected so that the epidemic
cannot be sustained and will die out eventually, the presence of the transport process
can lead to an endemic state (Fig. 4).

More precisely, consider the first-order mean-field model in Eq. (17) and let

χ(p) =
(

βc. k

|N | + β t. ‖p‖2
) |N |

γ
. (22)

Then, the system undergoes a transcritical bifurcation when χ(p∞) = 1 where p∞ is
the unique solution to the equation �
 p∞ = 0 with p∞(x) ≥ 0 and

∑
x p∞(x) = 1.

Moreover, for χ(p∞) < 1 and χ(p∞) > 1, the stable equilibrium points are

(p∞, |N | , 0, 0) and
(
p∞, |N | 1

χ(p∞)
, σ

γ+σ
|N |

(
1 − 1

χ(p∞)

)
,

γ
γ+σ

|N |
(
1 − 1

χ(p∞)

))

corresponding to the disease-free and the endemic state, respectively.
Indeed, due to the strongly connected transport network there is a unique solution

p∞ of ∂t pt = −μ�
 pt = 0 with p∞ ≥ 0 and
∑

p∞ = 1, the equilibrium solution
of the randomwalk on the transport network. From there, a proof of the above statement
proceeds entirely analogously to the case of standard SIRS-epidemic dynamics (Kiss
et al. 2017).
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In particular, since χ(p∞) ≥ χ(p∞) |β t.=0, in the presence of the transport process
and anon-vanishing infection rate in the transport layer, the epidemic threshold towards
an endemic state is lower (Fig. 4).

In terms of mitigation strategies for an epidemic, this means that, without com-
prehensive testing and subsequent quarantining of infected individuals as well as
additional hygiene measures on public transport, people that regularly participate in
public transport, e.g. by commuting to work, would have to restrict their personal
contacts even more drastically than people that do generally avoid public transport
and by that keep their number of effective contacts low. Alternatively, the density of
people in public transport has to be kept low, which would result in a lower infection
rate and similarly keep the overall number of effective contacts low.

Finally, let us also remark that the corresponding results for SIR- and SIS-epidemic
dynamics can again be obtained by considering the limits σ → 0 and σ → ∞,
respectively. Unfortunately, a full analytical description of the equilibrium state of the
second-order mean-field equations in terms of closed-form expressions is virtually
impossible in most cases. Even in the simplest case of the SIS-epidemic dynamics and
considering the fully reduced system after making use of all the conservation relations,
a description of the endemic state turns out to be very complicated.

2.4 Non-local, fractional transport dynamics

So far, we have considered transport under the dynamics of the standard graph Lapla-
cian. In this case, the individuals performing the random walk can only move to sites
in the immediate neighbourhood of the graph. However, empirical studies suggest
that among other things human mobility patterns are characterised by heavy-tailed
distributed jump-lengths (Brockmann et al. 2006) reminiscent of Lévy flights on the
network (Zaburdaev et al. 2015). In the following, we will consider a generalisation of
our model towards fractional dynamics on the transport network, which are known to
give rise to heavy-tailed jump-length distributions (Riascos and Mateos 2014; Miche-
litsch et al. 2017; Benzi et al. 2020; Michelitsch et al. 2019).

In defining the fractional dynamics for an exponent 0 < α ≤ 1, we follow the
approach of Benzi et al. (2020). We consider the unnormalised Laplacian L := K − A
which is symmetric and non-negative. As such, we can define its fractional power
in the usual way: Given the spectral decomposition L = ∑

λ λ �λ, we have Lα =∑
λ λα �λ. The fractional degree-matrix is then given as K (α) := diag(k(α)(x))x with

k(α)(x) = Lα(x, x) and we obtain the fractional Laplacian �(α) = K (α)−1Lα so
that the fractional transition matrix is given as P(α) = 1 − �(α). With the fractional
transition matrix or Laplacian, we can define our model entirely analogously and also
the results we have obtained so far carry over.

While for α = 1, we trivially recover the dynamics of a classical random walk, for
0 < α < 1, we obtain superdiffusive behaviour in the transport process as well as an
algebraic decay in the jump-length distribution (Benzi et al. 2020; Riascos andMateos
2014). One of the consequences that come with the introduction of the fractional
dynamics is that it eventually raises the epidemic threshold (Fig. 5). Under fractional
dynamics, individuals spreadmore evenly on the transport network facilitated by long-
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Fig. 5 Non-local, fractional dynamics in the transport process raise the epidemic threshold. The equilibrium
prevalence near the epidemic threshold between disease-free and endemic state is shown as a function of

the fractional exponent α and the basic reproduction number in the absence of transport βc.k
γ (in first-order

approximation) for the first- and second-order mean-field description in A and B, respectively, as well as
for the mean of stochastic simulations in C. For simplicity, this is done for SIS-epidemic dynamics (for
SIRS-epidemic dynamics one can obtain qualitatively similar plots) in a population of 1000 individuals in
a 10-regular network as the community layer of the epidemic network and the Munich U-Bahn network
consisting of approximately 100 sites as the transport network. The infection rate in the transport layer,
the recovery rate, and the mobility rate are set to βt. = 1

20βc., γ = 1, and μ = 10, respectively. As the
fractional exponent α is lowered, the individuals spread more evenly across the transport network and do
not form clusters which in turn has a consequence that the epidemic threshold is higher

distance jumps. As such, the equilibrium distribution of the transport process on the
network approaches a uniform distribution as the fractional exponent becomes small.

Indeed, it is well-known that the equilibrium distribution for the transport dynamics

is given as p(α)∞ =
(

k(α)(x)∑
x k

(α)(x)

)

x
(Benzi et al. 2020), where k(α)(x) =∑λ λα �λ(x, x)

for any 0 < α ≤ 1. On one hand, considering the case α = 1, we immedi-
ately see that in equilibrium there is cluster formation at well-connected sites. On
the other hand, if we let α tend to 0 these clusters dissolve. More specifically, for
α > 0,

∑
λ λα �λ(x, x) = ∑λ : λ�=0 λα �λ(x, x) so that k(0)(x) := limα↓0 k(α)(x) =

1−�0(x, x) = 1− 1
|X | where we have used that

∑
λ �λ = 1 and that the eigenvector

corresponding to the eigenvalue 0 is constant. Hence, as α approaches 0, the fractional
degrees at every site converge to a constant and, consequently, the equilibrium distri-
bution is continuously approaching a uniform distribution. In turn, since the term ‖p‖2
for any probability distribution p is minimised by the uniform distribution, we have
that χ(p(α)∞ ) ≥ χ(p(0)∞ ) for any 0 < α ≤ 1. However, while one might assume that
the dependence in α is monotonic, so that the epidemic threshold towards an endemic
state is higher the more α is decreased, this turns out to be false in general. In fact, it
depends on the topology of the network and there are counterexamples of networks
where the epidemic threshold decreases before it finally increases (see Appendix).

Overall, the effect the fractional dynamics have on the epidemic threshold is rather
subtle depending on the topology of the transport network. In fact, the more regular it
is, the smaller it is. Conversely, themore irregular it is, themore apparent the difference
in the epidemic threshold for fractional and standard random walk (α = 1) dynamics
is.
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2.5 Temporary instead of permanent participation in the transport-epidemic
dynamics

The transport model we have considered so far has the apparent flaw that every
individual is permanently moving through the transport network. In contrast, more
realistically, individuals would enter the transport network at one site and leave it
again at another site and, therefore, only temporarily move through the transport net-
work participating in the transport-induced epidemic dynamics.

In order to incorporate that into the present model, we extend a given transport
network with a set of sites, accessible by some or all other sites, that will be regarded
as situated beyond the transport network in the sense that whenever individuals occupy
these sites they are not aware of each other and as such do not generate a transient link
in the transport layer. This change then shows up in the way the distribution on the
extended transport network enters the mean-field description. Specifically, if (X ,A)

is the extended transport network with X = X ∪ � and � the aforementioned set of
sites beyond the transport network, then any term ‖pt‖2 showing up in the equations
is replaced by the term ‖pt 1�c‖2 =∑x∈X \� pt (x)2.

Indeed, if � is now the graph Laplacian of the extended transport network and
starting from Eq. (12), we obtain the overall number of h-h′-links in the transport
layer in this case by only summing across the sites in X as opposed to also those
in �, which yields an exact equation analogous to Eq. (13). After making the same
approximation as before, [h(x)]t ≈ pt (x) [h]t , we eventually obtain

⎧
⎪⎨

⎪⎩

∂t pt = −μ�
 pt

∂t [h t.∼ h′]t ≈ (∂t
∑

x∈X \�
pt (x)

2)[h]t [h′]t = (∂t ‖pt 1�c‖2)[h]t [h′]t (23)

which takes the place of Eq. (14) for the extended transport network. Thus, instead
of ‖pt‖2 we have ‖pt 1�c‖2 for an extended transport network with void sites �.
Moreover, note that this reduces to the previous case where there are no void sites and
� = ∅.

By a similar argument where one restricts the sum across the transport network’s
sites to exclude those in the void, one can show that in expectation the degree of
an individual’s node in the transport layer is analogously ‖pt 1�c‖2 |N | instead of
‖pt‖2 |N |.

Overall, the introduction of void sites binds some of the density of individuals on
the transport network, reduces the number of links in the transport layer and by that
the infectious pressure. Consequently, this raises the epidemic threshold but otherwise
does not qualitatively change the behaviour of the dynamics.

2.6 Numerical investigation of non-equilibrium dynamics

So far, we have exclusively focused on the equilibrium of the dynamics. In the fol-
lowing, we will discuss two other aspects regarding dynamics that do not necessarily
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Fig. 6 Comparison between stochastic trajectories of the model and first- and second-order mean-field
solutions for a time-varying transport network. Stochastic trajectories together with their corresponding
mean-field solutions for the fractions of susceptibles, infected, and recovered are shown for SIS-, SIRS-
and SIR-epidemic dynamics in a population of 1000 individuals in a 10-regular network as the community
layer of the epidemic network and the Munich U-Bahn network that consists of approximately 100 sites
as the transport network. The dynamics switch between the transport network as considered before and
one with an attracting core that arises from the former after resolving any link as two directed links in
either direction and then deleting any link that strictly increases the number of steps required to reach the
core and by that creating a time-varying transport network. The epidemic parameters are set to βc. = 1

6 ,

βt. = 1
20βc., γ = 1, and, in case of SIRS-dynamics, σ = 1

5 . The mobility rate is varied, with μ = 1 in A
and μ = 10 in B. In each case, the mean initial prevalence is set to 5% and, at t = 0, the individuals are
all located at a single site (“Marienplatz”) on the transport network. The stochastic trajectories are shown
without having been time-shifted. The periods when the transport network was attracting are shaded in grey

admit an equilibrium on one hand and dynamics before reaching equilibrium on the
other hand.

2.6.1 Time-dependent transport networks

Besides static, undirected transport networks that we have considered so far, it is
also interesting to have the network dynamically changing. Inspired by the dynamics
induced by the daily commute of people from their home to e.g. the central business
district, one might consider a network that is temporarily attracting, drawing a random
walker into a predefined core.

One way to model this is to consider, in addition to a base network, a second
(directed) transport network, derived from the former, where the strength of the links
is biased so that a randomwalkwill concentrate a large proportion of its mass at a small
set of nodes, an attracting core. Given a function f : [0,∞[→ [0, 1], we can then
define transport dynamics on a dynamically changing network, governed by a time-
dependent Laplacian �̃t = (1 − f (t)) �+ f (t)�′ with� and�′ theLaplacians of the
base network and the attracting network, respectively. Depending on the modulation
function f one can model different dynamics. In the case of periodic dynamics such
as the initially mentioned daily commute, an obvious choice would be an oscillating
function. In contrast, a single event temporarily drawing people to a particular site,
can be realised by a function that switches only once between the two networks.

The mean-field description that we have derived readily applies to this case and for
a numerical comparison between stochastic trajectories and first- and second-order
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mean-field solutions we consider again as a transport network the Munich U-Bahn
network with the sites in the city centre as an attracting core. The attracting network
arises from the base model after resolving every link between any two sites as two
directed links in either direction and then deleting any link that strictly increases the
number of steps required to reach the core. As before, we find overall good agreement
between the stochastic trajectories and the correspondingfirst- and second-ordermean-
field solutions (Fig. 6).

However, it should come as no surprise that in general, the transport process and
with it the whole system does not approach an equilibrium anymore. Moreover, it is
not even possible to derive bounds on the epidemic dynamics in terms of the dynamics
on one or the other transport network.

2.6.2 Surges in infections as a consequence of an accumulation of individuals at a
single site

While the rate μ at which the individuals move through the transport network does
not influence the equilibrium of the whole system, it can hugely influence the trajec-
tory towards the equilibrium. Specifically, this is most profound when a considerable
proportion of individuals accumulate at a single site in the transport network. In that
case, the accumulation site has to be evacuated sufficiently fast, i.e. μ has to be large,
in order for this to not lead to a surge in infections and a rise in prevalence.

Starting with a relatively low prevalence of the epidemic and all the nodes accumu-
lated at a particular site, we may consider the trajectories towards equilibrium under
SIS-dynamics for different mobility rates. When the mobility rate is sufficiently high,
the accumulation at a single site does not drastically alter the trajectory and the preva-
lence simply rises to the endemic equilibrium. However, for low mobility rates, one
observes the prevalence rising beyond the endemic equilibrium and only slowly recov-
ering to equilibrium afterwards (Fig. 7A). Moreover, the threshold mobility rate for
these two extremes critically depends on the initial accumulation site in the transport
network. In particular, it turns out that it is not necessarily the degree of the site but
rather its centrality in the network that determines this threshold mobility rate. The
more central a site is, the lower is this mobility rate (Fig. 7B).

Again, in terms of mitigation strategies, this suggests that for mass events there is
a critical time for people to dwell at a particular site. In addition, this time depends on
the location. Therefore, for such events to be as safe as possible and not imply a huge
number of infections, they should be held at well-connected sites.

3 Discussion

In this work, we have introduced a network model that combines epidemic dynamics
with a transport process in a multiplex network structure. The latter consists of two
layers, a static one and one that is dynamically adapting in response to a transport
process on a separate network. We have derived the model’s mean-field description
and analysed it from a dynamical systems’ point of view, characterising its long-term
behaviour and specifically focusing on the epidemic threshold between a disease-
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Fig. 7 Surge of infections due to accumulation of individuals at a single site. While the mobility rate does
not affect the equilibrium prevalence, it can alter the epidemic in the short term. For that consider SIS-
epidemic dynamics in a population of 1000 individuals in a 10-regular network as the community layer
of the epidemic network. As before, the Munich U-Bahn network consisting of approximately 100 sites is
taken as the transport network. The epidemic parameters are set to βc. = 1

6 , βt. = 1
20βc., γ = 1. In A,

the trajectories towards equilibrium for different mobility rates are shown when every individual begins
at the same initial site. For high mobility rates, the prevalence simply rises from the initial prevalence
to equilibrium. However, there is a threshold mobility rate, μ∗, under which prevalence rises beyond the
equilibrium value. In B, it is shown that this threshold mobility rate depends on the initial site and its
neighbourhood in the transport network. Specifically, for sites that are central and well-connected this
threshold is lower than for more decentral ones

free and an endemic equilibrium state. We have shown that the transport process
induces additional ways for the contagion to spread and that way lowers the epidemic
threshold. We then generalised the transport process to fractional and, in particular,
non-local dynamics andhave shown that this, conversely, raises the epidemic threshold.
The extent of which depends on the topology of the transport network and is more
pronounced the more irregular the transport network is. Although we have derived
the mean-field description up to second order, our analysis rests upon only the first-
order equations. The two-layer multiplex structure of the epidemic network essentially
doubles the number of equations required for a second-order mean-field description
making it hard to find an analytical description of the endemic equilibrium. Yet, we
have shown that first- and second-order numerical solutions are in good agreement so
that even the former approximates the dynamics sufficiently well most of the time.

We have presented a generic, conceptual model for epidemic dynamics in the pres-
ence of a transport process. In the interest of analytical tractability, we have considered
a continuous-time random walk that every individual performs independently on the
transport network. However, as has been pointed out elsewhere, these processes do
not capture all aspects of human mobility, in particular, since many of those are inher-
ently non-Markovian. This includes behavioural features such as preferential return
and recency (Song et al. 2010; Barbosa et al. 2015) as well as more statistical features
such as heavy-tailed waiting times (Brockmann et al. 2006). Intuitively, though, we
would expect that these features drive the epidemic by facilitating cluster formations
and on average longer waiting times at any site in the transport network.

For the analytical treatment,wehave considered static transport networks.However,
in reality, one should expect them to dynamically change throughout the day. If we
think e.g. about the daily commute, it is obvious that in the morning and evening the
flux of individualsmoving through the transport network is slightly directed inwards to
and outwards from the city centre, respectively. Similarly, events can draw a proportion
of individuals towards a certain site. In our model, as a straightforward generalisation,
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dynamic transport networks are reflected in adynamic (fractional)Laplaciangoverning
the transport dynamics. The derivation of the mean-field descriptions then carries
through analogously. In general though, with a dynamic transport network, the system
will not approach an equilibrium anymore and it seems very difficult to prove anything
analytically about the epidemic threshold in this case. However, it is conceivable
for any such dynamics to temporarily induce cluster formations and therefore again
potentially lead to surges in infections. As we have shown, the latter crucially depends
on the relation between the characteristic time scales of the transport process and
epidemic spreading as well as the accumulation site and the topology of the transport
network.

In the context of this work, one potentially interesting idea for future researchwould
be to imagine in addition to the epidemic network having also a multiplex structure
on the side of the transport network. Such a structure could then account for different
modes of transport so that every individual can switch between the different layers at
certain sites or for individual transport networks where every individual moves within
its own layer. Another idea would be to consider an adaptive transport process, e.g. by
restricting the mobility of individuals in a certain state of health or by avoiding sites
with a high local prevalence of the epidemic.

Overall, given the importance transport processes have for the epidemic spreading,
we do hope this work is going to inspire further mathematical modelling investigations
into the intricate interplay between transport and contact processes that may then in
turn inform policies for the mitigation of an epidemic and the design of transport
networks in the future.
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A Appendix

A.1 The singular limit� → ∞ in the second-order mean-field equations of
SIRS-dynamics

In this section, we will demonstrate how to derive the second-order mean-field
equations of SIS-epidemic dynamics in the limit σ → ∞ from the corresponding
second-order mean-field equations of SIRS-epidemic dynamics. As already men-
tioned, the techniques to perform this limit are provided by geometric singular
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perturbation theory; see e.g. Kuehn (2015); Wechselberger (2020) and references
therein. When σ becomes large, we eventually observe a time-scale separation in
the dynamics with transitions S → I and I → R on a comparatively slow and the
transition R → S on a fast time-scale. As such, the idea is to consider the problem on
the fast time-scale first, then to determine the critical manifold where the fast dynamics
come to a halt, and finally deduce the residual slow dynamics on this critical manifold,
which are the only ones remaining in the limit σ → ∞.

In order to do that, we start by rescaling time in (19) to the fast time-scale via the
transformation τ : t �→ σ t . Then the SIRS-second-order mean-field equations read

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂τ pτ = − μ

σ
�
 pτ

∂τ [S]τ = − 1

σ

∑

λ

βλ[S λ∼ I]τ + [R]τ

∂τ [I]τ = 1

σ

∑

λ

βλ[S λ∼ I]τ − γ

σ
[I]τ

∂τ [R]τ = γ

σ
[I]τ − [R]τ

∂τ [S ω∼ S]τ = − 2

σ

∑

λ

βλ

(
1 − δω,λ

κω(pτ )

)
[S λ∼ I]τ [S ω∼ S]τ

[S]τ + 2[S ω∼ R]τ

+ 1

σ
(∂τ ‖pτ ‖2)[S]2τ δω,t.

∂τ [S ω∼ I]τ = 1

σ

∑

λ

βλ

(
1 − δω,λ

κω(pτ )

)
[S λ∼ I]τ [S ω∼ S]τ − [S ω∼ I]τ

[S]τ

− βω

σ
[S ω∼ I]τ − γ

σ
[S ω∼ I]τ + [I ω∼ R]τ

+ 1

σ
(∂τ ‖pτ ‖2)[S]τ [I]τ δω,t.

∂τ [I ω∼ I]τ = 2

σ

⎛

⎝
∑

λ

βλ

(
1 − δω,λ

κω(pτ )

)
[S λ∼ I]τ [S ω∼ I]τ

[S]τ + βω[S ω∼ I]τ
⎞

⎠

− 2γ

σ
[I ω∼ I]τ + 1

σ
(∂τ ‖pτ ‖2)[I]2τ δω,t.

∂τ [S ω∼ R]τ = − 1

σ

∑

λ

βλ

(
1 − δω,λ

κω(pτ )

)
[S λ∼ I]τ [S ω∼ R]τ

[S]τ
+ γ

σ
[S ω∼ I]τ + ([R ω∼ R]τ − [S ω∼ R]τ )

+ 1

σ
(∂τ ‖pτ ‖2)[S]τ [R]τ δω,t.

∂τ [I ω∼ R]τ = 1

σ

∑

λ

βλ

(
1 − δω,λ

κω(pτ )

)
[S λ∼ I]τ [S ω∼ R]τ

[S]τ
+ γ

σ
([I ω∼ I]τ − [I ω∼ R]τ ) − [I ω∼ R]τ

+ 1

σ
(∂τ ‖pτ ‖2)[I]τ [R]τ δω,t.

∂τ [R ω∼ R]τ = 2γ

σ
[I ω∼ R]τ − 2[R ω∼ R]τ

+ 1

σ
(∂τ ‖pτ ‖2)[R]2τ δω,t.

(A1)
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which can be written compactly as

∂τ

⎛

⎜
⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎝

pτ

[S]τ
[I]τ
[R]τ

[S c.∼ S]τ
[S c.∼ I]τ
[I c.∼ I]τ
[S c.∼ R]τ
[I c.∼ R]τ
[R c.∼ R]τ
[S t.∼ S]τ
[S t.∼ I]τ
[I t.∼ I]τ
[S t.∼ R]τ
[I t.∼ R]τ
[R t.∼ R]τ

⎞

⎟
⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎠

︸ ︷︷ ︸
=:�τ

=

⎛

⎜
⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎝

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0

−1 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 1 0 0 0
0 0 −1 0 0 0 0
0 0 0 −2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 −1 0 1
0 0 0 0 0 −1 0
0 0 0 0 0 0 −2

⎞

⎟
⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎠

︸ ︷︷ ︸
=:N

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎝

[R]τ
[S c.∼ R]τ
[I c.∼ R]τ
[R c.∼ R]τ
[S t.∼ R]τ
[I t.∼ R]τ
[R t.∼ R]τ

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎠

︸ ︷︷ ︸
=: f(�τ )

+ 1

σ
G(pτ ), . . . [R t.∼ Rτ ] (A2)

for some particular choice of G.
Since N has full column rank, the requirement N f (�τ ) = 0 is only fulfilled when

f (�τ ) = 0. Thus, the critical manifold S of this system is given as the zero level-set
of f , i.e. S = {ξ : f (ξ) = 0}. In particular, since spec D� f (�) N = {−1,−2}, this
critical manifold is normally hyperbolic and attracting.

In the singular limit σ → ∞, the slow dynamics of the entire system are contained
entirely in the critical manifold. On their respective time-scale, they are known to be
concisely given as (Wechselberger 2020, Lemma 3.4)

∂t �t =
(
1 − N (D� f (�) N )−1 D� f (�)

)
G(�) |S . (A3)

Thus, finally, after performing the algebra, this can be expanded to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t pt = −μ�
 pt

∂t [S]t = −
∑

λ

βλ[S λ∼ I]t + γ [I]t

∂t [I]t =
∑

λ

βλ[S λ∼ I]t − γ [I]t

∂t [S ω∼ S]t = −2
∑

λ

βλ

(
1 − δω,λ

κω(pt )

)
[S λ∼ I]t [S ω∼ S]t

[S]t + 2γ [S ω∼ I]t + (∂t ‖pt ‖2)[S]2t δω,t.

∂t [S ω∼ I]t =
∑

λ

βλ

(
1 − δω,λ

κω(pt )

)
[S λ∼ I]t [S ω∼ S]t − [S ω∼ I]t

[S]t − βω[S ω∼ I]t − γ ([S ω∼ I]t − [I ω∼ I]t )

+ (∂t ‖pt ‖2)[S]t [I]t δω,t.

∂t [I ω∼ I]t = 2

⎛

⎝
∑

λ

βλ

(
1 − δω,λ

κω(pt )

)
[S λ∼ I]t [S ω∼ I]t

[S]t + βω[S ω∼ I]t
⎞

⎠− 2γ [I ω∼ I]t

+ (∂t ‖pt ‖2)[I]2t δω,t.

(A4)
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and, except for the additional terms we have as a result of the transport process, these
equations are essentially the same as the ones that have been derived also elsewhere
for SIS-epidemic dynamics (Kiss et al. 2017).

A.2 Monotonicity of the epidemic threshold in the fractional exponent

In this section, we will discuss the question of monotonicity of the epidemic threshold
as one varies the fractional exponent of the transport dynamics. This essentially comes
down to the question of whether the function α �→ ‖p(α)∞ ‖2 with p(α)∞ the equilibrium
distribution of the fractional randomwalk with exponent 0 < α ≤ 1 on some network,
which we will assume to be connected, is monotonic. As mentioned in the main
text, there is no guarantee for this to be monotonic in general. Specifically, as we
will argue, it depends on the topology of the network. In the following, we will first
consider networks with a strong block structure and show that these networks violate
monotonicity. In contrast to that, we will then consider star networks for which one
can explicitly prove monotonicity.

Before moving on, recall that, if L is the Laplacian of some graph with spectral
decomposition L = ∑

λ λ �λ where �λ is the orthogonal rank-1 spectral projection
onto the eigenspace for the eigenvalue λ, the fractional Laplacian is given as Lα =∑

λ λα �λ. The equilibrium distribution of the corresponding random walk is then

p(α)∞ =
(

k(α)(x)∑
x k

(α)(x)

)

x
, where k(α)(x) = Lα(x, x) = ∑λ λα �λ(x, x) is the fractional

degree at site x . Moreover, as α tends to 0, this distribution becomes uniform and we
will denote the limiting distribution as p(0)∞ . Hence,

‖p(α)∞ ‖2 =
∑

x k
(α)(x)2

(∑
x ′ k(α)(x ′)

)2 =
∑

x L
α(x, x)2

tr(Lα)2
, (A5)

where, in particular, ‖p(α)∞ ‖2 ≥ ‖p(0)∞ ‖2 since the uniform distribution among all
discrete probability distributions is the unique distribution minimising the 2-norm.
Therefore, if α �→ ‖p(α)∞ ‖2 is monotonic, it is necessarily non-decreasing.

Using that ∂α Lα = 1
α
Lα ln Lα , we have that

∂α ‖p(α)∞ ‖2 = 2

α tr(Lα)3

(

tr(Lα)
∑

x

Lα(x, x) (Lα ln Lα)(x, x)

− tr(Lα ln Lα)
∑

x

Lα(x, x)2
) (A6)

where tr(Lα) > 0 so that monotonicity follows if

tr(Lα)
∑

x

Lα(x, x) (Lα ln Lα)(x, x) − tr(Lα ln Lα)
∑

x

Lα(x, x)2 ≥ 0. (A7)
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Non-monotonic behaviour for networks with a block structure

As it will turn out, networks with a strong block structure produce non-monotonic
behaviour and as such violate inequality (A7). Before presenting an analytical argu-
ment, let us first consider a numerical approach that will motivate considering this
particular network topology.

For that, we recall that for any Laplacian L and 0 < α ≤ 1, Lα is again a Laplacian
matrix (Michelitsch et al. 2019), so that for inequality (A7) to hold it is equivalent to
show that for any Laplacian matrix L

tr(L)
∑

x

L(x, x)(L ln L)(x, x) ≥ tr(L ln L)
∑

x

L(x, x)2. (A8)

In fact, without loss of generality, it is enough to consider Laplacian matrices L
with tr(L) = 1 only. Indeed, suppose the above has been established for such ones,
for arbitrary L , let L̂ = 1

tr(L)
L . In that case, L̂ ln L̂ = 1

tr(L)
L ln L − ln tr(L)

tr(L)
L and

tr(L̂ ln L̂) = 1
tr(L)

tr(L ln L) − ln tr(L). With that, on one hand

∑

x

L̂(x, x)(L̂ ln L̂)(x, x) = 1

tr(L)2

∑

x

L(x, x)(L ln L)(x, x)

− ln tr(L)

tr(L)2

∑

x

L(x, x)2 (A9)

and on the other hand

tr(L̂ ln L̂)
∑

x

L̂(x, x)2 = 1

tr(L)3
tr(L ln L)

∑

x

L(x, x)2

− ln tr(L)

tr(L)2

∑

x

L(x, x)2 (A10)

where by assumption
∑

x L̂(x, x)(L̂ ln L̂)(x, x) ≥ tr(L̂ ln L̂)
∑

x L̂(x, x)2 so that

1

tr(L)2

∑

x

L(x, x)(L ln L)(x, x) − ln tr(L)

tr(L)2

∑

x

L(x, x)2

≥ 1

tr(L)3
tr(L ln L)

∑

x

L(x, x)2 − ln tr(L)

tr(L)2

∑

x

L(x, x)2 (A11)

which implies the assertion.
Now, considering only Laplacian matrices L with tr(L) = 1, has the distinctive

advantage that by that one can separate the spectra of L and L ln L . Indeed, if tr(L) =
1, spec(L) ⊂ [0, 1] whereas spec(L ln L) ⊂ [−e−1, 0] so that L and L ln L are
positive and negative semidefinite, respectively. Moreover, it allows for a systematical
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Fig. 8 Non-monotonic behaviour of the function α �→ ‖p(α)∞ ‖2 for networks with strong block structure.

A: The function α �→ ‖p(α)∞ ‖2 for the Laplacian matrix in (A13). As α is varied from 1 to 0, ‖p(α)∞ ‖2 first

grows, before it falls to 1
5 at α = 0. B: The function α �→ ‖p(α)∞ ‖2 (left) and its derivative (right) for the

(3, 2)-block networks defined in (A15) or (A16) for different values of ε. As in A, ‖p(α)∞ ‖2 first grows,
before it eventually falls to 1

5 at α = 0. The dashed line shows the limiting curve for every α as ε approaches
0

numerical investigation. For that, observe that the set of d×d Laplacian matrices with
trace 1 is isomorphic to the standard d(d−1)

2 − 1-simplex via the map

(
a1, . . . a d(d−1)

2

)
�→ 1

2

⎛

⎜⎜⎜⎜
⎜
⎝

∗ −a1 · · · −a d(d−1)
2

−a1 ∗ . . .
...

...
. . .

. . . −ad−1
−a d(d−1)

2
· · · −ad−1 ∗

⎞

⎟⎟⎟⎟
⎟
⎠

(A12)

with the diagonal elements set appropriately so that column and row sums are 0.
Hence, through sampling the respective standard simplex uniformly, we can numer-

ically test the validity of inequality (A8) and consequentlymonotonicity for all possible
networks. The first counterexample we found that way was on the standard 9-simplex,
i.e. in dimension 5, while we were not able to find any counterexamples in lower
dimensions. For the matrix

L =

⎛

⎜⎜⎜⎜
⎝

0.198 −0.141 −0.015 −0.008 −0.034
−0.141 0.196 −0.030 −0.015 −0.010
−0.015 −0.030 0.205 −0.087 −0.073
−0.008 −0.015 −0.087 0.197 −0.087
−0.034 −0.010 −0.073 −0.087 0.204

⎞

⎟⎟⎟⎟
⎠

(A13)

one easily verifies that it is indeed a Laplacian matrix with tr(L) = 1, whereas

∑

x

L(x, x)(L ln L)(x, x) ≈ −0.260173 � −0.260112

≈ tr(L ln L)
∑

x

L(x, x)2. (A14)

Thus, inequality (A8) and therefore also inequality (A7) at α = 1 are not satisfied, so
that for the corresponding network α �→ ‖p(α)∞ ‖2 is not monotonic (Fig. 8A).
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This counterexample as well as the others we have subsequently found have in
common that the underlying networks exhibit a block structure while the degree dis-
tribution is approximately uniform. In order to make this precise, we will construct
a prototypical example of such a network and demonstrate that these networks do
indeed produce non-monotonic behaviour.

Let d1, d2 ≥ 2 and suppose that d1 > d2. Furthermore, let δ = d1−d2
d1+d2−2 and define

the (d1, d2)-block adjacency matrix

A =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

0 1 − δ ε · · · ε

. . .
...

...

1 − δ 0 ε · · · ε

ε · · · ε 0 1 + δ
...

...
. . .

ε · · · ε 1 + δ 0

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

. (A15)

This constitutes an undirected, weighted networkwith d1+d2 nodes. It is connected
and the corresponding node degrees in the first an second block are (1 − δ) (d1 − 1)+
εd2 and (1 + δ) (d2 − 1) + εd1, respectively, so that they coincide up to an order of ε

since (1 − δ) (d1 − 1) = (1 + δ) (d2 − 1). Moreover, we can write the corresponding
Laplacian matrix as

L =
(

(1 − δ) LKd1
0

0 (1 + δ) LKd2

)
+ ε LKd1,d2

=: L0 + ε LKd1,d2
(A16)

where LKd and LKd,d′ denote the Laplacian matrices corresponding to graphs Kd and
Kd,d ′ , respectively. The former denotes the complete graph on d vertices while the
latter denotes the complete bipartite graph on two sets of vertices with size d and d ′.

Now, for every exponent 0 < α ≤ 1 the map

�α : L �→ tr(Lα)
∑

x

Lα(x, x) (Lα ln Lα)(x, x)

− tr(Lα ln Lα)
∑

x

Lα(x, x)2 (A17)

is well-defined and continuous for any self-adjoint matrix L and thus in particular for
L a Laplacian matrix. Indeed, the mappings L �→ Lα and L �→ Lα ln Lα via the
functional calculus (λ �→ λα and λ �→ λ ln λ can be continuously defined on R by
extending them with 0 beyond their immediate domain of definition so that one can
approximate them via polynomials on a sufficiently large compact set and proceed
via a triangle-inequality estimate to show continuity), the trace, the projections Lα �→
Lα(x, x) and Lα ln Lα �→ (Lα ln Lα)(x, x), and, finally, the arithmetic operations are
all continuous and therefore also their composition.

With that established, we have that �α(L) ≤ �α(L0) + |�α(L) − �α(L0)|
where, by continuity, the last term can be made arbitrarily small, since ‖L − L0‖ =
ε‖LKd1,d2

‖ = ε max spec LKd,d′ = ε (d1 + d2) (Brouwer and Haemers 2012). Hence,
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if �α(L0) < 0 we also have that �α(L) < 0 provided that ε is chosen sufficiently
small.

Now, observe that, as a consequence of its spectral decomposition, for any complete
graph Kd and any function f with f (0) = 0 one has f

(
βLKd

) = f(βd)
d LKd , so that

f (L0) =
⎛

⎝
f
(
(1 − δ) LKd1

)
0

0 f
(
(1 + δ) LKd2

)

⎞

⎠

=
(

f((1−δ)d1)
d1

LKd1
0

0 f((1+δ)d2)
d2

LKd2

)

. (A18)

Thus,

�α(L0) = α

d1d2
((1 − δ) d1)

α (d1 − 1) ((1 + δ) d2)
α (d2 − 1)

× (((1 − δ) d1)
α (d1 − 1) d2 − d1 ((1 + δ) d2)

α (d2 − 1)
) 1

α

× ln

(
(1 − δ) d1
(1 + δ) d2

)α

. (A19)

Here, (d1 − 1) d2 − d1 (d2 − 1) = d1 − d2 > 0 so that 1
α
ln
(

(1−δ)d1
(1+δ)d2

)α =
− ln (d1−1)d2

d1(d2−1) < 0. Similarly, (d1−1)d2((1−δ)d1)α

d1(d2−1)((1+δ)d2)α
=
(

(d1−1)d2
d1(d2−1)

)1−α ≥ 1 and, con-

sequently, (d1 − 1) d2 ((1 − δ) d1)α − d1 (d2 − 1) ((1 + δ) d2)α ≥ 0 with strict
inequalities if α �= 1.

Hence, for every 0 < α < 1 we conclude that�α(L0) < 0. Now, by continuity, for
some 0 < α < 1 fixed, we get that �α(L) < 0 for some ε chosen sufficiently small.

By the initial discussion, this shows that there exists an exponent α at which α �→
‖p(α)∞ ‖2 is strictly decreasing contradicting the fact that if it were monotonic it is
necessarily non-decreasing and thus demonstrates that indeedmonotonicity is violated
for networks with a strong block structure (Fig. 8B).

Monotonic behaviour for star networks

In contrast to the networks with a block structure, numerical evidence suggests that
many other networks indeed produce monotonic behaviour. Here, we will explicitly
consider star networks.

Let d ≥ 1 and consider a star-graph of d + 1 vertices with adjacency matrix

A =

⎛

⎜⎜
⎜
⎝

0 1 · · · 1
1 0 · · · 0
...

...
. . .

...

1 0 · · · 0

⎞

⎟⎟
⎟
⎠
. (A20)
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The Laplacian spectrum of such a graph is given as {0, 1, d + 1} so that from the
corresponding spectral decomposition of the Laplacian matrix we find that for any
function f

f (L) = f (0) �0 + f (1) (1 − �0 − �d+1) + f (d + 1) �d+1

= ( f (0) − f (1))�0 + f (1)1 + ( f (d + 1) − f (1)) �d+1 (A21)

where �0 and �d+1 are the orthogonal rank-1 projections onto the linear spaces
spanned by (1, . . . 1) and (d,−1, . . . − 1), the eigenvectors for the eigenvalues 0 and
d + 1, respectively.

Using that �0(x, x) = 1
d+1 and �d+1(x, x) = (d2−1)δx,1+1

d(d+1) , we then have that

�α(L) = tr(Lα)
∑

x

Lα(x, x) (Lα ln Lα)(x, x) − tr(Lα ln Lα)
∑

x

Lα(x, x)2

= (d − 1)2

(d + 1)1−α

(
(d + 1)α − 1

)
ln(d + 1)α > 0 (A22)

which establishes monotonicity, since, again by the initial discussion, this implies that
α �→ ‖p(α)∞ ‖2 is non-decreasing.

A.3 Themean-field equations for irregular networks in the community layer

When deriving the mean-field equations up to second order, we have assumed that the
community layer of the epidemic network is regular, i.e. its nodes all have the same
degree. In this section, we will outline how to derive mean-field models in the case
when this assumption fails and the community layer is irregular. This can be seen as a
generalisation of what we presented so far, however, the analysis also proves slightly
more difficult.

As before, the mean-field description of the epidemic dynamics with the transport
dynamics frozen in time can be deduced via standard techniques (Kiss et al. 2017).
Rather than the overall expected number of individuals in a given state of health, one
considers the expected number of individuals in a given state of health as well as with
a certain degree (in the community layer of the epidemic network) together with the
corresponding higher-order motifs. Then, since in the transport process we do not
distinguish between the degree of the individuals and their movement is independent
of each other, the coupling of the epidemic and the transport dynamics happens entirely
analogously to the regular case.

Using the notation of Kiss et al. (2017), we write [hk]t , [hk λ∼ h′
k′ ]t , and [hk λ∼

h′
k′

λ′
∼ h′′

k′′ ]t for the expected number of individuals in state of health h and degree k, the
expected number of pairs of individuals in state of health h and h′ and degree k and k′
connected via a link in layerλ, and the expected number of triples of individuals in state
of health h, h′, and h′′ and degree k, k′, and k′′ connected via links in layers λ and λ′,
respectively. In addition, in order to simplify notation, we set [hk λ∼ h′]t =∑k′ [hk λ∼
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h′
k′ ]t and [hk λ∼ h′

k′
λ′
∼ h′′]t =∑k′′ [hk λ∼ h′

k′
λ′
∼ h′′

k′′ ]t . As can be shown along the same
lines as before, the transport process amounts to transition terms (∂t ‖pt‖2)[hk]t [h′

k′ ]t
to the expected number of pairs of individuals in state of health h and h′ and degree
k and k′ in the transport layer. Thus, the mean-field equations up to the level of pairs
are given as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t pt = −μ�
 pt

∂t [Sk ]t = −
∑

λ

βλ[Sk λ∼ I]t + σ [Rk ]t

∂t [Ik ]t =
∑

λ

βλ[Sk λ∼ I]t − γ [Ik ]t

∂t [Rk ]t = γ [Ik ]t − σ [Rk ]t
∂t [Sk ω∼ Sk′ ]t = −

∑

λ

βλ([Sk ω∼ Sk′
λ∼ I]t + [Sk′

ω∼ Sk
λ∼ I]t )

+ σ([Sk ω∼ Rk′ ]t + [Sk′
ω∼ Rk ]t ) + (∂t ‖pt‖2)[Sk ]t [Sk′ ]t δω,t.

∂t [Sk ω∼ Ik′ ]t =
∑

λ

βλ([Sk ω∼ Sk′
λ∼ I]t − [Ik′

ω∼ Sk
λ∼ I]t ) − βω[Sk ω∼ Ik′ ]t − γ [Sk ω∼ Ik′ ]t

+ σ [Ik′
ω∼ Rk ]t + (∂t ‖pt‖2)[Sk ]t [Ik′ ]t δω,t.

∂t [Ik ω∼ Ik′ ]t =
∑

λ

βλ([Ik ω∼ Sk′
λ∼ I]t + [Ik′

ω∼ Sk
λ∼ I]t ) + βω([Sk ω∼ Ik′ ]t + [Sk′

ω∼ Ik ]t ) − 2γ [Ik ω∼ Ik′ ]t

l + (∂t ‖pt‖2)[Ik ]t [Ik′ ]t δω,t.

∂t [Sk ω∼ Rk′ ]t = −
∑

λ

βλ[Rk′
ω∼ Sk

λ∼ I]t + γ [Sk ω∼ Ik′ ]t + σ([Rk
ω∼ Rk′ ]t − [Sk ω∼ Rk′ ]t )

+ (∂t ‖pt‖2)[Sk ]t [Rk′ ]t δω,t.

∂t [Ik ω∼ Rk′ ]t =
∑

λ

βλ[Rk′
ω∼ Sk

λ∼ I]t + γ ([Ik ω∼ Ik′ ]t − [Ik ω∼ Rk′ ]t ) − σ [Ik ω∼ Rk′ ]t

+ (∂t ‖pt‖2)[Ik ]t [Rk′ ]t δω,t.

∂t [Rk
ω∼ Rk′ ]t = γ ([Ik ω∼ Rk′ ]t + [Ik′

ω∼ Rk ]t ) − 2σ [Rk
ω∼ Rk′ ]t + (∂t ‖pt‖2)[Rk ]t [Rk′ ]t δω,t.

(A23)

for ω ∈ {c., t.} and k and k′ all possible degree values. For regular networks, this
system of equations is the same as the one we have seen earlier in Eq. (15).

Moment-closures for first- and second-order mean-field equations

In order to close this system at the level of pairs and triples to arrive at the first- and
second-order mean-field equations, one can apply the following closures. For the first-

order equations, the closure relation is given as [Sk c.∼ Ik′ ]t ≈ kk′
〈K 〉|N | [Sk]t [Ik′ ]t and

[Sk t.∼ Ik′ ]t ≈ ‖pt‖2 [Sk]t [Ik′ ]t so that

[Sk c.∼ I]t ≈
∑

k′

kk′

〈K 〉 |N | [Sk]t [Ik′ ]t and [Sk t.∼ I]t ≈ ‖pt‖2 [Sk]t [I]t (A24)
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Fig. 9 Comparison between stochastic trajectories of the model and first- and second-order mean-field
solutions. Stochastic trajectories together with their corresponding mean-field solutions for the fractions of
susceptibles, infected, and recovered are shown for SIS-, SIRS- and SIR-epidemic dynamics in a population
of 1000 individuals in a network with 900 nodes of degree 3 and 100 nodes of degree 73 as the community
layer of the epidemic network and the Munich U-Bahn network that consists of approximately 100 sites as
the transport network. The epidemic parameters are set to βc. = 1

6 , β
t. = 1

20βc., γ = 1, and, in case of

SIRS-dynamics,σ = 1
5 . Themobility rate is varied,withμ = 1 inA andμ = 10 inB. In each case, themean

initial prevalence is set to 5% and, at t = 0, the individuals are all located at a single site (“Marienplatz”)
on transport network. The stochastic trajectories are shown without having been time-shifted

and for the second-order equations, it is given as

[hk′
ω∼ Sk

ω′
∼ I]t ≈

(
1 − δω,ω′

κc.
k (p)

) [Sk ω∼ hk′ ]t [Sk ω′
∼ I]t

[Sk]t (A25)

where κc.
k (p) = k and κ t.

k (p) = ‖p‖2 |N |.
For irregular epidemic networks, these closures are well-known (Kiss et al. 2017)

and their generalisation to the multilayer network we are considering here follows
along the same lines as before, using that the transport layer is in expectation regular.
Note that we denote the moments of the degree distribution as 〈K z〉 = ∑

k
|Nk ||N | k

z

where Nk denotes the set of individuals with degree k in the community layer.
Applying these closure relations, specifically the first-order mean-field equations

are given as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t pt = −μ�
 pt

∂t [Sk]t = −
∑

k′

(
βc. kk′

〈K 〉 |N | + β t. ‖pt‖2
)

[Ik′ ]t [Sk]t + σ [Rk]t

∂t [Ik]t =
∑

k′

(
βc. kk′

〈K 〉 |N | + β t. ‖pt‖2
)

[Ik′ ]t [Sk]t − γ [Ik]t

∂t [Rk]t = γ [Ik]t − σ [Rk]t

(A26)
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for all degree values k with initial conditions p0 some probability distribution on the
transport network and [Sk]0, [Ik]0, and [Rk]0 such that |Nk | = [Sk]0 + [Ik]0 + [Rk]0
for every degree value k. Similar to the regular case, since ∂t

∑
h[hk]t = 0 for every

k the total number of individuals is a conserved quantity, so that the total number
individuals with degree k as a constant of motion can be used to derive a reduced
system of differential equations that equivalently describe the system by eliminating
one of the sets of equations for the susceptible, infected, and recovered individuals.

The second-order mean-field equations can be obtained analogously by applying
the moment-closure from above. Moreover, as in the regular case, the equations for
SIS- and SIR-epidemic dynamics can be derived by taking again the limits σ → ∞
and σ → 0, respectively.

Finally, a numerical comparison between stochastic trajectories and the correspond-
ing first- and second-order mean-field solutions for SIRS-, SIS- and SIR-epidemic
dynamics in a population with 1000 individuals in a 10-regular network as the commu-
nity layer of the epidemic network and the Munich U-Bahn network as the transport
network shows overall good agreement between the stochastic trajectories and the
mean-field solutions (Fig. 9).

The epidemic threshold for irregular community layer topologies

As for the epidemic threshold, let

χ(p) = 1

2

(
βc. 〈K 2〉

〈K 〉 |N | + β t. ‖p‖2

+
√(

βc. 〈K 2〉
〈K 〉 |N | − β t. ‖p‖2

)2

+ 4βc.β t. 〈K 〉 ‖p‖2
|N |

⎞

⎠ |N |
γ

. (A27)

Then, the system undergoes a transcritical bifurcation when χ(p∞) = 1 where p∞ is
the unique solution to the equation �
 p∞ = 0 with p∞(x) ≥ 0 and

∑
x p∞(x) = 1.

Moreover, for χ(p∞) < 1 the disease-free state (p∞, . . . , |Nk | , . . . , 0, 0) is a stable
equilibrium point.

Indeed, again due to the strongly connected transport network there is a unique
solution p∞ of ∂t pt = −μ�
 pt = 0 with p∞ ≥ 0 and

∑
p∞ = 1, the equilibrium

solution of the randomwalk on the transport network. From there, consider the reduced
system of mean-field equations that arises from (A26) leaving the diffusion equation
aside and eliminating the equations for the susceptibles using the relation [Sk]t =
|Nk | − [Ik]t + [Rk]t for every k. One immediately verifies that the disease-free state
with [Ik]t = 0 = [Rk]t for every k is an equilibrium. At this state, the Jacobian of

the (reduced) system takes the form
(
diag(|Nk |)k B−γ1 0

γ1 −σ1

)
with B such that Bk,k′ =

βc. kk′
〈K 〉|N | + β t. ‖p∞‖2. Due to its block structure, we have that

spec

(
diag(|Nk |)k B − γ1 0

γ1 −σ1

)
= {−σ } ∪ (spec diag(|Nk |)k B − γ

)
. (A28)
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In order to compute the remaining eigenvalues, note that for anm×m square-matrix
W with Wi,i ′ = qi (aiai ′ + c) where qi ≥ 0 for every i ,

∑
i qi = 1, and c > 0,

specW =
{
0,

1

2

((
〈A2〉 + c

)
±
√(〈A2〉 − c

)2 + 4c〈A〉2
)}

⊂ R

where 〈Az〉 =
∑

i

qi a
z
i . (A29)

Indeed, by elementary row manipulations where for every i = 1, . . .m − 2 we add
− am−ai

am−am−1

qi
qm−1

times rowm−1 and am−1−ai
am−am−1

qi
qm

times rowm to row i and subsequently

add 1
μ
qm−1 (am−1ai + c) times row i to row m − 1 and 1

μ
qm (amai + c) times row i

to row m we find that

det(W − μ1) = det

(−μ1 ∗
0 W̊ − μ1

)
with

W̊ = 1
am−am−1

(
wm−1,m − qm−1

qm
wm−1,m−1

qm
qm−1

wm,m −wm,m−1

)

(A30)

where wi,i ′ = −ai 〈K 2〉 + (aiai ′ − c) 〈K 〉 + ai ′c. Thus, one finally has that

det(W − μ1) = (−μ)m−2 det
(
W̊ − μ1

)

= (−μ)m−2
(
μ2 −

(
〈A2〉 + c

)
μ + (〈A2〉 − 〈A〉2)c

)
(A31)

which yields the assertion upon computing the roots of this polynomial.
Now, observe that the matrix diag(|Nk |)k B appearing in the Jacobian above is

of a similar form as the one of the matrix W in the statement above. In fact,(
diag(|Nk |)k B

)
k,k′ = βc.

〈K 〉
|Nk ||N |

(
kk′ + β t.

βc. 〈K 〉 |N | ‖p∞‖2
)
with

∑
k

|Nk ||N | = 1. With

that and continuing from Eq. (A28), we find that

spec

(
diag(|Nk |)k B − γ10

γ1 − σ1

)
= {−σ } ∪ (spec diag(|Nk |)k B − γ

)

=

⎧
⎪⎨

⎪⎩
− σ,−γ,

βc.〈K 2〉
2〈K 〉 + β t. |N | ‖p∞‖2

2

±
√√√√
(

βc.〈K 2〉
2〈K 〉 − β t. |N | ‖p∞‖2

2

)2

+ βc.β t.〈K 〉 |N | ‖p∞‖2 − γ

⎫
⎪⎬

⎪⎭
. (A32)

These eigenvalues are all real-valued and they are strictly negative as long as

βc.〈K 2〉
2〈K 〉 + β t. |N | ‖p∞‖2

2
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+
√√√√
(

βc.〈K 2〉
2〈K 〉 − β t. |N | ‖p∞‖2

2

)2

+ βc.β t.〈K 〉 |N | ‖p∞‖2 − γ < 0

(A33)

or equivalently

1

2

⎛

⎜
⎝βc. 〈K 2〉

〈K 〉 |N | + β t. ‖p∞‖2

+
√(

βc. 〈K 2〉
〈K 〉 |N | − β t. ‖p∞‖2

)2

+ 4βc.β t. 〈K 〉 ‖p∞‖2
|N |

⎞

⎠ |N |
γ

< 1 (A34)

which completes the proof of the statement.
Finally, since 〈K 2〉 ≥ 〈K 〉2 with equality only if the topology is regular we have

that χ(p∞) ≥ χ(p∞) |〈K 2〉=〈K 〉2 . In terms of a comparison with the case of a regular
community layer, this means that an irregular topology lowers the epidemic threshold
which is already known in the absence of transport. Moreover, keeping the mean of
the degree distribution, 〈K 〉, constant, we find that χ(p∞) is in fact monotonic in the
variance, 〈K 2〉 − 〈K 〉2, since

∂〈K 2〉−〈K 〉2χ(p∞)

= 1

2

βc.

γ 〈K 〉

⎛

⎜
⎜
⎝1 + βc. 〈K 2〉

〈K 〉|N | − β t. ‖p∞‖2
√(

βc. 〈K 2〉
〈K 〉|N | − β t. ‖p∞‖2

)2 + 4βc.β t. 〈K 〉‖p∞‖2
|N |

⎞

⎟
⎟
⎠ ≥ 0.

(A35)
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