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Abstract

Traditional breast ultrasound imaging is a low-cost, real-time and portable method to assist with 

breast cancer screening and diagnosis, with particular benefits for patients with dense breast 

tissue. We previously demonstrated that incorporating coherence-based beamforming additionally 

improves the distinction of fluid-filled from solid breast masses, based on qualitative image 

interpretation by board-certified radiologists. However, variable sensitivity (range: 0.71–1.00 when 

detecting fluid-filled masses) was achieved by the individual radiologist readers. Therefore, we 

propose two objective coherence metrics, lag-one coherence (LOC) and coherence length (CL), 

to quantitatively determine the content of breast masses without requiring reader assessment. 

Data acquired from 31 breast masses were analyzed. Ideal separation (i.e., 1.00 sensitivity and 

specificity) was achieved between fluid-filled and solid breast masses based on the mean or 

median LOC value within each mass. When separated based on mean and median CL values, the 

sensitivity/specificity decreased to 1.00/0.95 and 0.92/0.89, respectively. The greatest sensitivity 

and specificity were achieved in dense, rather than non-dense, breast tissue. These results support 

the introduction of an objective, reader-independent method for automated diagnoses of cystic 

breast masses.
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INTRODUCTION

Breast cancer has been responsible for more than one-fourth of annual cancer diagnoses in 

women in the United States since 1999 (U.S. Cancer Statistics Working Group 2021), with 

approximately 287,850 new cases estimated in 2022 (Siegel et al. 2022). Early detection 

and diagnosis with assistance from breast ultrasound images are particularly important in 

patients with dense breast tissue, which reduces the sensitivity of mammography to mass 

or lesion detection (Mandelson et al. 2000). However, breast ultrasound has a high false-

positive rate, resulting in many unnecessary biopsies or follow-up procedures of fluid-filled 

cysts (Berg et al. 2016) that could otherwise be diagnosed as Breast Imaging and Reporting 

Data System category 2 (BI-RADS 2) and dismissed as benign (Mendelson et al. 2001) if 

appropriately diagnosed as benign cysts at the time of diagnostic imaging.

One reason for the high false-positive rates of ultrasound is that fluid-filled cysts can appear 

similarly hypoechoic to solid masses because of image artifacts. For example, acoustic 

clutter is an artifact that results from a combination of multipath acoustic interactions, 

phase aberration and off-axis scattering (Lediju et al. 2008). Considering the heterogeneity 

of breast tissue, which increases the likelihood that multiple clutter-causing acoustic 

interactions will occur, the presence of acoustic clutter is particularly disruptive to breast 

ultrasound diagnoses.

Tissue harmonic imaging (THI) is the prevailing clinical option to remove acoustic clutter 

and possibly improve differentiation between fluid-filled cysts and solid masses (Szopinski 

et al. 2003). THI leverages non-linear wave propagation in tissue to create images from 

integer multiples of the transmitted frequency (Anvari et al. 2015). In breast imaging, THI 

improves lesion conspicuity and margin assessment, particularly for fluid-filled masses 

(Rosen and Soo 2001). However, the benefits of THI are reduced within breast tissue that 

is not purely fatty (Mesurolle et al. 2006), such as increased shadowing in the presence 

of denser tissue (Cha et al. 2007) and decreased penetration depth with the use of higher 

frequencies.

Quantitative ultrasound (QUS) extracts features from radiofrequency (RF) data to 

characterize breast lesions using methods such as the backscatter coefficient, effective 

scatterer diameter and effective acoustic concentration (Shankar et al. 2001; Oelze et al. 

2007; Nam et al. 2013; Sadeghi-Naini et al. 2013; Trop et al. 2014; Sannachi et al. 2015). 

However, these methods require careful calibration with a reference phantom and are often 

computationally complex.

Quantitative transmission (QT) ultrasound is an emerging imaging approach capable of 

creating 3-D maps of breast tissue properties (e.g., sound speed) by transmitting a plane 

wave that is received on the opposite side of the breast (Lenox et al. 2015). This approach 

has been used to classify breast tissue (Malik et al. 2016), differentiate between fluid and 

solid masses (Iuanow et al. 2017), and calculate the speed of sound within breast cysts to 

aid in clinical management (Malik and Klock 2019). Breast tissue was classified as skin, fat, 

glands, ducts or connective tissue (Malik et al. 2016). Fluid and solid mass contents were 

successfully differentiated in a reader study consisting of 37 breast lesions and 14 readers 
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who classified whether a lesion was a cyst or solid mass (Iuanow et al. 2017). Calculated 

sound speeds in large cysts correlated with the cytological features of fluid samples taken 

from within the cyst (Malik and Klock 2019). These QT ultrasound systems offer both 

reflection and transmission measurements; however, they require ultrasound transducers 

integrated with specialized patient tables, complex tomographic hardware, and acquisition 

times of 5–10 min (Malik and Klock 2019). These features reduce the overall portability, 

cost-effectiveness, and real-time benefits that have traditionally been mainstay advantages of 

ultrasound technology.

Previous studies have also leveraged the temporal correlation of speckle associated with 

pre- and post-compression images to differentiate cysts from solid lesions in breast tissue. 

These methods belong to a class of imaging known as elastography, in which tissue is 

manually compressed, followed by motion tracking to measure tissue elasticity responses 

post-compression. For example, Booi et al. (2007, 2008) used a 2-D phase-sensitive 

speckle tracking algorithm to demonstrate that the resulting temporal correlation coefficients 

from cysts were considerably lower than those from surrounding tissue. Because of the 

absence of speckle within fluid-filled lesions, many elastography methods fail to produce 

images of fluid-filled lesions. Therefore, also looking at speckle, other studies proposed 

combined elastography images (Nahiyan and Hasan 2015; Rabbi and Hasan 2017), which 

differentiate cystic from solid masses based on signal amplitude, temporal correlation 

coefficients between pre- and post-compression signals, and comparisons when the same 

signal processing is applied to surrounding tissue. However, difficulties locating small 

lesions, as well as misidentification of fluid-filled regions, were noted (Nahiyan and Hasan 

2015).

Rather than manual compression, previous studies used acoustic radiation force (ARF) 

excitation to induce local fluidic motion (i.e., acoustic streaming), followed by tracking 

methods to detect the induced motion and thereby distinguish fluid from solid masses 

(Nightingale et al. 1999; Soo et al. 2006; Doherty et al. 2013). Solid masses did not respond 

to this ARF excitation, resulting in a cyst detection sensitivity and specificity of 0.50 and 

1.00, respectively, for a population of 21 indeterminate lesions (Soo et al. 2006). Similarly, 

Phillips et al. (2021) introduced an ARF impulse imaging method to locally deform tissue, 

temporally correlate responses to the induced motion and thereby determine the content 

of breast masses. The associated delta log variance of acceleration, ΔLog(VoA), produced 

lower values in fluid-filled masses compared with solid masses due to the elastic recovery 

of solid tissue compared with the slower recovery of fluid. However, this entire class of 

ARF-based methods requires specialized equipment capable of generating the required high-

energy, high-intensity, focused excitation pulses, and the accuracy of results also depends on 

loading conditions introduced by the probe pressure required to maintain acoustic coupling 

and contact (Barr 2012; Barr and Zhang 2012; Balleyguier et al. 2013; Bell et al. 2015).

As an alternative to compression- or ARF-based methods, our previous work investigated 

the first applications of coherence-based beamforming to breast tissue, demonstrating that 

spatial (rather than temporal) coherence has the potential to improve differentiation of 

fluid-filled from solid breast masses (Wiacek et al. 2018a, 2018b). A reader study was then 

performed with 26 masses and five board-certified radiologists to determine the clinical 
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advantages of robust short-lag spatial coherence (R-SLSC) (Nair et al. 2018; Wiacek et 

al. 2020c). The mean percentage of fluid-filled masses correctly assessed as BI-RADS 2 

increased from 32% with traditional ultrasound B-mode imaging to 63% with the inclusion 

of R-SLSC imaging (Wiacek et al. 2020b, 2020c). However, the requirement for reader 

assessment resulted in fluid detection sensitivity ranging 0.71 to 1.00 based on the reader, 

which indicates that the mean increase in BI-RADS 2 diagnoses could have been greater if 

more readers achieved greater sensitivity. It is also notable that individual reader sensitivity 

did not correlate with radiologist experience.

To maximize the clinical benefits of coherence-based beamforming for breast ultrasound 

applications, we are investigating the use of two quantitative coherence metrics that will 

objectively determine the content of breast masses without requiring subjective reader input: 

lag-one coherence (LOC) and coherence length (CL). We build on our previous conference 

publications using LOC and CL to classify breast mass contents as fluid or solid (Wiacek 

et al. 2020b, 2021b), which had a sensitivity and specificity of fluid-filled mass detection 

ranging from 0.768 to 1.00 and from 0.688 to 0.94, respectively. The novel contributions 

of this work include a larger data set supporting our initial observations, a more detailed 

analysis of the distribution of LOC and CL values within breast masses, a preliminary 

assessment of critical relationships (i.e., among LOC, CL, mass type, and breast density) and 

suggestions for clinical implementation.

The remainder of this article is structured as follows. We describe the rationale of our 

approach, our inclusion and exclusion criteria, and our data analysis methods. The study 

results are then presented, followed by a discussion of our key contributions. The article 

concludes with a summary of the clinical promise of the proposed approach.

METHODS

LOC and CL as objective discriminators of fluid or solid mass content

Spatial coherence in ultrasound can be described as a measurement of the similarity of 

backscattered ultrasound waves as a function of element spacing, or lag. This measurement 

can produce a normalized spatial coherence function, R, which is the basis for short-lag 

spatial coherence (SLSC) imaging (Lediju et al. 2011):

R[m] = 1
N − m ∑

i = 1

N − m ∑n = n1
n2 si[n]si + m[n]

∑n = n1
n2 si2[n]∑n = n1

n2 si + m2 [n]
, (1)

Here, m is the spatial lag, represented as the number of elements between two points being 

spatially correlated; N is the number of elements in the transducer; si[n] is a time-delayed, 

zero-mean signal received at element i from depth n; and n1 and n2 represent axial positions, 

where n1 – n2 is the size of the axial correlation kernel.

The presence of spatially incoherent noise produces a delta-like function at lag m = 0 of 

the coherence function (Long et al. 2018). This delta-like function scales in magnitude 

based on the relative noise power. Rather than using eqn (1) to create a range of previously 
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reported coherence-based images (Lediju et al. 2011; Gonzalez and Bell 2018; Nair et al. 

2018), a method that considers only immediately neighboring elements (i.e., m =1, also 

known as lag-one coherence, or LOC) sufficiently characterizes the presence of spatially 

incoherent signals by measuring the decorrelation resulting from the delta-like function. 

This incoherent signal is a result of thermal noise, reverberation clutter, and high-frequency 

aberration.

The presence of a delta-like function also affects the CL, which is the first zero-crossing of 

R[m]. Ideally, the coherence function within a tissue region would be a triangular function 

of width N–1, as predicted by the van Cittert–Zernike theorem (Mallart and Fink 1991; 

Goodman 2015), resulting in an ideal CL of N–1. However, the rapid decorrelation at short 

lags caused by the presence of incoherent signals translates to significantly shorter CLs that 

deviate from the ideal value.

Although LOC was introduced as a measurement of image quality (Long et al. 2018, 

2020), we propose LOC as a method to classify the content of breast lesions as solid or 

fluid, considering its ability to quantify the presence of spatially incoherent signal within 

breast masses. This rationale extends to CL. Because fluid-filled lesions are expected to 

lack scatterers that provide backscattered signals, a low LOC or short CL is anticipated. 

Conversely, a higher LOC or longer CL is expected to indicate the presence of a solid mass. 

In addition, as breast density increases, there are increased layers of fibroglandular tissue, 

resulting in increased levels of acoustic clutter and spatially incoherent signal. Therefore, 

we expect improved differentiation of fluid and solid masses within dense breast tissue 

compared with non-dense breast tissue when using LOC and CL as discriminators of mass 

contents.

Data acquisition

Twenty-seven patients scheduled for ultrasound-guided aspiration or core-needle biopsy 

were included in our study after informed consent and approval from the Johns Hopkins 

Medicine Institutional Review Board (Protocol No. IRB00127110). Each patient had at least 

one suspicious hypoechoic breast mass, resulting in 31 total masses included in this study. 

Patients ranged from 20 to 80 y in age, with a mean age of 55 y. Each patient was imaged 

by a board-certified breast radiologist with experience beyond residency ranging 2 to 7 y. 

The ultrasound transducer was either an L3–8 or L8–17 linear array with a center frequency 

of 5.5 or 12.5 MHz, respectively, connected to an Alpinion ECUBE-12R ultrasound scanner 

(Alpinion, Seoul, Korea) with combined clinical and research data acquisition capabilities. 

Each acquisition consisted of focused transmissions with a 64-element receive aperture. Raw 

RF ultrasound data were acquired and saved for post-procedure processing. In addition to 

the RF data, clinical screenshots of ultrasound B-mode images located within the same 

buffer as the RF data were concurrently acquired to aid in mass identification. For masses 

that were difficult to identify, the mass was annotated by the scanning radiologist and a 

subsequent screenshot was acquired.

For masses where the differential diagnosis included a cyst, ultrasound-guided aspiration 

was initially attempted. Upon successful aspiration, the mass was classified as a cyst. 

Three simple cysts were present in addition to the masses scheduled for aspiration or 
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biopsy, and were classified as cysts without aspiration because of clinical B-mode ultrasound 

features matching a simple cyst. For the remaining masses, the results of each core-needle 

biopsy served as the ground truth for mass classification. In cases in which surgical 

excision was performed, this ground truth was updated to represent the surgical pathology. 

According to these ground truths, the included masses consisted of 12 fluid-filled simple 

and complicated cysts, 11 benign solid masses (e. g., fibroadenoma) and 8 malignant solid 

masses (e.g., invasive ductal carcinoma, ductal carcinoma in situ). Masses determined to 

have a combination of fluid and solid components were excluded from this study.

Patient medical records were referenced retrospectively to determine breast density based 

on the most recent mammogram at the time of ultrasound data acquisition. In clinical 

practice, mammographic breast density is divided into four categories (Spak et al. 2017): 

(A) almost entirely fat, (B) scattered fibroglandular densities, (C) heterogeneously dense and 

(D) extremely dense. For masses that met our inclusion criteria, none of the surrounding 

breast tissue densities were characterized as A, and there were no fluid masses surrounded 

by tissue characterized as D. Therefore, to complete our analysis, we reduced the granularity 

of these categories by defining non-dense breast tissue as B (consisting of six fluid and 

seven solid masses) and dense breast tissue as the combination of C (six fluid and eight solid 

masses) and D (four solid masses). Table 1 summarizes the number of masses with fluid 

or solid content and surrounding breast tissue densities included in this study. Patients with 

no prior mammogram were excluded from this study because mammographic breast density 

was unknown.

Data analysis

The acquired RF data were processed using delay-and-sum (DAS) beamforming to create 

an image comparable to the traditional clinical image. Equation (1) was then evaluated with 

axial kernels (i.e., k = n1 – n2) equivalent to one acoustic wavelength, resulting in LOC 

and CL values for each pixel in the traditional DAS image. Relying solely on the DAS 

image, for each mass, a region of interest (ROI) was manually defined within the mass, 

intentionally avoiding the edges of the mass to avoid confounding effects from the mass 

boundaries. This ROI (confirmed by visualizing the clinical screenshot and/or associated 

annotated screenshot) was used to determine corresponding LOC and CL values within the 

mass. For each mass, coherence metric distribution statistics were computed using three 

methods to provide a complete understanding of the central tendency of the LOC and CL 

distributions within the ROI and to avoid a biased estimate of the central tendency caused 

by potential outlier values within the distribution: (i) all values within the ROI, (ii) the mean 

of all values in the ROI, and (iii) the median of all values in the ROI. Finally, each of these 

distribution statistics was stratified by mass type (i.e., fluid or solid) and breast tissue density 

(i.e., dense or non-dense).

To objectively distinguish solid from fluid breast masses, the LOC threshold for fluid-filled 

mass detection was varied from −1 to 1 in increments of 0.01, and the CL threshold for 

fluid-filled mass detection was varied from 0 to 63 in increments of 1. At each incremental 

LOC or CL threshold, the distribution statistic for each mass was classified as solid or fluid 

based on an LOC or CL value above or below the threshold, respectively. This process 
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was repeated for the three distribution statistics noted above (i.e., all, mean, and median). 

Histograms were created with 50 bins spanning −1 to 1 to visualize LOC distributions 

and with 64 bins spanning 0 to 63 to visualize CL distributions. The level of overlap 

between these histograms from fluid and solid masses was subjectively described on a scale 

ranging from minimal to moderate to considerable, with statistical reports of sensitivity and 

specificity serving as the corresponding objective measurements of overlap.

To mimic a clinical scenario where an LOC or CL threshold is established based on 

previous patient data and a new patient presents in the clinic for ultrasound evaluation, a 

leave-one-out cross-validation analysis was performed. Specifically, with one mass held 

out for validation, the LOC or CL threshold was determined based on a training set 

containing the remaining masses. This process was repeated for each mass, and accuracy 

was determined by comparing the predicted diagnosis with the ground truth for each of 

these validation sets. Figure 1 presents a graphical illustration of the connection between this 

validation method and the proposed clinical workflow. From this perspective, the determined 

LOC or CL thresholds for each training set were recorded, and the means ± one standard 

deviation of these thresholds were reported to represent expectations when these thresholds 

are determined from different combinations of patients.

Statistical analysis

The sensitivity and specificity of fluid mass detection were measured as

Sensitivity  = TP
TP + FN (2)

Specificity  = TN
TN + FP (3)

where a true positive (TP) or false negative (FN) was defined as a pixel within a fluid-filled 

mass with a distribution statistic below or above the threshold, respectively. A TN or FP 

was defined as a pixel within a solid mass with a distribution statistic above or below the 

threshold, respectively. In this context, sensitivity measures the fraction of fluid masses 

correctly classified as fluid, while specificity measures the fraction of solid masses correctly 

classified as solid.

With these measurements, a receiver operating characteristic (ROC) curve was used to 

determine the optimal LOC and CL threshold values by measuring the distance to the ideal 

operating point of (0,1). In particular, for each LOC or CL threshold value discretized using 

the same increments described above, the distance from the respective point on the receiver 

operating characteristic (ROC) curve to (0,1) was measured, and the LOC or CL threshold 

value resulting in the minimum distance was selected as optimal. When multiple possible 

thresholds yielded distances equivalent to the minimum distance, the minimum LOC or CL 

threshold was selected as optimal. This optimal threshold selection represents a conservative 

diagnostic approach where the threshold is set such that a diagnosis of solid (i.e., above the 

threshold) is preferred over a diagnosis of fluid (i.e., below the threshold) to avoid missed 
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cancers. In addition, the area under the ROC curve (AUC) was estimated using trapezoidal 

numerical integration.

RESULTS

Spatial coherence distributions within individual masses

Figure 2 displays violin plots visualizing the distribution of LOC (top) and CL (bottom) 

values for each mass included in this study. Based on the LOC distributions, there is some 

overlap between the LOC distributions of fluid and solid masses. However, each mean or 

median LOC for each fluid mass lies below the threshold determined from all LOC values, 

each mean LOC for each solid mass exceeds this threshold and a majority of solid masses 

(i.e., 17/19) produce median LOC values that exceed the threshold. The LOC values for 

simple and complicated cysts overlap, as noted by cross-referencing Figure 2 with Table 2.

The CL distributions in Figure 2 show more overlap between solid and fluid masses when 

compared with the LOC distributions. To better visualize the differences between the mean 

and median, the y-axis was clipped at 20, although many of the masses have additional 

values beyond 20, with outliers up to a maximum value of 63. Of the 12 fluid-filled masses, 

7 and 11 produced mean and median CL values, respectively, that do not exceed the CL 

threshold determined from all CL values. Of the 19 solid masses, 18 and 16 produced mean 

and median CL values, respectively, that exceed the CL threshold. Therefore, a majority of 

masses produce CLs that confer with the observed trend of fluid-filled masses not exceeding 

and solid masses exceeding the CL threshold, although this trend is not completely reliable 

for all masses. The CL values for simple cysts and complicated cysts overlap, as noted by 

cross-referencing Figure 2 with Table 2.

LOC of all masses

Figure 3 shows the LOC separation between fluid-filled and solid masses for all masses 

included in our study (top), for all masses surrounded by non-dense tissue (middle), and for 

all masses surrounded by dense tissue (bottom). The left column shows histograms of all 

LOC values within either fluid or solid masses. The middle column shows violin plots of 

the LOC distribution for the three distribution statistics (i.e., all, mean, median). The right 

column shows corresponding ROC curves.

The top left of Figure 3 shows that there is moderate overlap between the histograms, 

representing a sensitivity and specificity of 0.85 and 0.87, respectively. When considering 

either the mean or median LOC value, there is complete separation between solid and 

fluid masses, as shown in Figure 3 (top center). This complete separation results in 

1.00 sensitivity and 1.00 specificity for fluid-filled mass detection in each case. The 

corresponding ROC curves indicate that the optimal LOC thresholds for fluid-filled 

mass detection are 0.28, 0.28 and 0.27 when using all, mean and median LOC values, 

respectively.
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LOC of masses surrounded by non-dense breast tissue

The middle left of Figure 3 shows considerable overlap between the distribution of LOC 

values in fluid and solid masses surrounded by non-dense breast tissue. This overlap results 

in a sensitivity and specificity of 0.79 and 0.77, respectively. Despite this overlap, when 

the mean or median LOC values are used, there is complete separation between solid and 

fluid masses, as shown in Figure 3 (center). The corresponding ROC curves indicate that the 

optimal LOC thresholds for fluid-filled mass detection are 0.33, 0.28, and 0.27 when using 

all, mean and median LOC values, respectively.

LOC of masses surrounded by dense breast tissue

The bottom left of Figure 3 shows minimal overlap between the distribution of LOC values 

in fluid and solid masses surrounded by dense breast tissue, resulting in a sensitivity and 

specificity of 0.95 and 0.95, respectively. Similar to the results for non-dense breasts and 

all masses, when using the mean and median LOC values, there is complete separation 

between solid and fluid masses, as shown in Figure 3 (bottom center), resulting in 1.00 

sensitivity and 1.00 specificity for fluid-filled mass detection based on both the mean and 

median LOC. The corresponding ROC curves indicate that the optimal LOC thresholds for 

fluid-filled mass detection are 0.21, 0.12 and 0.12 when using all, mean and median LOC 

values, respectively.

Although the mean and median LOC values offer ideal separation between fluid and solid 

masses within both dense and non-dense breast tissue, the distance between the distributions, 

and therefore the separation between fluid and solid masses, is greater in masses within 

dense breast tissue. In addition, the optimal LOC threshold for distinguishing fluid-filled 

from solid masses was lower in dense tissue (i.e., 0.21) than in non-dense tissue (i.e., 0.33). 

The AUCs associated with these categories of datasets are reported in Table 3.

CL of all masses

Figure 4 shows the CL separation between fluid-filled and solid masses for all masses 

included in our study (top), for all masses surrounded by non-dense tissue (middle), and for 

all masses surrounded by dense tissue (bottom). The left column shows histograms of all 

CL values within either fluid or solid masses. The middle column shows violin plots of the 

CL distribution for the three distribution statistics (i.e., all, mean, median). The right column 

shows corresponding ROC curves. Additional CL results are reported in Table 3.

The top left of Figure 4 shows that there is moderate overlap between the distribution 

of CL values in fluid and solid masses. These distributions both appear to approximately 

follow a Rayleigh distribution as opposed to the approximate Gaussian distributions seen in 

Figure 3 for LOC. Specifically in the distribution of fluid masses, there is a large probability 

in the first bin, which represents a coherence length of zero. This means the coherence 

function does not cross zero and is likely an indication of noise. The distribution of CL 

values in solid masses have a shifted distribution compared with that of CL values in fluid 

masses, representing a larger CL for solid masses despite the moderate overlap between 

the distributions. This overlap represents a sensitivity and specificity of 0.76 and 0.87, 

respectively for all CL values.
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When considering discrimination between solid and fluid masses based on the mean CL 

values, the sensitivity and specificity for fluid mass detection are 1.00 and 0.95, respectively. 

The ability to make this distinction decreases when the median CL values are instead used 

as a discriminator, resulting in 0.92 sensitivity and 0.89 specificity, as shown in Figure 4 

(top center). The corresponding ROC curves indicate that the optimal CL thresholds for 

fluid-filled mass detection are 3, 6 and 3 when using all, mean and median CL values, 

respectively.

CL of masses surrounded by non-dense breast tissue

The middle left of Figure 4 shows considerable overlap between the distribution of CL 

values in fluid and solid masses surrounded by non-dense breast tissue. This overlap 

results in 0.63 sensitivity and 0.79 specificity. When considering the mean CL values, 

the separation improves, resulting in a 1.00 sensitivity and 0.86 specificity. When the 

median CL values are used as the discriminator, the sensitivity and specificity are 0.83 and 

0.86, respectively, resulting in a separation between solid and fluid masses worse than that 

achieved with the mean CL values, as shown in Figure 4 (center). The corresponding ROC 

curves indicate that the optimal CL thresholds for fluid-filled mass detection are 3, 6 and 3 

when using all, mean and median CL values, respectively.

CL of masses surrounded by dense breast tissue

The bottom left of Figure 4 shows minimal overlap between the distribution of CL values 

in fluid and solid masses, resulting in a 0.87 sensitivity and 0.91 specificity. When the mean 

and median CL values are used as discriminators, there is complete separation between solid 

and fluid masses, as shown in Figure 4 (bottom center), resulting in a 1.00 sensitivity and 

1.00 specificity for fluid-filled mass detection based on both the mean and median CL. The 

corresponding ROC curves indicate that the optimal LOC thresholds for fluid-filled mass 

detection are 3, 4 and 3 when using all, mean and median CL values, respectively.

Comparison with reader performance

Table 3 compares the LOC and CL sensitivity and specificity for each breast tissue density 

and distribution statistic reported in Figures 3 and 4 with the sensitivity and specificity 

achieved in two previous reader studies distinguishing solid and fluid-filled breast masses 

(Iuanow et al. 2017; Wiacek et al. 2020c). In Wiacek et al. (2020c), readers focused on 

making this distinction with assistance from R-SLSC images, while the readers in Iuanow 

et al. (2017) focused on making this distinction based on QT ultrasound images. Without 

requiring any reader input, the objective LOC discriminator metric improved the sensitivity 

and specificity of distinguishing fluid from solid masses based on mean or median LOC 

values, as compared with these two recently introduced methods (i.e., mean sensitivity 

improved from 0.86–0.93 to 1.00, and mean specificity improved from 0.86–0.95 to 1.00). 

In addition, similar sensitivity and specificity to those of the two recently introduced 

methods were achieved when separating on the basis of all LOC values (i.e., 0.85–0.93 

mean sensitivity and 0.86–0.95 mean specificity). Finally, using mean CL values improved 

mean sensitivity (from 0.86–0.93 to 1.00) with similar mean specificity (i.e., 0.86–0.95) 

when compared with the R-SLSC and QT ultrasound approaches to distinguishing fluid 

from solid masses. The remaining CL metrics comparisons (i.e., all CL values, median CL 
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values) produce a sensitivity or specificity similar to or worse than that of R-SLSC or QT 

ultrasound, with the exception of the 1.00 sensitivity and 1.00 specificity achieved with 

median CL values for masses surrounded by dense breast tissue.

Cross-validation to assess robustness and clinical utility

Table 4 reports the results of the leave-one-out cross-validation analysis. Specifically, the 

best accuracy (i.e., 96.8%) was achieved using mean or median LOC distribution statistics, 

where only one fluid mass was incorrectly classified as solid. With one mass left out, 

the optimal thresholds were determined based on the remaining masses resulting in LOC 

and CL threshold standard deviations of <0.006 and <0.4, respectively. These standard 

deviations represent 0.68%–1.96% of the reported LOC thresholds and 3.01%–7.93% of the 

reported CL thresholds, which demonstrates robustness regardless of the specific patients 

included or excluded when determining these LOC and CL thresholds.

Figure 5 shows example B-mode and LOC images of solid and fluid-filled masses 

surrounded by dense and non-dense breast tissue. These examples provide qualitative 

representations of the differentiation between fluid and solid masses that may be 

implemented clinically in addition to the quantitative reports noted above. Only LOC images 

are shown, given the improved performance of LOC compared with CL reported above. The 

center of the color scale of each LOC image was set to be the optimal threshold determined 

from all measured LOCs of all masses (i.e., 0.28), which enables the color for each pixel to 

represent a prediction of whether the indicated pixel is solid or fluid. The top (i.e., <5 mm 

axial depth) of each LOC image is blue because this region resides outside of the transmit 

focal zone (Lediju et al. 2011), and this feature can possibly be used to confirm the expected 

contrast between fluid or solid masses and nearby surrounding tissue.

DISCUSSION

This study is the first to investigate two quantitative coherence-based metrics to objectively 

diagnose the fluid or solid content of 31 breast masses in ultrasound. Based on the 

assumption that fluid-filled masses have minimal to non-existent acoustic scatterers, the 

majority of high-amplitude content appearing within fluid-filled masses is expected to 

be caused by incoherent noise and acoustic clutter. Therefore, the coherence-based LOC 

and CL metrics enable objective quantification of incoherent noise and acoustic clutter. 

The results in Table 3 reveal the clinical potential of these metrics to directly diagnose 

fluid-filled masses as BI-RADS 2 (i.e., benign) and thereby avoid additional follow-up or 

biopsies because of the complete separation between solid and fluid masses. This potential 

is particularly beneficial for patients with dense breast tissue (see Figs. 3 and 4), a subclass 

of patients who are most commonly referred for supplemental breast cancer screening with 

ultrasound. This finding is additionally remarkable because the majority of these fluid-filled 

masses were difficult to diagnose with clinical ultrasound B-mode images and required 

biopsy or aspiration as part of clinical management.

Three additional advantages to the proposed LOC or CL implementation immediately 

follow. First, both LOC and CL are quantitative values that can be provided as a 

threshold, similarly to quantitative elasticity parameters in elastography (Blank and Antaki 

WIACEK et al. Page 11

Ultrasound Med Biol. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2017), enabling simpler interpretation and integration into the breast clinic. Second, 

the rationale for the proposed approach directly connects to the physics of ultrasound 

backscatter principles and theory, which further simplifies technical understanding, 

clinical interpretation and radiologist integration. Third, in comparison to previously 

reported methods (e.g., speckle correlation, ARF-based methods, QT ultrasound, QUS), 

the proposed approach does not require compression, deformation, high-energy pulses, 

controlled loading conditions, alterations to the standard clinical ultrasound transmit beam 

sequence, calibration with a reference phantom, or dedicated hardware that minimizes cost-

effectiveness and portability. These benefits combine to enhance the promise of deploying 

the proposed technique in remote or resource-limited locations and on wireless ultrasound 

systems (Faruk et al. 2015; Dietrich et al. 2017; Shin et al. 2018; Wildeboer et al. 2019).

Qualitative LOC images were presented as a supplement to quantitative image values (see 

Fig. 5). Although these LOC images differ from traditional B-mode images, they have the 

potential to aid the transition from traditional image interpretation to a single objective 

number that summarizes the presence of solid or fluid mass content. Alternatively, the LOC 

image could be presented as an overlay, similar to previously presented R-SLSC overlays 

(Wiacek et al. 2018a, 2018b).

We presented three possible distribution statistics (i.e., all, mean, and median). After 

considering these multiple options, we recommend using the mean or median LOCs within 

an ROI to differentiate solid from fluid masses, given the complete separation of the 

respective distributions (see top center of Fig. 3) and the greatest sensitivity, specificity 

and accuracy (see Tables 3 and 4), which is highly promising for the proposed approach. 

When compared with previous studies using qualitative R-SLSC images and QT ultrasound, 

LOC offered improved sensitivity and specificity without requiring reader input (see Table 

3).

The leave-one-out cross-validation analysis simulates several clinical scenarios where a 

LOC or CL threshold could be set based on prior patient data and a new patient is 

assessed based on the pre-determined threshold. The 96.8% LOC accuracy reported in Table 

4 suggests that there is strong potential for clinical utility and impact. In these clinical 

scenarios, all malignant masses would have been biopsied correctly and only one fluid mass 

would have been unnecessarily biopsied (which is the preferred clinical scenario compared 

with a solid mass incorrectly classified as fluid). In addition, the selected LOC and CL 

thresholds for each training set produced standard deviations (see Table 4) that were 0.68%–

1.96% and 3.01%–7.93% of the mean LOC and CL values, respectively. These standard 

deviations further support the suggestion that LOC is a robust indicator of lesion contents. 

Including additional patient data to set this threshold may further increase the robustness 

of both LOC and CL in discriminating mass contents. With additional data, Figure 3 also 

indicates that specific thresholds can possibly be defined based on mammographic breast 

density.

Providing a more forward-thinking viewpoint, LOC and CL have the potential to advance 

computer-aided diagnostic systems to automate BI-RADS 2 classification of fluid-filled 

cysts. In addition, the recently introduced CohereNet architecture could also be used to 

WIACEK et al. Page 12

Ultrasound Med Biol. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



introduce additional automation and reduce the computational complexity of coherence 

calculations (Wiacek et al. 2019, 2020a, 2021a). One limitation to complete user 

independence is that manual ROIs were defined to measure LOC and CL, which requires 

radiologist intervention during imaging. However, this manual intervention can potentially 

be replaced with traditional or deep learning-based (Nair et al. 2020) ultrasound image 

segmentation algorithms.

CONCLUSIONS

This article summarizes the impact of using two quantitative coherence-based metrics, LOC 

and CL, to distinguish fluid from solid breast masses. When introduced as a standalone 

diagnostic parameter, the mean or median LOC within ROIs of each mass produced ideal 

separations between fluid and solid breast masses with a sensitivity and specificity of 

1.00. Similarly, when considering the mean CL within ROIs of each mass, the sensitivity 

and specificity of fluid mass detection were 1.00 and 0.95, respectively. In addition, the 

separation between fluid and solid masses was overwhelmingly improved when masses 

were surrounded by dense breast tissue. These results provide a promising framework to 

include quantitative coherence-based metrics into the breast clinic, particularly as a method 

to eliminate reader subjectivity, objectively diagnose BI-RADS 2 masses, and eliminate the 

need for biopsy or follow-up of these fluid-filled masses.
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Fig. 1. 
Diagram summarizing (top) the proposed clinical workflow for implementing quantitative 

coherence-based metrics and (bottom) the leave-one-out cross-validation to assess the 

feasibility of the proposed approach. CL = coherence length; LOC = lag-one coherence.
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Fig. 2. 
Violin plots showing (top) LOC and (bottom) CL values for each mass in this study. The 

shape of the shaded colors represents the probability density of the characterized data, each 

solid gray box indicates the interquartile range, each open circle denotes the median, each 

horizontal white line denotes the mean, and the horizontal black line denotes the ideal LOC 

or CL threshold determined from all patients. The mass type for each mass number is listed 

in Table 2. CL = coherence length; LOC = lag-one coherence.
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Fig. 3. 
(Left) Histograms of the distribution of LOC values separated by solid and fluid masses. 

(Center) Violin plots of the distribution of all, mean and median LOC values. (Right) 

Corresponding ROC curves indicating classification performance for (top) all masses in 

the study, (middle) masses surrounded by non-dense breast tissue, and (bottom) masses 

surrounded by dense breast tissue. Note the overlap between ROC curves describing the 

mean and median LOC classification performance. CL = coherence length; LOC = lag-one 

coherence; ROC = receiver operating characteristic.
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Fig. 4. 
(Left) Histograms of the distribution of CL values separated by solid and fluid masses. 

(Center) Violin plots of the distribution of all, mean and median CL values. (Right) 

Corresponding ROC curves indicating classification performance for (top) all masses in 

the study, (middle) masses surrounded by non-dense breast tissue, and (bottom) masses 

surrounded by dense breast tissue. Note the overlap between ROC curves describing the 

mean and median CL classification performance in the bottom right plot. CL = coherence 

length; LOC = lag-one coherence; ROC = receiver operating characteristic.
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Fig. 5. 
B-Mode and LOC images of (left) two fluid-filled and (right) two solid masses surrounded 

by (top) non-dense and (bottom) dense breast tissue. LOC = lag-one coherence.
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Table 1.

Number of masses in each tissue density category.

Mass Content Breast Tissue Density

Non-Dense Dense Total

Fluid 6 6 12

Solid 7 12 19
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Table 4.

Accuracy of the leave-one-out cross-validation analysis and mean ± one standard deviation of the thresholds 

determined from 31 training sets each containing 30 masses.

Accuracy Threshold

Mean LOC 96.8% 0.2754 ± 0.0054

Median LOC 96.8% 0.2660 ± 0.0018

Mean CL 93.6% 5.9677 ± 0.1796

Median CL 83.9% 3.9677 ± 0.3145

CL = coherence length; LOC = lag-one coherence.
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