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Bioactive peptides generated from food proteins have great potential as functional

foods and nutraceuticals. Bioactive peptides possess several significant functions, such

as antioxidative, anti-inflammatory, anticancer, antimicrobial, immunomodulatory, and

antihypertensive effects in the living body. In recent years, numerous reports have

been published describing bioactive peptides/hydrolysates produced from various food

sources. Herein, we reviewed the bioactive peptides or protein hydrolysates found in

the plant, animal, marine, and dairy products, as well as their by-products. This review

also emphasizes the health benefits, bioactivities, and utilization of active peptides

obtained from the mentioned sources. Their possible application in functional product

development, feed, wound healing, pharmaceutical and cosmetic industries, and their

use as food additives have all been investigated alongside considerations on their safety.

Keywords: bioactive peptides, health benefits, bioactivities, applications, safety

INTRODUCTION

Nowadays, food is recognized as a source of dietary substances and biologically active compounds
that improve human health and the general conditions of the organism. The consumers’ increasing
awareness of the influence of diet on health is reflected in their selection of natural products,
abundant in vitamins, minerals, and other bioactive compounds like carotenoids (1), anthocyanins
(2), polyphenols (3), or peptides (4, 5).

Bioactive peptides are protein fragments that benefit the body systems and overall human health.
Most bioactive peptides range between two (dipeptides) and 20 amino acid residues and have a
molecular mass of 0.4–2 kDa (6). Longer peptides have also been reported in rare cases. Lunasin, for
example, is a peptide formed by 43 amino acids produced from soy, which demonstrates anti-cancer
and hypocholesterolemic properties (7).

Bioactive peptides generated from food possess an excellent potential for creating functional
foods and/or nutraceuticals to prevent or treat some chronic diseases (8). Many articles on
the generation and characterization of bioactive peptides with antimicrobial, anti-inflammatory,
antihypertensive, anti-obesity, and antioxidant attributes have been published (9). Herein, we
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focused on bioactive peptides from different foods and their
by-products, their effects on health, and possible applications.

In this investigation, eligible studies (in English) were
acknowledged during an electronic search of the PubMed
database (1991–2021) (https://www.nlm.nih.gov/) and Google.
We employed the chief search word “bioactive peptides”
along with the words “sources,” “by-products,” “extraction,”
“purification,” “identification,” “bioactivities,” “health
effects,” “pharmaceutical applications,” “food applications,”
“cosmeceutical applications,” “feed applications,” and “safety”
to find the relevant articles. We selected the titles, keywords,
and abstracts of the articles collected from the database. Several
review articles were omitted in favor of the primary sources cited.

THE SOURCES OF BIOACTIVE PEPTIDES

Peptides and proteins are critical macronutrients as they provide
the necessary raw materials for protein production and serve
as a source of energy. Bioactive peptides have been isolated or
produced from various plant and animal sources (Tables 1–4).
Food proteins are chosen as a reference for bioactive peptides
based on two factors: (i) a desire to add value to abundant
underused proteins or protein-rich industrial food waste, and (ii)
the use of proteins with particular peptide sequences or amino
acid residues with specific pharmacological benefits (87).

Extraction of Bioactive Peptides
Bioactive peptides are conventionally isolated by chemical or
enzymatic hydrolysis and fermentation. To enhance the degree
of hydrolysis in the generation of bioactive peptides, new
approaches, such as microwave, ultrasound-assisted extraction,
ohmic heating, pulsed electric fields, and subcritical water
hydrolysis, have been investigated (88). Physical processes are at
the core of these techniques (Figure 1).

Chemical Methods
Chemical techniques using alkalis, such as sodium hydroxide, are
the most typical and conventional method for protein extraction
from plant sources (89, 90). It can effectively break hydrogen
and amide bonds to solubilize rice bran proteins. Although this
process is highly effective in obtaining most proteins in a soluble
form, it creates specific structural changes that cause a protein to
lose its original function (91).

Enzymatic Methods
Enzymatic hydrolysis is another common approach for
separating proteins and hydrolysates/peptides from various food
sources (92). Enzymes are employed in diverse ways to facilitate
protein extraction from food, such as cell wall degradation,
starch-bond protein release, and protein solubility improvement
(93). In this regard, Wang et al. (94) utilized phytase and
xylanase to isolate protein from rice bran and noticed that the
use of carbohydrates could be helpful to improve the yield of
soluble protein.

Physical Methods
Physical methods are often favored over chemical or enzymatic
treatments for food production because they have fewer changes
(95). These techniques are more economical and easy to adapt
and use in the industry. Conventional physical procedures,
such as colloidal milling, homogenization, high-speed blending,
freeze-thaw, and high pressure, have been utilized for protein
extraction (90).

Microwave-Assisted Extraction
Microwave heating is a novel technology based on
electromagnetic waves with wavelengths and frequencies ranging
from 1mm to 1m and 300 MHz to 300 GHz, respectively. It
has gained popularity in the food processing industry because
of its uniform heating, high heating rates, safety, simple, quick,
and clean operation, and low maintenance. Furthermore,
this kind of heating has a lower impact on food products’
flavor and nutritional quality than conventional heating. By
shattering disulfide and hydrogen bonds (non-covalent bonds),
this approach can cause protein unfolding, which affects the
secondary and tertiary structures of proteins (96, 97). In this
respect, the microwave process was shown to assist the chia
seed protein enzymatic hydrolysis with enhanced bioactivity
(antioxidant activity), and functionality (emulsification and
foaming properties) gained in a shorter time in comparison to
traditional hydrolysis techniques (98).

Ultrasound-Assisted Extraction
Sonication is a green, novel, innovative and sustainable
strategy based on high sound waves of frequencies (>16 kHz)
undetectable by the human ear. This approach has several
benefits compared with traditional thermal processes, including
higher efficiency, higher rate, more accessible and cheaper
application and operation, lower equipment contamination, and
higher quality and functionality of processed foods (98, 99). In
this context, Zhao et al. (100) demonstrated that sonication with
power levels of 200, 400, or 600W for 15 or 30min altered the
secondary and tertiary structure of walnut protein isolate without
any impact on its primary structure since the process could not
break the covalent bonds. Further, Vanga et al. (101) indicated
that ultrasonic treatment (25 kHz, 400W, 1–16min) reduced
soymilk protein trypsin inhibitor activity by 52% and enhanced
its digestibility.

Ohmic Heating
Ohmic heating is a thermal processing technology that applies
alternating electric currents directly into a semi-conductive
media. It was initially employed for milk pasteurization in
1920. According to Joule’s law, direct or volumetric heat is
generated in products by passing a moderate and alternating
electric current through them, which functions as resistance in an
electrical circuit (102, 103). In this way, Li et al. (104) evaluated
the structure and techno-functionality of proteins in soybean
milk when using ohmic heating against traditional heating.
Their findings revealed that ohmic heating effectively reduced
heating time and enhanced the protein’s emulsifying capacity.
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TABLE 1 | Peptides from milk and by-products and their bioactivity.

Source Peptide sequence Bioactivity References

Bovine milk Lys-Val-Leu-Pro-Val-P(Glu) Antihypertensive activity (10)

N/A Antimicrobial activity (11)

Cheddar cheeses N/A Antimicrobial, antioxidant, and antihypertensive activity (12)

N/A Phosphopeptides (13)

Casein hydrolysates Arg-Tyr-Lue-Gly-Tyr Antihypertensive activity (14)

Comte cheese N/A Phosphopeptides (15)

Feta, Swiss cheeses N/A Antiamnesic (16)

Mik fermented Ile-Pro-Pro

Val-Pro-Pro

ACE-inhibitory activity (17)

Enzyme modified cheese N/A Opioid activity and ACE-inhibitory activity (18)

Yogurt N/A Antihypertensive and antimicrobial activity (19)

κ-casein: Met-Ala-Ile Antithrombotic activity (20)

N/A Immunomodulatory (13)

N/A Antithrombotic (21)

β- lactoglobulin β-lactosin B Antihypertensive activity (22)

Antithrombotic activity (23)

Fermented milk Val-Pro-Pro,Ile-Pro-Pro Antihypertensive activity (24)

Sour milk N/A Phosphopeptides (25)

N/A Antihypertensive properties (16)

By-products

Whey protein hydrolysate Lactoferricin Antimicrobial activity, anti-cancer (24)

N/A Opioid activity (26)

TTFHTSGY

GYDTQAIVQ

Antihypertensive properties (13)

Whey proteins N/A Anticancer (15)

N/A, Not available.

The protein’s foaming ability, on the other hand, reduced as its
surface hydrophobicity dropped.

The Pulsed-Electric Field (PEF)
The pulsed-electric field (PEF) technique has been employed
as a non-thermal process for microorganisms and enzymes
inactivation. In this technology, the food sample is subjected to
short high-power electrical pulses (µs or ms) between electrodes
(105). A PEF system consists of a chamber, electrodes, a high-
voltage pulse generator, and a computer for monitoring and
controlling devices. A strong electric field is formed between two
electrodes because of their electrical potential difference. During
the PEF process, the generated electrical energy might cause
protein unfolding and enhanced interactions with the solute.
This can impact the peptides/protein’s functional characteristics
by increasing its solubility (106). In this regard, PEF treatment
of canola seeds enhanced the extracted protein’s solubility,
emulsifying, and foaming capabilities, according to Zhang et al.
(107). Nevertheless, depending on the strength and duration of
the PEF process, it can result in denaturation and aggregation,
resulting in decreased solubility. The PEF method can change
plant-derived peptides and proteins’ secondary and tertiary
structures. Changes in the secondary structure of peptides
derived from pine nut protein were also informed, along with
their antioxidant effect (108).

Purification and Identification of Bioactive
Compounds
All the methods for purifying and identifying bioactive peptides
are very similar. Purification of active peptides is required
to produce a commercially viable product. Ultrafiltration,
RP-HPLC, size exclusion chromatography, and ion-exchange
chromatography, can all be used to purify bioactive peptides.
Additionally, for protein identification, analytical techniques
such as mass spectrometry (MS), electrospray ionization MS,
matrix-assisted laser desorption ionization time-of-flight MS,
liquid chromatography-MS/MS, and hydrophilic interaction
liquid chromatography (HILIC) are widely utilized (109).

BIOACTIVITIES OF BIOACTIVE PEPTIDES
AND THEIR IMPACT ON HEALTH

Proteins are necessary for the growth and the preservation
of many biological processes. The awareness regarding
physiologically active peptides is growing quickly, as they
may serve as possible modifiers for several regulative functions
in the body. Bioactive peptides have different biological actions
depending on the amino acid class, net charge, secondary
structures, sequence, and molecular mass (110). Multiple studies
have determined the bioactivities of peptides, which were linked
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TABLE 2 | Peptides from meat and by-products and their bioactivity.

Source Peptide sequence Bioactivity References

Duck breast meat LQAEVEELRAALE

IEDPFDQDDWGAWKK

Antioxidant activity (27)

Beef muscle DFHING Antihypertensive activity (28)

Bovine brain MPPPLPARVDFSLAGALN Phosphoenolpyruvate inhibitory activity (29)

Venison muscle MQIFVKTLTG

DLSDGEQGVL

Antioxidant activity (30)

Beef muscle GFHI, DFHING, FHG, GLSDGEWQ Antimicrobial activity (28)

Fermented meat sauce GYP Antioxidant activity (31)

Chicken breast protein Breast protein hydrolysate Antioxidant activity (32)

Bovine muscle YEDCTDCGN Anti-opioid activity and ACE-inhibitory activity (29)

By-products

Duck skin N/A Antioxidant activity (33)

Bovine myoglobin AKHPSDFGADAQA (34)

Bovine blood YPWT Opioid activity (29)

Bovine blood TKAVEHLDDLPGALSELSDLHAHKLR

VDPVNFKLLSHSLL

Antihypertensive activity (35)

Bovine tendon AKGANGAPGIAGAPGFPG

ARGPSGPQGPSGPP

(36)

Bovine blood STVLTSKYR Antimicrobial activity (37)

Buffalo horn AADNANELFPPN Antioxidant activity (38)

Bovine skin N/A (39)

Bovine brain N/A (40)

Buffalo horn AADNANELFPPN (38)

Yak skin <3 kDa (41)

Sheep abomasum protein LEDGLK (42)

Bovine liver <10 kDa (43)

Dry-cured ham bones N/A (44)

Chicken liver N/A (45)

Chicken bone collagen hydrolysates N/A Lipid-lowering activity (46)

N/A, Not available.

to improved overall health and a lower risk of specific chronic
diseases, such as cancer, diabetes, and heart diseases (Figure 2).

Antioxidant Activity
Reactive oxygen species cause cell damage, leading to cancer,
diabetes, cardiovascular disease, and hypertension (111). The
antioxidative characteristics of bioactive peptides are associated
with their composition, formation, and hydrophobicity.
Histidine, glutamic acid, proline, tyrosine, cysteine, methionine,
and phenylalanine are all amino acids with antioxidant
properties (112). Amino acids bind pro-oxidant metal ions to
perform their activity, scavenge the OH radical and/or inhibit
lipid peroxidation. As a result, each amino acid contributes
as an antioxidant uniquely, depending on its type (67). Most
antioxidant peptides include 4–16 amino acid residues and have
a molecular mass of 0.4–2 kDa. Peptide molecular size influences
both the pathways to target locations and the gastrointestinal
digesting process, potentially increasing antioxidant activity
in vivo (113). Tyrosine-containing peptides work primarily
through hydrogen atom transfer, whereas cysteine, tryptophan,
and histidine-containing peptides work mainly through single

electron transfer (114). Aromatic amino acids like Tyr and Phe
are excellent at donating protons to electron-deficient radicals.
This characteristic enhances the bioactive peptides’ radical-
scavenging abilities. The antioxidant capacity of His-containing
peptides is confirmed to be linked to hydrogen donating and
lipid peroxyl radical trapping (115). The sulfhydryl group in
cysteines, on the other hand, is endowed with an antioxidant
effect because of its primary reaction with radicals (116). Plant-
based proteins derived from industrial food and its by-products,
such as soybean, wheat germ, hemp seeds, rice bran, sesame
bran, wheat bran, and rapeseed, possess bioactive peptides with
antioxidant characteristics (117).

Antimicrobial Activity
Antimicrobial peptides possess an antimicrobial activity that
protects mammals from various bacteria, fungi, and viruses.
Antimicrobial activity is also a coveted feature in prepared foods
since it directly impacts the product’s shelf life. Antimicrobial
peptides are divided into three categories: short (20–46 amino
acid residues), basic (rich in Lys or Are), and amphipathic.
They are commonly abundant in hydrophobic residues, such
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TABLE 3 | Peptides from plants and by-products and their bioactivity.

Source Peptide sequence Bioactivity References

Maize RSGRGECRRQCLRRHEGQPWET

QECMRRC RRR/ YA, LMCH (zein)/

LPP (zein)

Antimicrobial, antioxidant, and antihypertensive activities (24)

Soybean 1–3 kDa Antimicrobial activity (47)

Oat and wheat grains N/A Antihypertensive, antioxidant, antithrombotic, and opioid activities (48)

Sweet potato N/A Antioxidant activity (49)

Corn protein Pro-Phe and Leu-Pro-

Phe

(50)

Amaranth VW, GQ/PYY, RWY, WY, RW

PWW, PWR, PW, PWY

WYS/VGECVRGRCPSGMCCSQF

GYCGKGPKYCG

Anticancer, antioxidant and antimicrobial activities (24, 51)

Rice protein Thr-Gln-Val-Tyr ACE-inhibitory, antimicrobial, and antioxidant activities (48, 52)

Lentils N/A Antioxidant activity (53)

Zein hydrolysate N/A Antioxidant activity (54)

Quinoa flour 5 peptides; <1.1 kDa (55)

Moringa seed Peptied fractions < 10 kDa Antidiabetic, antioxidant, and antidiabetic activities (56)

By-products

Plum by-product N/A Antioxidant and ACE inhibiting activities (57)

Rice bran protein hydrolysates N/A Antioxidant activity (4, 58)

Soybean meal Peptied fractions: < 5 kDa, 3–5 kDa,

1–3 kDa, >1 kDa

Antioxidant, antimicrobial, and antitumor activities (59, 60)

Palm kernel oil cake YLLLK

YGIKVGYAIP

GGIF

GIFE

GVQEGAGHYALL

LPWRPATNVF

Antihypertensive activity (61)

Wheat bran protein hydrolysates Gluten Antihypertensive and antioxidant activities (62)

Sunflower seed meal FVNPQAGS Antihypertensive activity (63)

Watermelon seed Hydrophobic amino acids (Gly,Ala,

Val, Met, Ile) Aromatic amino acids

(Tyr, Phe, His)

Antioxidant activity (64)

Tomato seed cake 10 peptides; <1 kDa ACE inhibitory and antioxidant activities (65)

Cottonseed meal <1 kDa Antioxidant activity (66)

Corn gluten meal Peptides fraction of 500–1,500 Da (67)

Sesame meal N/A (68)

N/A, Not available.

as Leu, Ile, Val, Phe, and Try (118). Multicellular organisms
create antimicrobial peptides as defensive strategies against
pathogenic microorganisms. Antimicrobial peptides can alter
the cell membrane and biological processes, including cell
division (119). Their action is assumed to create channels or
pores within bacterial membranes, inhibiting anabolic activities,
changes in gene expression and signaling transduction, and
promoting angiogenesis. For example, the antimicrobial action
of milk is demonstrated by extensive research. Lactoferrin,
which is hydrolyzed into lactoferricin in the gastrointestinal
tract, is an essential contributor to the synthesis of various
other bioactive peptides and has antimicrobial ability in
and of itself (120). Antimicrobial peptides have also been
discovered in marine products. Many microorganisms, like
Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Shigella

dysenteriae, Pseudomonas aeruginosa, Salmonella typhimurium,
and Streptococcus pneumoniae, were inhibited by the peptide
GLSRLFTALK, isolated from anchovy cooking wastewater (121).
Moreover, Aguilar-Toalá et al. (122) found that adding chia
protein hydrolysate (<3 kDa) possessed higher antimicrobial
activity than both chia peptide fraction 3–10 kDa. Furthermore,
the <3 kDa fraction demonstrated a notable increase in
membrane permeability of E. coli (71.49% crystal violet uptake)
and L. monocytogenes (80.10% crystal violet uptake).

Mineral Binding
At intestinal pH, peptides with specific sequences create
compounds by binding in solution with minerals, such as
calcium (Ca) and phosphorus (P). As these peptides have
a higher anionic character, they form soluble complexes
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TABLE 4 | Peptides from marine and by-products and their bioactivity.

Source Bioactivity References

Shrimp proteins N/A Antihypertensive activity (69)

Tuna proteins N/A (70)

Sea cucumber hydrolysate (71)

Conger eel protein LGLNGDDVN Antioxidant activity (72)

Sardine protein LQPGQGQQ (73)

Mackerel filet protein hydrolysate N/A (74)

Royal jelly protein AL, FK, FR, IR, KF, KL, KY, RY, YD,

YY, LDR, KNYP

(75)

Mollusks (Conus magus) N/A Analgesic (24)

Seaweed (Eucheuma serra) Lectins Anticancer (76)

Sponges (Jaspis spp.) Jaspamide (77)

Geodia corticostylifera N/A Antiproliferative (78)

By-products

Tilapia (O. niloticus) skin Leu-Ser-Gly-Tyr-Gly-Pro Antihypertensive activity Chen et al. (79)

Pacific cod skin gelatin N/A (80)

Tuna backbone VKAGFAWTANQQLS Antioxidant activity (81)

Hoki skin gelatin HGPLGPL (82)

Salmon (Protamine, derived from fish milt) Pro-Arg (271.3 Da) (83)

Horse mackerel viscera Ala-Cys-Phe-Leu (84)

Olive flounder (P. olivaceus) surimi N/A Antihypertensive activity (85)

Bluefin leatherjacket heads Trp-Glu-Gly-ProLys;

Gly-Pro-Pro;

Gly-Val-Pro-Leu-Thr

Antioxidant activity (86)

N/A, Not available.

FIGURE 1 | Scheme for extracting bioactive peptides.

immune to additional proteolytic attacks, blocking the creation
of insoluble mineral compounds (24). Flaxseed proteins
contain hydrophobic and positively charged amino acids that
might aid enzymatic hydrolysis in generating calmodulin
(CaM)-binding peptides. Flaxseed proteins were digested with
alcalase to produce low-MW peptides (123). Milk caseins
are also known to bind Ca and P ions, increasing their
bioavailability (24).

Opioid Activity
Opioid peptides are naturally synthesized and have analgesic
properties (124). They bind to the opiate receptor and exhibit
opiate-like actions suppressed by naloxone (125), with a specific
impact on the neurological system (126). Prodynorphin
(dynorphins), proopiomelanocortin (endorphins), and
proenkephalin (enkephalin) are the three types of precursor
proteins found in typical opioid peptides (127). The N-terminal
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FIGURE 2 | Bioactivities of bioactive peptides.

sequences Tyr-Gly-Gly-Phe and Tyr-Pro are prevalent in these
peptides (113). Opioid peptides can be found in milk and dairy
products (18) and various plant sources, including oats, wheat,
rye, barley, and maize (128). Pihlanto-Leppälä (129) found that
opioid peptides interact with particular receptors on target cells.

Anticancer Activity
Cancer has become one of the world’s most feared and deadly
diseases. Pharmaceutical companies are developing anticancer
and antitumor medications at a rapid pace. Further, oncology
research is well-progressed and has improved our understanding
of tumors over time (130). Food protein hydrolysate is an
excellent foundation for the generation of anticancer peptides.
The anticancer effect of rice and soy protein hydrolysates
has been previously demonstrated. In rice, anticancer peptides
are produced by alcalase digestion of rice bran proteins
(131). Another anticancer peptide (Ala-Phe-Asn-Ile-His-Asn-
Arg-Asn-Leu-Leu) was separated from shellfish proteins, which
successfully killed breast, prostate, and lung cancer cells while
leaving normal liver cells unharmed (132). Most anticancer
investigations on peptides are conducted on lunasin; a peptide
derived from soy or wheat grains (24). The anticancer properties
of lunasin are linked to its particular amino acid sequences,
which contain Arg-Gly-Asp for cell adhesion and a polyaspartic
acid chain with nine aspartic acid residues (133). Fermented
soybean extracts impact the proliferation of MCF7 breast cancer
cells and downregulate gene expression, according to Hwang
et al. (134). The investigators found that, through stimulating
the TGF pathway, fermented soybean extracts may effectively
prevent breast cancer. According to Badger et al. (135), soy
peptide concentrates reduce the incidence of breast, prostate,
and gastrointestinal cancers. They claimed that soy peptide

concentrates could reduce cancer incidence by 80%. Further,
peptides from black soybean, mung bean meal, and adzuki
bean were found to suppress cancer cells at 200–600 g/mL
concentrations (136). These anticancer peptides were only
studied in vitro; further investigation on their bioavailability
is needed.

Antihypertensive Activity
Owing to the changes in lifestyle in modern society, there
is a growing need for functional foods with blood-pressure-
lowering benefits in the therapy of hypertension. Hypertension
can cause multiple disorders, including heart and renal diseases,
arteriosclerosis, and stroke (137). Antihypertensive peptides (also
known as angiotensin-converting enzyme (ACE) inhibitors)
generated by protein hydrolysates are the most studied peptides
(138). In this respect, ACE has a crucial effect since it catalyzes
the transformation of angiotensin I to angiotensin II, which
leads to a rise in blood pressure. Aromatic amino acid residues
at the C-terminus and hydrophobic amino acid residues at the
N-terminus help peptides block ACE function more effectively
(139). Various plant sources, including pea (Ile-Arg, Lys-Phe,
and Glu-Phe), soybean (Asp-Leu-Pro and Asp-Gly), and rice
(Ile-His-Arg-Phe), have been shown to possess active peptides
with antihypertensive capacity (117). Marambe et al. (140) found
that defatted flaxseed protein hydrolysate reduced the ACE
activity, lowering the risk of cardiovascular disorders. Many
tripeptides that restrain ACE have been separated from foods.
In this context, Wang et al. (141) confirmed that an active
peptide (Tyr-Ser-Lys) derived from rice bran had a potent
ACE inhibitory effect. Another work by Tuomilehto et al. (17)
found that the milk-obtained bioactive tripeptides (Val-Pro-
Pro and Ile-Pro-Pro) lowered blood pressure in moderately
hypertensive patients. Bioactive peptides, particularly those with
low molecular weight, inhibited ACE, decreased blood pressure
and prevented hypertension.

Immunomodulatory Activity
Immunomodulatory activity is essential for the human immune
system to function correctly. The immunomodulatory effect of
bioactive peptides depends on cytokine regulation, antibody
formation, immune system stimulation via reactive oxygen
species, conformational changes in tubulin, and inhibition
of protein synthesis (87). Furthermore, the amino acid
content, sequence, length, charge, hydrophobicity, and peptide
structure are linked to the immunomodulatory function. In
this regard, soy protein hydrolysates with low molecular weight
and many positively charged peptides have been proven to
stimulate immunomodulation (142). Numerous plant-generated
bioactive peptides with immunomodulatory action, including
Leu-Asp-Ala-Val-Asn-Arg and Met-Met-Leu-Asp-Phe, possess
low molecular weights (686 and 655 Da, respectively) and
hydrophobic characteristics (143). According to Ngo et al. (144),
marine products are a significant source of bioactive peptides that
have been used as a treatment for a variety of disorders.
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Anti-inflammatory Activity
Anti-inflammatory effects have been found in proteins/peptides
derived from eggs, milk, and plants (145). The anti-inflammatory
characteristics of new active peptides from sponges, bacteria, and
microalgae have been documented, along with the molecular
diversity of marine peptides and data regarding their anti-
inflammatory impact and modes of action (146). Zhao et al.
(147) reported that anti-inflammatory peptides generated from
velvet antler simulated gastrointestinal digests were purified and
identified using LC-MS/MS. Four anti-inflammatory peptides
were identified, namely VH, LAN, AL, and IA. These findings
proposed that peptides obtained from velvet antler protein might
be a viable anti-inflammatory agent in functional ingredients.
Bioactive peptides promoted diet-induced hepatic fat deposition
and hepatocyte pro-inflammatory response when evaluated on
SAMP8 aging rats (148). In vitro and in vivo investigations have
revealed that corn, whey, and soybean protein hydrolysates have
a powerful anti-inflammatory effect (149, 150).

APPLICATIONS OF BIOACTIVE PEPTIDES

Food Applications
Bioactive peptides have shown to be extremely useful in
developing numerous health-oriented functional diets. These
peptides are used as sweeteners, color stabilizers, thickeners,
anti-caking factors, emulsifiers, flavor enhancers, emulsifiers
in food preparation, and acidity control. Bioactive peptides
may also improve food quality by affecting the water and
oil retention capacity, colloidal stability, viscosity, and foam
generation in the finished product (151). Peptide isolates used
in the formulation of functional products aid in creating
certain required technical qualities. Numerous studies have been
conducted on proteins/peptides of different origins to produce
functional foods. Emulsification is a necessary procedure that is
frequently utilized to assess protein-rich products. Due to their
amphiphilic character, bioactive peptides derived from food by-
products are important for emulsifying attributes (152). Active
peptides derived from plant sources like potato (153), flaxseed
(154), and soybean (155) have been found to exhibit emulsifying
capabilities. As reported by Álvarez et al. (156), adding rice
bran protein concentrate to beef products increased its emulsion
stability and rheological qualities. Due to the increased levels
of bioactive peptides, Talukder and Sharma (157) found that
using oat bran concentrate in the formulation of chicken meat
patties resulted in better emulsion activity than that obtained
using wheat bran concentrate. Likewise, Kamani et al. (158)
observed that soy protein concentrate and gluten in sausage
recipes increased emulsion stability and gel-forming capabilities
by producing a robust structural network.

Foam formation can generate acceptable textural and sensory
characteristics in food such as pastries and sauces (159). Their
capacity to reduce surface tension facilitates the use of active
peptides as foam stabilizers. Rice bran protein isolates had a
comparable foaming potential to egg white but much lower
foaming stability (114). Similarly, Elsohemy et al. (160) reported
that the foaming capacity of the quinoa seed protein concentrate
was much higher than that of soybean cake protein concentrate.

According to Kamani et al. (158), soy protein concentrate
minimizes the cooking/frying loss and shrinkage and enhances
foaming stability in chicken sausages.

Various trials have evaluated plant protein concentrates in
food applications to reduce the oil ratio and improve the end
product’s industrial attributes. Plant-based protein hydrolysates
have been given significant attention, particularly for enhancing
the water-holding ability of meat products (161), which plays
a critical role in defining their juiciness, an expression that
also refers to the flavor, texture, and color required throughout
technological operations (162). In this regard, Carvalho et al.
(163) stated that soy protein concentrate employed in beef
burger formulation significantly improved the patties’ water-
holding capacity. Additionally, Hidayat et al. (162) found that this
capacity ranged from 86 to 89% in beef sausage and was enhanced
by replacing beef with texturized vegetable protein (0–40%).
This might be attributed to the existence of more water-soluble
components than in animal proteins. According to Karami and
Akbariadergani (164), canola protein hydrolysates improved the
cooking yield by raising the water-retaining capability of the
meat product.

Consumers and the food industry are concerned about lipid
oxidation, creating unwanted off-flavors, odors, and possibly
serious reaction products (165). Suppressing lipid peroxidation
in foodstuffs is critical to prevent food deterioration and
protect consumers against hazardous diseases. In this regard,
antioxidants are utilized to keep food safe by preventing
discoloration and the decay caused by oxidation (166, 167).
Despite the extensive use of synthetic antioxidants in food
production, the consumers’ concern around food safety
prompted the food industry to seek natural alternatives
(168, 169). Antioxidant proteins and peptides can replace
artificial antioxidants since they have an equivalent or higher
ability to suppress lipid oxidation (170). Carnosine (β-alanyl-
L-histidine) and glutathione (γ-Glu-Cys-Gly) are natural
antioxidants in muscle tissue. It has been discovered that they
can scavenge hydroxyl radicals, quench singlet oxygen, and
restrain lipid oxidation (171). The peptide Pro—Ala—Gly—Tyr
separated from Amur sturgeon skin gelatin has scavenging
abilities against DPPH, ABTS, and hydroxyl radicals, according
to Nikoo et al. (172). The peptide reduced lipid oxidation in
minced fish at a concentration of 25 ppm, but it was ineffective
at greater concentrations. According to Shahidi et al. (173),
incorporation of capelin protein hydrolysate at 0.5–3.0% in a
beef model decreased the generation of TBARS by 17.7–60.4%.
Over 14 days of storage at 4◦C, Kittiphattanabawon et al.
(174) assessed lipid peroxidation in treated pork containing
gelatin hydrolysate of 40% DH, at concentrations of 100, 500,
and 1,000 ppm, and BHA (100 ppm). In both the carotene
linoleate and treated pork model systems, they found that gelatin
hydrolysate at 500 and 1,000 ppm inhibited lipid peroxidation.
Bougatef et al. (175) isolated and purified antioxidant peptides
from Sardinella aurita proteins by enzymatic hydrolysis. These
peptides were found to have a high antioxidant potential in
meat-based products. Furthermore, the antioxidant activity
of peptides isolated from the mushroom Ganoderma lucidum
was discovered to reduce lipid oxidation without altering the
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products’ consumer desirability qualities. The antioxidant
activity of G. lucidum was attributed to the polysaccharide–
peptide complex, polysaccharides, and phenolics. Nevertheless,
the study found that G. lucidum peptide (GLP) is the main
antioxidant in G. lucidum, which may effectively reduce
lipid peroxidation in meat goods by scavenging free radicals,
chelating metals, and acting as an antioxidant (176). In a
linoleic acid model system, gelatin hydrolysates from cobia
(Rachycentron canadum) skin delayed lipid oxidation. Cobia
gelatin hydrolysate at 8 and 10 mg/mL exhibited a higher
inhibitory effect on lipid peroxidation than BHA at 10 mg/L
(177). In addition, according to Cai et al. (178), peptides
gained from grass carp (Ctenopharyngodon idella) skin protein
hydrolysate significantly prevented peroxidation in a linoleic
acid model system. Sivaraman et al. (179) reported that the squid
protein hydrolysate generated by papain has a comparable lipid
peroxidation inhibitory capacity as ascorbic acid in the sardine
ground meat model system. Similarly, zein hydrolysate has been
shown to suppress lipid oxidation, diminish hydrogen peroxide
and TBARS generation, and considerably increase the oxidative
stability of model oils (180). Furthermore, this hydrolysate shows
no adverse effects on emulsion quality and could be used as
an effective antioxidant in food emulsion (181). Cuttlefish skin
gelatin hydrolysates (0.5 mg/g) prevented turkey sausage lipid
peroxidation for up to 10 days at 4◦C (182).

Proteins derived from dairy sources are, likewise, high in
antioxidant peptides, which could be helpful in the preservation
of meat. In this respect, casein calcium peptide (2.0%) combined
with beef paste homogenate can suppress around 70% of lipid
peroxidation of the homogenate, preventing the formation of
odors in meat products and thus, extending their shelf life (183).
Additionally, whey protein peptides have also demonstrated
their ability to be utilized as functional components in
meat goods. Peña-Ramos and Xiong (184) found that adding
2% whey protein hydrolysates to pig meat in cold storage
decreased oxidative deterioration and loss during cooking. From
the experience of the authors, there are numerous bioactive
peptides available. Nevertheless, adaptability with different
foods, gastrointestinal stability, bioavailability, and long-term
stability must be investigated before application as functional
food additives.

Pharmaceutical Applications
The use of bioactive peptides for pharmaceutical applications is
as interesting as that for food purposes. In this context, bioactive
peptides and their by-products have been applied as antidiabetic,
anticancer, and anti-inflammatory agents, to name a few. Anti-
diabetic hydrolysates, for example, can be added to sausages to
fortify the sausages with anti-diabetic peptides to reduce the
probability of developing diabetes (185). The identity of 24, 30,
and 38 bioactive peptides were established in each of three infant
milk formulas after separating and identifying bioactive peptides
in three hypoallergenic formulas. A large number of these
peptides has been identified as ACE inhibitors. The presence
of sequences with antihypertensive, hypocholesterolemic,
immunomodulation, antibacterial, cytotoxicity, antigenic,
antioxidant, and antigenic activities was also established (186).

Chou et al. (45) investigated the impact of antioxidant peptides
from the chicken liver after enzyme digestion by pepsin and the
induction of CAT, GPx, and SOD in D-galactose-induced rats.
Comparing the control and the D-galactose-induced groups of
rats, the doses of chicken liver hydrolysate administered (0.25
and 0.5 g/kg) resulted in equal or enhanced antioxidant capacity
in the liver, heart, kidney, and brain. The researchers discovered
that dosages of 0.25 and 0.5 g/kg inhibited the same rate of lipid
oxidation in serum and liver as in the control group. Similar
findings were also observed by other scientists in terms of the
antioxidant potential (in vivo) of loach meat hydrolysates (187),
chicken breast hydrolysates (32), rice proteins (188), and tilapia
collagen (189). Fazhi et al. (68) reported that three peptides (tri-,
tetra-, and hexapeptide) were isolated from fermented sesame
meal. They found that MDA buildup in serum and liver was
decreased by supplementation with any peptide at 0.1, 0.2, or
0.4 g/kg. In addition, all treated mice had higher levels of SOD
and GPx.

Numerous bioactive peptides from food have been shown
to possess cytomodulatory properties. In particular, peptides
recovered from waste whey of mozzarella cheese exhibited an
antiproliferative action when evaluated in a human colorectal
cancer cell line (190). Similarly, cytomodulatory peptides
decreased the growth of cancer cells while also increasing the
activity of immune and neonatal intestinal cells (191). The
cytotoxic effects of several black cumin extracts as an additional
remedy to doxorubicin treatment in humanMCF-7 breast cancer
cells were also investigated in terms of their anticancer activity.
The LC50 of black cumin lipid extract was 2.720 0.2 mg/mL,
indicating cytotoxicity. The cytotoxicity of the aqueous extract
was evident when the level was as high as 50 mg/mL (192).
Furthermore, Saisavoey et al. (193) studied rice bran protein
hydrolysate antioxidant and anti-inflammatory properties on the
RAW264.7 macrophage cell line, where LPS and rmIFN-g were
found to co-stimulate the target protein’s inhibitory effect against
nitric oxide production. In addition, casein has been discovered
to be an abundant source of active opioid peptides. Different
casein fragments are hydrolyzed by distinct digestive enzymes,
resulting in the formation of peptides with opioid activity (194).
These opioid casein fractions were solely discovered in the
plasma of newborns, which was surprising. In both animal and
human trials, a marketable, valuable 1-casein-derived peptide
frequently utilized in confections and soft beverages were shown
to have anxiolytic-like stress-relieving characteristics (194).

Plant-based proteins have proven to be a precious source of
innovative and effective antihypertensive peptides (113). In this
respect, four angiotensin-converting enzyme inhibitory peptides
(Val- Trp, Val-Trp-Ile-Ser, Ile-Tyr, and Arg-Ile-Tyr) were
identified from rapeseed proteins digested with subtilisin. When
orally administered, these peptides were reported to reduce
blood pressure in hypertensive rats, with the most significant
effect occurring between 2 and 4 h from administration (195).
Incorporating these and other antihypertensive peptides into
pharmaceutical medicines and functional diets may effectively
prevent and treat hypertension. In mammals, antihypertensive
peptides also aid in regulating salt balance and fluids (196).
Milk-based bioactive peptides might be used to reduce the risk
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of metabolic syndrome by modulating blood pressure, food
consumption, and free radical absorption (197).

Cosmeceutical Applications
Since a scientific demonstration of the stated bioactivity of
novel cosmeceutical substances is frequently required, research
in the cosmeceutical sector, which combines cosmetics and
pharmaceuticals, is continuously growing. Indeed, one feature
that distinguishes cosmeceuticals from traditional cosmetics is
the discovery and characterization of active substances and
the demonstration of their efficacy in the stated activity (198).
Peptides are an important collection of bioactive cosmeceutical
components that, due to their unique qualities, suit the majority
of the cosmeceutical industry’s needs when creating new
compositions. In this respect, in addition to bioactivity, two
other features of peptides as cosmeceutical components have
lately been considered: bioavailability and stability. Moreover,
peptides are recognized as valuable cosmetic materials, as they
are light and air-stable, present low toxicity, show a powerful
affinity for water, and possess moisturizing capabilities (199, 200).
Peptides are frequently employed as ingredients in functional
cosmetics to treat skin conditions, promoting collagen synthesis
and antioxidant, anti-inflammatory, anti-wrinkle, whitening, and
wound healing properties (201, 202). Developing new natural
peptides and more stable and effective synthetic peptides has
sparked renewed interest in peptide-based skincare products
(203). Peptides are used as anti-aging skincare due to their
ability to synthesize extracellular matrix (ECM) tissue, the
disruption of which is key to skin aging (204). Signal, carrier,
neurotransmitter inhibitor, and enzyme inhibitor peptides can
be categorized as topical cosmeceuticals. Larger molecules can
penetrate the skin barrier, particularly in dry and aged skin
(205). Synthetic peptides are made up of amino acid chains
that may be altered for various purposes, including improved
skin penetration, particular receptor binding, stability, and
solubility. Finkley and co-authors (206) reported that the facial
creams containing GHK-Cu (copper tripeptide 1) applied for
12 weeks on 71 volunteers aged 50–59 resulted in a visible
reduction of the signs of aging. In a separate investigation,
the same authors tested the formulation on the eyes of 41
pairs of volunteers under comparable experimental conditions,
where a cream with vitamin K was used as a control. The
cream with GHK-Cu was found to enhance the suppleness
and tightness of the skin in both experiments and lessened the
appearance of both fine lines and deep wrinkles. Lintner and
Peschard (207) found a significant variation in skin permeability
amongst palmitoylated and non-palmitoylated peptides. The
anti-wrinkle and wound-healing effects of the peptides pal-
GHK and pal-AH were examined. The transcutaneous flow was
disclosed using standard Franz diffusion cells, which showed
increased interpenetration in the case of the palmitoylated
analog. The collagen-derived pentapeptide KTTKS is another
key peptide active component in cosmeceutical formulations
(208). In a fascinating clinical investigation, its palmitoylated
analog (pal-KTTKS) was tested and compared to the KTTKS
peptide regarding stability and permeability. It was discovered
that pal-KTTKS could penetrate all three layers of the skin

(stratum corneum, epidermis, and dermis), while unmodified
KTTKS was not found in any of them (209). According
to previous research, collagen may liberate bioactive peptides
with various physiological activities after enzymatic digestion.
Collagen peptides/hydrolysates have been found to help improve
skin problems (210, 211). Kang et al. (212) employed hairless
mice that had been exposed to UV radiation, which were
administered 1,000 mg/kg collagen peptide for 9 weeks. Collagen
peptides were found to upregulate the expression of hyaluronic
acid synthase mRNA and the skin moisturizing factor filaggrin,
boost hyaluronic acid concentration in skin tissue, and down-
regulate the expression of hyaluronidase (HYAL-1 and HYAL-
2) mRNA. Likewise, collagen peptide consumption may prevent
skin moisture loss caused by ultraviolet (UVB) light (213).
Overall, collagen and synthetic peptides have been widely used
to develop anti-aging products and nutraceuticals.

Wound Healing Applications
Human skin wounds continue to be a substantial and growing
public health and economic issue (214). The skin is the largest
organ of the human body and serves as a physical barrier
between the internal and external environments. Undoubtedly,
skin wounds occur frequently in unfortunate accidents. When
the skin defenses against hazardous stimuli are compromised,
adverse outcomes such as infection, shock, and even death can
occur (215, 216). The wound healing process can be slowed down
in specific diseases (e.g., diabetes and infection), usually causing
chronic wounds (217). Traditional wound healing medications,
such as growth factors, cytokines, chemical compounds extracted
or produced from plants, and other immunomodulatory agents,
have proven to be especially challenging to translate into clinic
treatments for chronic wound healing (218).

Bioactive peptides with high activity, specificity, and stability
have sparked substantial interest in the associated field of
study (219) compared with expensive pharmaceuticals and low
activity, safety, and delivery issues. In this regard, in diabetic-
ob/ob rats (mutant obese rats employed as animal models of
type II diabetes), Carretero et al. (220) found that in vivo
adenoviral delivery of LL-37 antimicrobial peptides to excisional
wounds increased re-epithelialization and granulation tissue
formation. Ramos et al. (221) also verified this, finding that
LL-37 and PLL-37 (LL-37 derivative containing an N-terminal
proline) improve re-epithelialization and angiogenesis in skin
lesions with poor wound healing in vitro and in vivo. Song
et al. (222) used electrospun silk fibroin nanofiber membranes
to immobilize an LL-37 derivative, Cys-KR12. Cys-KR12 was
chosen for its antibacterial and anti-biofilm properties vs. four
different bacterial strains (S. aureus, S. epidermidis, E. coli, and P.
aeruginosa) and contained residues 18–29 of the LL-37 sequence.
The peptide-modified membranes were discovered to stimulate
the proliferation of keratinocytes, fibroblasts, and monocytes, all
of which are key to wound healing.

Moreover, collagen peptides serve as fake collagen breakdown
peptides in the skin, causing fibroblast cells to create novel
collagen fibers in response to a false signal. Collagen peptides
also have chemotactic qualities, encouraging cell migration
and proliferation, essential to wound healing (223). Recently,
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marine organisms like fish, fish waste, starfish, sponges, and
jellyfish have been investigated as reliable sources of collagen
(224). Cheng et al. (225) lately discovered that collagen
sponges generated from Rhopilema esculentum show potential
hemostatic properties, implying that they could be a viable
choice for wound treatment. Other biomaterials acquired
from marine collagen, such as collagen gels, films, and
membranes, have also shown practical applications in wound
treatment (226).

Feed Applications
Enhancing feed utilization efficiency for milk, meat, and egg
production is an important goal for animal agriculture. A
proper nutrition strategy is required to digest and absorb dietary
nutrients in the small intestine. Recently, peptides in animal
feeding have received considerable attention (227, 228). Before
feeding, chemical, enzymatic, or microbiological procedures are
utilized to routinely generate peptides from animal and plant
proteins to increase the nutritional quality and decrease any
associated anti-nutritional effects (229). After consumption, the
proteins in the feed are digested in the small intestine by
enzymes and oligopeptidases into small peptides (di- and tri-
peptides) and free amino acids (230). Nonetheless, depending
on the physiological state of the animals and the composition
of their meals, the types of peptides produced might vary
substantially. To produce peptides for animal nutrition, only
animal by-products, brewer by-products, and plant materials
with anti-nutritional elements are hydrolyzed (231). Different
peptide compounds have been added to the meals of calves
(232), poultry (233), fish (234), and companion animals (235)
to enhance their nutrition, gut function, and capacity to combat
infectious diseases. According to Kim (236), fermented soybean
meal (4.9%) might substitute 3.7% of spray-dried plasma protein
in the diet of 3- to-7-week-old pigs given a corn and soybean
meal-based diet with no effect on growth performance or feed
efficiency. Comparable outcomes were gained for the Atlantic
salmon fed a diet including 40% of protein from fermented soy
white flakes (233). In the diet of juvenile red sea bream, 50% of
the fish meal could be substituted with the equivalent quantity of
soybean protein hydrolysate (234). As the fish meal is becoming
limited worldwide, adding plant-based protein hydrolysate in
diets is critical in aquaculture. Moreover, the hydrolysate of soy
protein concentrate (19.7% in diet) can be employed to maintain
a sturdy growth in calves as an alternative for expensive skim
milk powder (230). In another study, El-Ayek et al. (237) found
that black cumin cake can cost-effectively substitute 50% of the
protein in forage formulations. El-Deek et al. (238) reported
comparable results, confirming that up to 50% black seed cake
protein may be used in broiler chick feed with no adverse effects
on growth, meat quality, feed consumption, conversion rate,
or safety.

Safety of Bioactive Peptides
Bioactive peptide safety is a significant perspective for
clinical studies and food applications. The physiological
impact of bioactive peptide consumption (from food and
hydrolysate/concentrated forms) is thought to be harmless.

Nevertheless, because most toxicological investigations are
conducted in vitro and in animals, the level of proof supporting
the safety of bioactive intake must be increased. To date, just
a few investigations on the potential toxicological impact on
humans have been undertaken. In this context, according
to an in vitro work conducted by Doorten et al. (239), daily
ingestion of a hydrolysate derived from cow milk (2 g/kg body
weight) was not likely to generate mutagenic or clastogenic
effects. The scholars found a No Observed Adverse Effect Level
(NOAEL) of 40 g/kg body weight/day, 140 times greater than
the recommended daily intake. Moreover, Anadón et al. (240)
found that acute (2,000 mg/kg) and daily (1,000 mg/kg for 4
weeks) ingestion of casein hydrolysate (rich in antihypertensive
peptides) neither had any histological impact nor caused
mortality in mice. Overall, peptides are more reactive than
natural proteins due to their lower molecular weight and are
made up of smaller chains of amino acids. As a result, it is critical
to ensure their safety, which includes the absence of toxicity,
cytotoxicity, and allergenicity (6). Strict and precise legislation is
essential to safeguard consumers from potentially hazardous or
deceptive products.

Peptide Therapeutics Market
Therapeutic peptides and proteins have risen as potential
drug candidates for several decades. The peptide therapeutics
market is moderately competitive and consists of several major
parties. Some companies, which are currently overlooking the
market, are Eli Lilly and Company, Pfizer, Inc., Amgen, Inc.,
Bristol-Myers Squibb Company, EVER NEURO PHARMA
GMBH, Takeda Pharmaceutical Company Limited, Davisco
Foods International, Tokiwa Yakuhin Co., Ltd., Reliv, Inc.,
Valio Ltd., and many others. The major partakers are involved
in strategic alliances, such as acquisitions and collaborations,
along with research activities for the global expansion of
the product portfolio. For example, in June 2019, Eli Lilly
and Company received the FDA approval for Emgality, a
subcutaneously injected calcitonin gene-related peptide (CGRP)
antibody, for migraine prevention and treating episodic cluster
headache 1.

CONCLUSION AND FUTURE
PERSPECTIVES

The advantages and activities of bioactive peptides derived
from various sources were addressed in this review. Peptide
extraction, purification, and identification were also covered.
Bioactive proteins can be utilized to develop functional foods and
are likely to be employed as a food additive in fatty products
to extend their shelf life by increasing oxidative stability. New
bioactive peptides derived from various food sources and their
by-products for food, pharmaceutical, cosmetic, wound healing,
feed, and safety were also discussed. Even though much is
known about the structure and activity of peptides, more research
into the link between these two aspects is required. Further

1https://www.researchandmarkets.com/reports/5265155/peptidetherapeutics-
market-growth-trends. Last access: Dec 19, 2021.
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investigation is needed on the stability of peptide activity and
its regulatory factors, in addition to the extraction of bioactive
peptides and qualification of prospective bioactivity. In addition,
pre-clinical and clinical studies are needed to determine which
levels are beneficial for health, their dose-response relation,
bioavailability, pharmacokinetics, and whether they can be
consumed with foods.
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