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Abstract: The requirement to estimate the six degree-of-freedom pose of a moving platform frequently
arises in automation applications. It is common to estimate platform pose by the fusion of global
navigation satellite systems (GNSS) measurements and translational acceleration and rotational rate
measurements from an inertial measurement unit (IMU). This paper considers a specific situation
where two GNSS receivers and one IMU are used and gives the full formulation of a Kalman filter-
based estimator to do this. A limitation in using this sensor set is the difficulty of obtaining accurate
estimates of the degree of freedom corresponding to rotation about the line passing through the two
GNSS receiver antenna centres. The GNSS-aided IMU formulation is extended to incorporate LiDAR
measurements in both known and unknown environments to stabilise this degree of freedom. The
performance of the pose estimator is established by comparing expected LiDAR range measurements
with actual range measurements. Distributions of the terrain point-to-model error are shown to
improve from 0.27 m mean error to 0.06 m when the GNSS-aided IMU estimator is augmented with
LiDAR measurements. This precision is marginally degraded to 0.14 m when the pose estimator is
operated in an a prior unknown environment.

Keywords: GNSS; IMU; LiDAR; perception; pose estimation; navigation system; terrain mapping

1. Introduction

An inertial measurement unit (IMU) aided by global navigation satellite system (GNSS)
information is often used to track the six degree of freedom (DOF) pose (here, pose refers
to the six degree of freedom position (x, y, z) and orientation (θ, φ, ψ) of the platform) of
a moving platform. Solutions come in many forms but are broadly categorised as being
tightly or loosely coupled depending on the level of sensor integration. The rationale for
using the two sensor types is that GNSS receivers provide low-frequency information while
the IMU provides information about higher frequency motion, noting that when stationary,
the IMU measures gravity which can be considered as zero-frequency (DC) information. In
a typical implementation, measurements from the two sensors are combined using optimal
estimation methods, vis-à-vis Kalman filtering, to maintain an estimate of the pose of the
platform frame P as it moves relative to a global frame G.

Where three GNSS receivers with non-collinear antenna are used, the low-frequency
pose of the platform can be fully determined to the precision and bandwidth of the re-
ceivers. Each GNSS receiver provides positional knowledge of its antenna centres to a
precision of approximately 0.05 m at a bandwidth from 0 Hz to 2–5 Hz (with measurement
updates typically provided at 10 Hz). Higher frequency motion is then determined from in-
formation provided by the IMU, which will typically provide acceleration and angular rate
information from 0 Hz to 50 Hz, at update rates of 50 Hz to 100 Hz. Such an arrangement
provides a nice division of labour, with the Kalman filter-based pose estimator serving to
combine the disparate frequency information provided by the two sensor types.

However, where two GNSS receivers are used, only five of the six degrees of freedom
of the platform can be established using the information provided by the GNSS receivers.
The platform’s rotational orientation about the line drawn through the antenna centres is
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not defined. In theory, gravity can be used to resolve this, provided the placement of the
IMU frame does not result in the vector emanating from the sensor origin and directed by
gravity, intersecting the antenna centre line. In practice, however, for a similarly structured
estimator, start-up bias and the conflation of gravity measurement with accelerations due
to platform motion limits the accuracy of pose estimates.

This paper develops and evaluates a method for using three-dimensional LiDAR
measurements to stabilise pose estimates for platforms having two GNSS receivers. We
consider two situations: (i) where the environment around the platform is a priori known,
and (ii) where it is not. LiDAR sensors are often present on robotic platforms as components
of a perception system. Their use for stabilising pose estimates becomes relevant where
three GNSS receivers are impractical or cost-prohibitive.

Pose estimation is clearly ground for fertile research and has been for some time.
Google Scholar identifies no fewer than 4650 publications that contain all of the terms
“GNSS”, “IMU”, and “loosely coupled”. A total of 851 of these were published after
2020; the first was published in 1968 [1]. If the term “pose” is included, 1050 papers
are identified; 279 of these were published after 2020, while the earliest is [2]. Adding
the term “LiDAR” reduces the set to 452, of which 167 have been published since 2020,
with the earliest again dating from 1981 [3]. These, and the many other papers that use
alternative but equivalent terminology, span a variety of approaches and applications, from
terrestrial [4–6], to aeronautical [7–11], space [12–15]. In some instances, the search terms
appear in reference to the technology being used for a specific application, e.g., precision
agriculture [16–19] and construction [20,21]. In others, reference is made to implementation
and algorithms. These are described at various levels of detail, but often with ambiguity.

Methods for stabilising pose estimates with LiDAR measurements exist and generally
fall into two categories. The first are feature-based methods which seek to identify features,
sometimes known as landmarks, in LiDAR point clouds and maintain an estimate of their
location. Features can be lines or planes [22–24], curves [25,26], or corners [27]. Feature-
based methods can also match sequential LiDAR scans, solving for the incremental change
in pose between scans [28–32].

An alternative approach uses model-based methods. These generally compare mea-
surements from a ranging sensor with a model of the environment, searching for a pose
solution that provides an optimal solution.

Ref. [33] propose an airborne solution for aiding a navigation system through the
use of a large-scale terrain model and LiDAR sensors. Similarly, Ref. [34] augment pose
estimates by fitting LiDAR measurements against a known two-dimensional environment
model. Refs. [35,36] show how pose estimates of known objects can be obtained from only
LiDAR scans by finding the pose that is most likely among the set of all possible poses.

Other work has focused on the augmentation of pose when GNSS measurements are
degraded or unavailable, such as loss of real-time kinematic (RTK) corrections. Ref. [37]
develop a solution that uses a known geometric model of the world and that augments
GNSS measurements with a pseudo-measurement of the expected height of the receiver.
Ref. [38] use a conceptually similar approach, but apply it to aerial vehicles.

Work on model-based methods has also focused on building an environment model
simultaneously with localisation within this model. One solution, presented by [39],
develops an algorithm for a LiDAR- and GNSS-aided IMU navigation system for use in
an airborne platform that only maps the terrain when GNSS and IMU measurements are
available and reliable. When the integrity of the GNSS-aided IMU navigation system is
compromised, LiDAR observations are fitted to the generated terrain model through an
ICP-based method. The authors find that the solution is robust and improves the accuracy
of the pose when the GNSS system is in a degraded state.

Ref. [40] present a method that augments a GNSS-aided IMU and odometry navigation
system with a scanning LiDAR sensor. The authors estimate the environment using the
LiDAR scanner as they move through an urban scene, and remove dynamic obstacles by
compressing this model to a ground plane, coloured based on infrared reflectivity from
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LiDAR return intensities. They identify that their novel navigation system is up to an order
of magnitude more accurate than a GNSS-aided IMU and odometry navigation system.

Our rationale for writing this paper is twofold. First, we believe the approach we
propose for the integration of LiDAR measurement into a GNSS-aided IMU solution is
novel. Second, we have repeatedly sought clear descriptions of the algorithms others have
used, only to find missing details or gaps that have frustrated our implementation efforts.
Here, we attempt to give a full and complete description of a loosely coupled GNSS-aided
IMU navigation system in the expectation that it will be useful to others.

2. Experimental Platform

Figure 1 shows the experimental platform considered in this paper. The machine is
called a track-type tractor or bulldozer and has applications in agriculture, construction, and
mining. In all these domains, tracking spatial pose is needed for technology applications
that include production reporting, guidance, and automation.

Figure 1. The Caterpillar D11T bulldozer considered in this paper, showing the sensors installed on
the platform. The platform is equipped with two GNSS receivers, one IMU, and a scanning LiDAR
sensor that faces forward and scans around a horizontal axis. The frames referred to in this paper are
labelled as the LiDAR frame, L, the IMU frame, I, the platform frame, P, and the global frame, G.

Figure 1 shows the coordinate frames in which variables relevant to the development
of the pose estimation system are represented. The global frame is denoted as G. Frame
P describes the pose of the tractor in Frame G by a transformation TP(·, ·). Sensors are
described relative to Frame P: Frame I describes the position and orientation of the IMU;
Frame L describes the position and orientation of a LiDAR; and G1 and G2 are the centres
of the antennas of two GNSS receivers mounted on the tractor cabin.

The pose of the tractor is defined by the state vector,

x =
[
pP ṗP p̈P ΦP ωP ba br

]T . (1)

The 21 state parameters of the state vector are intended to accommodate a constant
acceleration model for translation and a constant rate model for attitude. Here,
pP = [x, y, z]T is the coordinate of the origin of P in G;
ṗP = [ẋ, ẏ, ż]T is the velocity of point pP in G;
p̈P = [ẍ, ÿ, z̈]T is the acceleration of point pP in G;
ΦP = [θ, φ, ψ]T describes the attitude of Frame P in G as roll, pitch and yaw;
ωP =

[
ωx, ωy, ωz

]T describes the rotational velocity of Frame P in G;

ba =
[
bẍ, bÿ, bz̈

]T describes the acceleration bias of the IMU in Frame I;

br =
[
bωx , bωy , bωz

]T
is the rotational rate bias of the IMU in Frame I.

The transformation matrix TP(ΦP, pP) is given by

TP(ΦP, pP) =

[
RP(ΦP) pP

01×3 1

]
, (2)
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where

RP(ΦP) =

c(ψ)c(φ) c(ψ)s(φ)s(θ)− s(ψ)c(θ) c(ψ)s(φ)c(θ) + s(ψ)s(θ)
s(ψ)c(φ) s(ψ)s(φ)s(θ) + c(ψ)c(θ) s(ψ)s(φ)s(θ)− c(ψ)s(θ)
−s(φ) c(φ)s(θ) c(φ)c(θ)

. (3)

Here, c(·) is the cosine function and s(·) is the sine function. Note, TP(·, ·) transforms
points in Frame P into Frame G; equally, it describes the location of Frame P in Frame G.
The top left 3× 3 block of the TP(·, ·) matrix is the rotation matrix which aligns Frame P in
Frame G.

The IMU provides measurements at 50 Hz; the GNSS receivers are RTK-enabled and
provide observations at 10 Hz. The LiDAR is a Velodyne VLP-16 and provides range
measurements from 16 beams, equally spaced across a field of view of 30° with 360° and
rotation at 10 Hz. Other details of the sensors are given in Table 1.

Table 1. Specifications of the LiDAR, IMU, and GNSS sensors used as inputs to the navigation system
of this paper.

Sensors

Velodyne VLP-16 LiDAR Sensor [41]
IMU

GNSS Receivers
Accelerometers

Number of rays: 16 Axes: 3 x uncertainty (1σ): 0.03 m
Range uncertainty (1σ): 0.03 m Data Rate: 50 Hz y uncertainty (1σ): 0.03 m
Horizontal field of view: 360° z uncertainty (1σ): 0.055 m
Vertical field of view: 30° (± 15°) Signals tracked: L1, L2, L5
Horizontal resolution: 0.1°–0.4° Gyroscopes Data rate: 10 Hz
Vertical resolution: 2° Axes: 3 Corrections: RTK
Scan rate: 5 Hz–20 Hz Data Rate: 50 Hz
Points per second: 300,000

3. Pose Estimation Using GNSS, IMU, and LiDAR Measurements

The pose estimator has the structure given in Figure 2. Each block corresponds
to a Kalman filter update. On receipt of a sensor measurement, a filter update occurs
that depends on the type of the measurement (IMU, GNSS, LiDAR) with the structure
designed to accommodate different data rates, including, prospectively, sequences of lost
measurements. The structure takes advantage of the high-frequency IMU measurements,
updated through an indirect Kalman filter, and the low-frequency GNSS and LiDAR
measurements, which are updated through Kalman and Information filters, respectively.
The structure depicted in Figure 2 is generally known as an indirect, or error-state, Kalman
filter. It is the common method for implementing IMU-aided navigation solutions [42–50].
The formulation below assumes that IMU data arrive at a higher rate than either GNSS or
LiDAR measurements.

Algorithm 1 gives the algorithm based on updates from the IMU, GNSS, and LiDAR
measurements.
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Figure 2. A diagrammatic representation of the proposed loosely coupled LiDAR- and GNSS-aided
navigation system.

Algorithm 1: LiDAR- and GNSS aided IMU navigation solution algorithm.

Input: Initial state estimate, x̂0|0, and state estimate covariance, σ2
x̂,0|0.

Initialise filter:
k = 0.
while Receiving measurements do

k = k + 1
∆tk = tk − tk−1
switch Measurement type do

case IMU measurement do[
x̂k|k, σ2

x̂,k|k

]
= IMUUpdate(x̂k−1|k−1, σ2

x̂,k−1|k−1, zI,k, σ2
z,I , ∆tk).

case GNSS measurement do[
x̂k|k, σ2

x̂,k|k

]
= GNSSUpdate(x̂k−1|k−1, σ2

x̂,k−1|k−1, zG,k, σ2
z,G, ∆tk).

case LiDAR measurement do[
x̂k|k, σ2

x̂,k|k

]
= LiDARUpdate(x̂k−1|k−1, σ2

x̂,k−1|k−1, zL,k, σ2
z,L, ∆tk).

4. Process Model

The three filter updates of Figure 2 share the same process model which is assumed
linear having the discrete-time form

xk+1 = F(tk+1 − tk) · xk +

[∫ tk+1

tk

F(tk+1 − τ)dβ(τ)

]
. (4)

The state transition model F(∆tk+1) = F(tk+1 − tk) predicts the platform’s state vector
assuming a constant acceleration for translations and a constant rate for rotations. The state
transition model also predicts the IMU acceleration and rotational rate biases through use
of constants determined from experimental observations (see [51]). The 21× 21 matrix F(·)
has the form
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F(∆tk) =



I3×3 ∆tk · I3×3
∆t2

k
2
· I3×3 03×3 03×3 03×3 03×3

03×3 I3×3 ∆tk · I3×3 03×3 03×3 03×3 03×3
03×3 03×3 I3×3 03×3 03×3 03×3 03×3
03×3 03×3 03×3 I3×3 ∆tk · I3×3 03×3 03×3
03×3 03×3 03×3 03×3 I3×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3
Tbẍ,ÿ,z̈

Tbẍ,ÿ,z̈ + ∆tk
· I3×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3
Tbωx ,ωy ,ωz

Tbωx ,ωy ,ωz
+ ∆tk

· I3×3


. (5)

Here, Tbẍ,ÿ,z̈ describes the empirically determined accelerometer bias parameters, and
Tbωx ,ωy ,ωz

the empirically determined gyroscope bias parameters. Observe that

lim
∆tk→0

F(∆t) = I21×21. (6)

The second term of the right-hand side of Equation (4) describes the process noise
which accounts for modelling approximations and model integration errors. We define

w(tk) =

[∫ tk+1

tk

F(tk+1 − τ)dβ(τ)

]
, (7)

where w(·) is a white Gaussian discrete-time process and β(·) is Brownian motion with
diffusion σ2

Q(t) such that for consecutive measurement times tk and tk+1,

E[β(tk)− β(tk+1)] = 0, (8)

E
[
{β(tk)− β(tk+1)}{β(tk)− β(tk+1)}T

]
=
∫ tk+1

tk

σ2
Q(t)dt. (9)

If the sample period is assumed to be small compared to the auto-correlation times of
the process model modes,

σ2
Q,k+1 = E

[
w(tk)w

T(tk)
]
≈ σ2

Q(tk) · [tk+1 − tk]. (10)

Observe that if the diffusion σ2
Q(t) is time-invariant, the process noise covariance, σ2,

increases linearly from the time since the last measurement. As this time increases, the
process noise increases, resulting in the process model being weighted less in the Kalman
filter update and measurements being weighted more.

5. Pose State Updates from IMU Measurements
5.1. IMU Measurement Model

The IMU is installed on the platform frame close to the platform’s centre of gravity
and is defined by Frame I—see Figure 3. IMU measurements are made in an inertial
frame instantaneously aligned with Frame I. The IMU measurement model follows from
Equation (3) and takes the form

zI = hI(x) + vz,I , (11)

where
zI =

[
aI ωI

]T
=
[
ẍI ÿI z̈I θ̇I φ̇I ψ̇I

]T (12)

and measurement noise vz,I is assumed to be white and Gaussian with covariance σ2
z,I—see

Table 2.
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Table 2. The diagonal elements of the IMU measurement covariance matrix. The cross-terms are
several orders of magnitude smaller than the diagonal element. These values were determined
experimentally from statistical analysis of a stationary data segment of 930 s.

IMU Covariance, σ2
z,I

ẍI

[
m
s2

]2
ÿI

[
m
s2

]2
z̈I

[
m
s2

]2
θ̇I

[
°
s

]2
φ̇I

[
°
s

]2
ψ̇I

[
°
s

]2

7.8× 10−5 3.9× 10−5 4.0× 10−4 7.6× 10−3 7.6× 10−3 1.4× 10−2

Figure 3. IMU Frame, I, relative to the platform Frame, P, and the global frame, G.

To determine the function hI(·), note that the position of the origin of the IMU in the
global frame is given by [

pI(t)
1

]
=

[
RP(t) pP(t)
01×3 1

][
pi
1

]
, (13)

where pi is the (fixed and known) position of the origin of Frame I in Frame P. The velocity
of this point at time t is[

ṗI(t)
0

]
=

[
ṘP(t) ṗP(t)
01×3 0

][
pi
1

]
=

[
ΩP(t) vP(t)
01×3 1

][
pI(t)

1

]
, (14)

where ΩP(t) is the anti-symmetric matrix representing the angular velocity of Frame P in
Frame G. The matrix ΩP(t) is

ΩP = sk(ωP) =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

. (15)
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The acceleration of the origin of Frame I in Frame G is found by differentiating
Equation (14), i.e., [

p̈I
0

]
=

[
R̈P(t) p̈P(t)
01×3 0

][
pi
1

]
. (16)

Noting that if a constant angular rate is assumed (i.e., Ω̇P = 0),

R̈P(t) = Ω̇P(t) · RP(t) + ΩP(t) · ṘP(t) = Ω̇P(t) · RP(t) + Ω2
P(t) · RP(t) = Ω2

P(t) · RP(t), (17)

which gives, [
p̈I(t)

0

]
=

[
Ω2

P(t) · RP(t) p̈P(t)
01×3 0

][
pi(t)

1

]
. (18)

The measurement equations follow from Equation (18) and can be expressed in terms
of the pose state vector:

zI = hI(x) =
[

aI
ωI

]
= RT

I · RT
P(ΦP) ·

[
Ω2

P(ωP) · RP(ΦP) · pi + p̈P + g
ωP

]
+

[
ba
br

]
. (19)

Note that the rotation matrix RT
I · RT

P(·) serves to align the acceleration and rate vectors
to Frame I in which measurements are made. The vector br is the bias of rate gyro, ba is the
accelerometer bias, and g denotes gravitational acceleration.

The Jacobian of h(·) can be found analytically from

∇hI(x) =

03×3 03×3 I3×3 M1 M2 I3×3 03×3

03×3 03×3 03×3 RT
I ·

∂RP(ΦP)

∂ΦP
·ωP RT

I · RT
P(ΦP) 03×3 I3×3

, (20)

where

M1 = RT
I ·

∂RT
P(ΦP)

∂ΦP
·
(

Ω2
P(ωP) · RP(ΦP) · pi + p̈P + g

)
+ RT

I · RT
P(ΦP) ·Ω2

P(ωP) ·
∂RP(ΦP)

∂ΦP
· pi,

(21)

M2 = RT
I · RT

P(ΦP) ·
∂Ω2

P(ωP)

∂ωP
· RP(ΦP) · pi. (22)

5.2. IMU Updates

The approach to updating measurements from the IMU involves estimating the error
on the state estimate, δx̂′k|k, at time tk given measurements to time tk, and combining this
with the propagated state estimate, x̂′k|k, from the most recent GNSS or LiDAR update. The
state estimate update, x̂k|k, is then computed as the sum,

x̂k|k = x̂′k|k + δx̂′k|k. (23)

The IMU filter is reset after each GNSS or LiDAR update: state estimate and state
estimate covariance are set from the error-corrected state estimate and error-corrected state
estimate covariance,

x̂′k−1|k−1 = x̂k−1|k−1, (24)

σ2
x̂′,k−1|k−1 = σ2

x̂,k−1|k−1, (25)
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and the error state estimate and error state estimate covariance are initialised to zero:

δx̂′k−1|k−1 = 021×1, (26)

σ2
δx̂′ ,k−1|k−1 = 021×21. (27)

On receipt of an IMU measurement, the calculation of δx̂k|k starts with the prediction
of the state estimate,

x̂′k|k−1 = F(∆tk) · x̂′k−1|k−1, (28)

the error state,
δx̂′k|k−1 = F(∆tk) · δx̂′k−1|k−1, (29)

state covariance,
σ2

x̂′ ,k|k−1 = F(∆tk) · σ2
x̂′ ,k−1|k−1 · F(∆tk)

T . (30)

and error state covariance,

σ2
δx̂′ ,k|k−1 = F(∆tk) · σ2

δx̂′ ,k−1|k−1 · F(∆tk)
T + σ2

Q,k. (31)

The innovation is computed from

νI,k = zI,k −
(

hI

(
x̂′k|k−1

)
+∇hI

(
x̂′k|k−1

)
· δx̂′k|k−1

)
= zI,k −

(
ẑI,x̂′k|k−1

+ ẑI,δx̂′k|k−1

)
, (32)

and the innovation covariance, σ2
ν,k, and Kalman gain, WI,k, are found from

σ2
ν,I,k = ∇hI

(
x̂′k|k−1

)
· σ2

δx̂′ ,k|k−1 · ∇hI

(
x̂′k|k−1

)T
+ σ2

z,I , (33)

WI,k = σ2
δx̂′ ,k|k−1 · ∇hI

(
x̂′k|k−1

)T
·
(

σ2
ν,I,k

)−1
. (34)

The corrected error state and the corrected error state covariance are computed from

δx̂′k|k = δx̂′k|k−1 + WI,k · νI,k, (35)

σ2
δx̂′ ,k|k = σ2

δx̂′ ,k|k−1 −WI,k · σ2
ν,I,k ·W

T
I,k. (36)

The predicted but uncorrected state estimate, x̂k|k−1, and state estimate covariance,
σ2

x̂,k|k−1, are used in the next iteration of the filter,

x̂′k|k = x̂′k|k−1, (37)

σ2
x̂′ ,k|k = σ2

x̂′ ,k|k−1. (38)

The error-corrected state estimate, x̂k|k, which incorporates the newest IMU observa-
tion, is computed through the addition with the error state estimate,

x̂k|k = x̂′k|k + δx̂′k|k, (39)

σ2
x̂,k|k = σ2

x̂′ ,k|k + σ2
δx̂′ ,k|k. (40)

The indirect extended Kalman filter (IEKF) algorithm for IMU updates is detailed in
Algorithm 2.
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Algorithm 2: IMUUpdate - An Indirect Extended Kalman Filter (IEKF) algorithm
for state estimation using IMU observations.

Function
[

x̂k|k, σ2
x̂,k|k

]
= IMUUpdate(x̂k−1|k−1, σ2

x̂,k−1|k−1, zI,k, σ2
z,I , ∆tk):

if the previous measurement was from the GNSS or LiDAR then
Initialise the filter with the following static variables:

x̂′k−1|k−1 = x̂k−1|k−1,

σ2
x̂′ ,k−1|k−1 = σ2

x̂,k−1|k−1,

δx̂′k−1|k−1 = 021×1,

σ2
δx̂′ ,k−1|k−1 = 021×21.

Predict the state estimate: x̂′k|k−1 = F(∆tk) · x̂′k−1|k−1.
Predict the error state estimate: δx̂′k|k−1 = F(∆tk) · δx̂′k−1|k−1.

Predict the state estimate covariance: σ2
x̂′ ,k|k−1 = F(∆tk) · σ2

x̂′ ,k−1|k−1 · F(∆tk)
T .

Predict the error state covariance:
σ2

δx̂′ ,k|k−1 = F(∆tk) · σ2
δx̂′ ,k−1|k−1 · F(∆tk)

T + σ2
Q,k(∆tk).

Compute the innovation: νI,k = zI,k −
(

hI

(
x̂′k|k−1

)
+∇hI

(
x̂′k|k−1

)
· δx̂′k|k−1

)
.

Compute innovation covariance:

σ2
ν,I,k = ∇hI

(
x̂′k|k−1

)
· σ2

δx̂′ ,k|k−1 · ∇hI

(
x̂′k|k−1

)T
+ σ2

z,I .

Compute the Kalman gain: WI,k = σ2
δx̂′ ,k|k−1 · ∇hI

(
x̂′k|k−1

)T
·
(

σ2
ν,I,k

)−1
.

Update the error state estimate: δx̂′k|k = δx̂′k|k−1 + WI,k · νI,k.
Update the error state estimate covariance:

σ2
δx̂′ ,k|k = σ2

δx̂′ ,k|k−1 −WI,k · σ2
ν,I,k ·W

T
I,k.

Update the state estimate covariance: σ2
x̂′ ,k|k = σ2

x̂′ ,k|k + σ2
δx̂′ ,k|k.

The predicted but uncorrected state estimate and state estimate covariance are
used in the next iteration of the filter:

x̂′k|k = x̂′k|k−1,

σ2
x̂′ ,k|k = σ2

x̂′ ,k|k−1.

Compute the error-corrected state estimate: x̂k|k = x̂′k|k + δx̂′k|k.

Compute the error-corrected state covariance: σ2
x̂,k|k = σ2

x̂′ ,k|k + σ2
δx̂′ ,k|k.

return x̂k|k and σ2
x̂,k|k.

6. Pose State Updates from GNSS Measurements
6.1. GNSS Measurement Model

The GNSS measurement model gives the locations of the GNSS receivers in the global
frame and takes the form

zG = hG(x) + vz,G, (41)

Here, hG(·) gives the locations of the GNSS receivers as a function of the state,

zG = hG(x) =
[

RP(ΦP) · pG1 + pP
RP(ΦP) · pG2 + pP

]
, (42)

where pG1 and pG2 are the coordinates of the GNSS antennas in the platform frame (see
Figure 4). The measurement vector zG is the stacked vectors of the antennas’ Cartesian
coordinates in Frame G. Equation (42) can be readily extended if a third GNSS receiver
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were mounted to the platform. The measurement noise, vz,G, is assumed to be white and
Gaussian with covariance σ2

z,G (see Table 3).

Table 3. The diagonal elements of the GNSS measurement covariance matrix. The off-diagonal terms
are several orders of magnitude smaller than the diagonal elements. These values were determined
from statistical analysis of a 930 s measurement sequence where the platform was stationary.

GNSS Covariance, σ2
z,G

xG[m]2 yG[m]2 zG[m]2

1.9× 10−6 2.4× 10−6 2.2× 10−5

The GNSS measurement Jacobian is given by

∇hG(x) =

I3×3 03×3 03×3
∂RT

P(ΦP)

∂ΦP
· pG1 03×3 03×3 03×3

I3×3 03×3 03×3
∂RT

P(ΦP)

∂ΦP
· pG2 03×3 03×3 03×3

. (43)

Figure 4. The locations of GNSS 1, pG2, from the platform frame, P.

6.2. GNSS Updates

The estimation of the error-corrected state estimate, x̂k|k, begins with a prediction of
state using a state transition model, F(∆tk), and the previous error-corrected state estimate,
x̂k−1|k−1,

x̂k|k−1 = F(∆tk) ·
(

x̂k−1|k−1

)
, (44)

and the prediction of the state covariance,

σ2
x̂,k|k−1 = F(∆tk) · σ2

x̂,k−1|k−1 · F(∆tk)
T + σ2

Q,k. (45)
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The GNSS measurement innovation and innovation covariance are computed from

νG,k = zG,k − hG

(
x̂k|k−1

)
= zG,k − ẑG,k, (46)

σ2
ν,G,k = ∇hG

(
x̂k|k−1

)
· σ2

x̂,k|k−1 · ∇hG

(
x̂k|k−1

)T
+ σ2

z,G, (47)

where zG,k is the GNSS measurement.
The Kalman gain, WG,k, is then computed using

WG,k = σ2
x̂,k|k−1 · ∇hG

(
x̂k|k−1

)T
·
(

σ2
ν,G,k

)−1
. (48)

The error-corrected state estimate, x̂k|k, and error-corrected state estimate covariance,
σ2

x̂,k|k, are computed using

x̂k|k = x̂k|k−1 + WG,k · νG,k, (49)

σ2
x̂,k|k = σ2

x̂,k|k−1 −WG,k · σ2
ν,G,k ·W

T
G,k. (50)

The GNSS update is given as Algorithm 3.

Algorithm 3: GNSSUpdate—An extended Kalman filter (EKF) algorithm for
state estimation using GNSS observations.

Function
[

x̂k|k, σ2
x̂,k|k

]
= GNSSUpdate(x̂k−1|k−1, σ2

x̂,k−1|k−1, zG,k, σ2
z,G, ∆tk):

Predict the state estimate: x̂k|k−1 = F(∆tk) · x̂k−1|k−1.
Predict the state estimate covariance:

σ2
x̂,k|k−1 = F(∆tk) · σ2

x̂,k−1|k−1 · F(∆tk)
T + σ2

Q,k(∆tk).

Compute the innovation: νG,k = zG,k − hG

(
x̂k|k−1

)
= zG,k − ẑG,k.

Compute innovation covariance:

σ2
ν,G,k = ∇hG

(
x̂k|k−1

)
· σ2

x̂,k|k−1 · ∇hG

(
x̂k|k−1

)T
+ σ2

z,G.

Compute the Kalman gain: WG,k = σ2
x̂,k|k−1 · ∇hG

(
x̂k|k−1

)T
·
(

σ2
ν,G,k

)−1
.

Update the error-corrected state estimate: x̂k|k = x̂k|k−1 + WG,k · νG,k.
Update the error-corrected state estimate covariance:

σ2
x̂,k|k = σ2

x̂,k|k−1 −WG,k · σ2
ν,G,k ·W

T
G,k.

return x̂k|k and σ2
x̂,k|k.

7. Pose State Updates Using LiDAR Measurements
7.1. LiDAR Measurement Model in a Known Environment

The LiDAR measurement model developed in this section computes the expected
range measurements based on the state vector and a triangulated model of the environment,
denoted X. The LiDAR measurement model ray-casts from the LiDAR to the environment
model X to determine the expected measurement ranges from the LiDAR sensor. In this
section, the terrain model X is assumed known; in Section 9, the approach is generalised to
unknown terrain.

The LiDAR measurement function is denoted

zL = hL(x, X) + vz,L, (51)

where the LiDAR measurement vector, zL is a set of ranges corresponding to each ray from
the LiDAR sensor. For n ranges,

zL =
[
z0 z1 · · · zn

]T . (52)
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The measurement noise vz,L is assumed to be white and Gaussian with covariance
σ2

z,L—see Section 7.2.
The LiDAR measurement function, hL(·, ·), determines the expected sensor observa-

tions by ray-casting against a known terrain model given a pose state estimate, X (see
Figure 5). Each ray emanates from a point s0 in Frame L known as the sensor origin.
The direction of each ray or beam of the LiDAR can be defined by a second point sj,
j = 1 . . . n with ||sj − s0|| = 1. The location of these points in Frame G can be found with
transformations

q0 = TP(ΦP, pP) · TL · s0, (53)

qj = TP(ΦP, pP) · TL · sj. (54)

Here, TL describes the location of Frame L in Frame P. This transform is assumed
known. See [52] for approaches to finding it.

Each ray is parametrised by a range rj and can be described by

Γ
(
rj
)
= q0 + rj ·

(
qj − q0

)
. (55)

To find rj, it is necessary to first determine the triangle in X which it intersects. Denote
the vertices of this triangle, ∆j =

(
αj, β j, γj

)
. Then,

rj =
nj ·

(
αj − q0

)
nj ·

(
q0 − qj

) , (56)

where
nj =

(
β j − αj

)
×
(
γj − αj

)
. (57)

The ray-triangle intersection is depicted in Figure 6.
The measurement model for n ray intersections can be constructed from

zL = [r1, r2, . . . , rn]
T , (58)

and the LiDAR measurement Jacobian from

∇hL(x, X) =



∂r1

∂pP
01×6

∂r1

∂ΦP
01×9

∂r2

∂pP
01×6

∂r2

∂ΦP
01×9

...
...

...
...

∂rn

∂pP
01×6

∂rn

∂ΦP
01×9


. (59)

Expected Range

Measurement,

Observed Range

Measurement,

Measurement RayTerrain Model

LiDAR Sensor

Figure 5. The LiDAR measurement model provides the measurement that the LiDAR sensor is
expected to observe given the current state vector. The difference between the expected and observed
measurements is termed the innovation.
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Triangle
normal, 

Global
frame, 

Platform
frame, 

Platform to LiDAR
transform, 

LiDAR sensor

Ray
origin, 

Global to Platform
transform, 

Ray
direction,

Triangle
intercept, 

Figure 6. The measurement model for the LiDAR calculates the expected range measurement as the
distance from the ray origin to the intercepted triangle of the model.

7.2. LiDAR Measurement Noise Model

Observations from the LiDAR sensor present in this application are transformed
from the LiDAR frame, L, into the global frame, G. However, each of the transforms
are required to achieve this contain uncertainty. For sensors such as the GNSS receivers
and IMU, the uncertainty introduced by these transforms is small, as observations are
obtained at the sensor. However, for perception sensors such as LiDAR, which perceive
the environment at potentially significant ranges, small transform errors can lead to quite
significant observation errors. For example, a registration error of 1° at 50 m results in
∼0.7 m of endpoint error.

The uncertainty of frame locations and measurements may be propagated from their
origin to the point of measurement to determine the effective uncertainty. We consider four
sources of uncertainty which we propagate from their origin to the LiDAR ray endpoint
(shown in Figure 7). The sources of uncertainty considered are (i) the uncertainty in
the global frame location, σ2

G; (ii) the estimated location of the platform relative to the
global frame, σ2

P; (iii) the uncertainty in the LiDAR registration, σ2
L; and (iv) the LiDAR’s

measurement uncertainty, σ2
z,L. The Jacobian of each of the relevant transforms is used to

transform the uncertainty through the system.
The uncertainty from each of these sources propagates through to the endpoint of the

ray as follows:

σ2
P,k = ∇TP(ΦP, pP) · σ2

G · ∇TP(ΦP, pP)
T + σ2

P, (60)

σ2
L,k = ∇TL · σ2

P,k · ∇TT
L + σ2

L, (61)

σ2
z,L = ∇TR · σ2

L,k · ∇TT
R + σ2

z,L. (62)

Here, the notation∇TL is used to denote the Jacobian of the homogeneous transform—
in this case, the transform from the platform frame to the LiDAR frame.

Figure 7 provides a visual representation of the propagation of uncertainty from the
global frame through to the endpoint of the ray. The covariances shown in Figure 7 have
been exaggerated for visual clarity.
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Figure 7. The location of each of the frames of the platform are uncertain to varying degrees. This
uncertainty is propagated through the transforms of the system, originating at the global frame
and ending at the ray endpoint. The propagated uncertainty is the effective uncertainty of that
ray’s endpoint.

7.3. LiDAR Updates

The number of LiDAR measurements typically exceeds the dimension of the state
vector so it is computationally more efficient to use the information form of the extended
Kalman filter to perform the pose update from LiDAR measurements [53].

The current state and covariance are transformed in the information space

Yk−1|k−1 =
(

σ2
x̂,k−1|k−1

)−1
, (63)

ŷk−1|k−1 = Yk−1|k−1 · x̂k−1|k−1. (64)

The Fisher information matrix (FIM) and Fisher information vector (FIV) are predicted
to the current time step using

Yk|k−1 =

[
F(∆tk) ·

(
Yk−1|k−1

)−1
· F(∆tk)

T + σ2
Q,k

]−1
, (65)

ŷk|k−1 = Yk|k−1 · F(∆tk) · x̂k−1|k−1. (66)

The predicted state estimate is obtained from

x̂k|k−1 =
(

Yk−1|k−1

)−1
· ŷk|k−1 (67)

and the innovation is obtained using the LiDAR observation function, the current predicted
state estimate, and the terrain model, X:

νL,k = zL,k − hL

(
x̂k|k−1, X

)
. (68)

The predicted FIV and FIM are corrected through use of the innovation and the LiDAR
range measurements using

ŷk|k = ŷk|k−1 +∇hL

(
x̂k|k−1, X

)T
·
(

σ2
z,L

)−1
·
[
νL,k +∇hL

(
x̂k|k−1, X

)
· x̂k|k−1

]
, (69)

Yk|k = Yk|k−1 +∇hL

(
x̂k|k−1, X

)T
·
(

σ2
z,L

)−1
· ∇hL

(
x̂k|k−1, X

)
. (70)
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The FIM and FIV are now transformed back into the state space,

x̂k|k =
(

Yk|k

)−1
· ŷk|k, (71)

σ2
x̂,k|k =

(
Yk|k

)−1
. (72)

Algorithm 4 shows the LiDAR pose estimation extended information filter (EIF)
algorithmically.

Algorithm 4: LiDARUpdate—An extended information filter (EIF) algorithm
for state estimation using LiDAR observations in a known environment.

Function
[

x̂k|k, σ2
x̂,k|k

]
= LiDARUpdate(x̂k−1|k−1, σ2

x̂,k−1|k−1, zL,k, σ2
z,L, ∆tk):

Transform the state estimate and state estimate covariance into the Information
space:

Yk−1|k−1 =
(

σ2
x̂,k−1|k−1

)−1
,

ŷk−1|k−1 = Yk−1|k−1 · x̂k−1|k−1.

Predict the Fisher information matrix:

Yk|k−1 =

[
F(∆tk) ·

(
Yk−1|k−1

)−1
· F(∆tt)

T + σ2
Q,k(∆tt)

]−1
.

Predict the Fisher information vector: ŷk|k−1 = Yk|k−1 · F(∆tt) · x̂k−1|k−1.

Compute the predicted state estimate: x̂k|k−1 =
(

Yk−1|k−1

)−1
· ŷk|k−1.

if in an unknown environment then
Extract the terrain state elements, xt, from the state vector and triangulate
them: X = triangluateGrid(xt)

Compute the innovation: νL,k = zL,k − hL

(
x̂k|k−1, X

)
.

Compute the uncertainty of the LiDAR range measurements using Section 7.2.
Correct the predictions:

ŷk|k = ŷk|k−1 +∇hL

(
x̂k|k−1, X

)T
·
(

σ2
z,L

)−1
·
[
νL,k +∇hL

(
x̂k|k−1, X

)
· x̂k|k−1

]
,

Yk|k = Yk|k−1 +∇hL

(
x̂k|k−1, X

)T
·
(

σ2
z,L

)−1
· ∇hL

(
x̂k|k−1, X

)
.

Transform the updated Fisher Information Vector and Fisher Information
Matrix back into the state space:

x̂k|k =
(

Yk|k

)−1
· ŷk|k,

σ2
x̂,k|k =

(
Yk|k

)−1
.

return x̂k|k and σ2
x̂,k|k.
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8. Evaluation

It is necessary to use indirect methods for the evaluation of the pose estimator as there
no is ground truth pose trajectory. The approach chosen is to survey the environment
to obtain a ground truth model and compare LiDAR measurements with the predicted
ranges from ray-casting against this scanned ground truth model. These differences are
representative of the error in the pose. The survey to obtain the ground truth model was
created with a Faro Focus3D terrestrial LiDAR scanner [54]. This instrument claims a one
standard deviation range precision of 0.0011 m. Figure 8 shows the environment model
obtained by scanning.

The scene used for evaluation is shown in Figure 9. It comprises a generally flat terrain
with piled dirt, forming mounds. The bulldozer was manually moved around in this
environment following the path shown in Figure 8. During the execution of this motion, at
various points, the platform was pitched and rolled using the bulldozer blade.

Figure 8. The environment in which the bulldozer platform manoeuvred is shown. The trajectory
of the platform is shown as a green line. The platform exercised its rotational degrees of freedom
through the use of the blade during this trajectory.

Figure 9. A photo of the environment in which the platform traversed is shown. Here, the bulldozer
platform is visible in the centre of the image. The mound visible to the left of Figure 8 is visible to the
right of this image.

Figure 10 shows the point-to-model errors for the GNSS-aided IMU solution and the
LiDAR- and GNSS-aided solution in a known environment. A ray having the length of
the measurement is cast along the corresponding LiDAR beam at the estimated pose. The
distance from the end point of the ray to the nearest point of the model is determined as
the point-to-model error. The smaller the point-to-model error, the closer the real pose to
the estimated pose. For perfect pose, a perfect model, and zero measurement error, the
point-to-model error is zero.
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The distribution of point-to-model errors given in Figure 10 evidences that the LiDAR-
and GNSS-aided IMU solution is more accurate than the GNSS aiding. The mean point-to-
model error is reduced from 0.25 m to 0.06 m. Significantly, the highest number of point-to-
model errors for the LiDAR- and GNSS-aided solution corresponds to zero error. This is
not unexpected: the positioning of the GNSS antennas provides information that supports
good spatial positioning along with roll and yaw estimation. However, no information is
available from GNSS measurements about the orientation of the axis that passes through
the two antenna centres. This rotation heavily contributes to the pitch of the platform. The
provision of measurements of the forward-facing 3D LiDAR provides information that
stabilises the pitch estimate, this accounting for the improved accuracy. The mean value for
point-to-model error for the GNSS-aided solution is prospectively due to start-up bias on
the centre. It is noted that the GNSS-aided solution has a broader distribution of error.

Figure 10. The point-to-model error distributions obtained by comparing the LiDAR endpoints
with the ground truth terrain model using the GNSS-aided IMU and LiDAR- and GNSS-aided IMU
navigation solutions.

The time estimates for the six degrees of freedom of the platform’s pose are shown
in Figure 11. Significantly both estimators give similar results for x, y, z, and yaw. Most
of the difference is in estimates for the pitch and roll of the platform. The bias in the pitch
estimate for the GNSS-aided solution is attributed to start-up bias in the IMU sensor, which
the estimator has been unable to account for; it is present at both the start and end of the
motion sequence when the platform is stationary.

The results in this paper were produced on a computer running a Linux-based op-
erating system (Intel Xeon W-2125 CPU, 32 GB of memory). The GNSS-aided IMU filter
could update up to ∼10.000 Hz, much faster than the measurement rate. The LiDAR-
and GNSS-aided IMU filter required more computing per time step and was capable of
∼500 Hz.
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Figure 11. A comparison of the results from the GNSS-aided IMU and the LiDAR- and GNSS-aided
IMU in a known environment navigation solutions.

9. LiDAR Measurement Model in an Unknown Environment

The capability to estimate pose when the environment is known helps to establish the
potential performance of the LiDAR- and GNSS-aiding estimator, but is of limited practical
usefulness. Most environments of interest in which this platform operates have unknown
geometry. The estimator is extended to achieve the benefits of pitch stabilisation provided
by the LiDAR measurement by concurrently estimating the pose and the local terrain.

For this purpose, the terrain is modelled as a height grid that divides the (x, y) plane
into a regular grid. Each grid element, known as a cell, is assigned a height. The points
defined by each cell in the height grid can be triangulated to develop a representation of
the terrain as a surface. A representation of the triangulated height grid with states h0,0 to
h3,3 is shown in Figure 12.
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Figure 12. The terrain estimate is represented by a triangulated height grid structure. Each cell height
is a state which we estimate in the filter.

Each of the o · p = q cell heights in the grid can be considered additional states for
which estimates are sought. These states, collectively denoted xt, augment the state vector
defined by Equation (1), shown here as xP. Here, xt takes the form

xt =
[
h0,0, · · · hi,j, · · · , hn,m

]T . (73)

The subscript t indicates terrain. The additional terrain state estimates are appended
to the state vector as follows:

x =

[
xp
xt

]
. (74)

As the terrain model is now part of the state vector, the LiDAR observation function is
of the form

zL = hL(x) + vz,L. (75)

The measurement function used to estimate the terrain and pose is identical to that of
the previous section. However, expected range measurements are now determined through
ray-casting onto the triangulated height grid model constructed from the xt vector, not a
provided static model. The z-value or height of the vertices of each triangle of the grid, αj,
β j and γj, are now defined by the elements of xt. The measurement Jacobian for the terrain
states is determined analytically from the partial derivative of the LiDAR range measurement
with respect to the z-value of the points of the intercepted triangle (αj, β j and γj).

Figure 13 shows that the concurrent terrain and pose estimation system performs
slightly worse than the LiDAR- and GNSS-aided IMU solution and significantly better than
the GNSS-aided IMU solution. The mean point-to-model error for the concurrent terrain
and pose estimation system is 0.14 m. The zero point-to-model error bin is the largest bin,
with the error distribution extending to higher point-to-model error values.

Figure 14 shows the environment model generated by the concurrent terrain and pose
estimation system. The terrain model is coloured based on the difference between the
estimated terrain and the surveyed ground truth model. The terrain estimate shows close
agreement with the truth model: generally, state errors are less than 0.1 m but extend out
to 0.25 m. The terrain estimate has an RMS error of 0.126 m, which was achieved using a
1 m height grid terrain representation. Generally, areas of large error are present in high
gradient locations of the terrain model. These can be difficult to capture using a regular
grid terrain representation.
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Figure 13. The point-to-model error distributions obtained by comparing the LiDAR endpoints with
the ground truth terrain model from the three navigation solutions presented in this paper.

Figure 14. The error of the triangulated state mesh constructed whilst localising the platform. Here,
the error of the terrain model is generally less than 0.05 m; however, there are some regions of larger
error. The terrain estimates pictured here are fit for the purpose of terrain mapping in the use case
this paper targets.

The estimates of the six degrees of freedom of the platform’s pose are shown in
Figure 15. The solution generated without a priori knowledge of this environment shows
some deviation in both roll and pitch when compared to that obtained using a known
environment. The forward-looking orientation of the LiDAR sensor clearly stabilises the
pitch estimate; the roll estimate is similar to the GNSS-aided IMU solution. A wider
three-dimensional scan is expected to yield better stabilisation of roll. Equally, better roll
estimates could be achieved by increasing the space between the GNSS antennas. The yaw,
x, y, and z degrees of freedom are similar to those estimated when the environment is
known. Overall, the results demonstrate the effectiveness of the approach.

The concurrent terrain and pose estimation filter, again, required more computing per
timestep. It was demonstrated to run at ∼50 Hz on the target hardware (see Section 8).
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Figure 15. A comparison of the results from the LiDAR- and GNSS-aided IMU navigation solution
both with and without an a priori environment model.

10. Conclusions

The main result from this work is to show how LiDAR can be used to stabilise two-
antenna GNSS-aided IMU pose estimators in environments with known and unknown
geometry. The formulation is structured to accommodate multi-rate and non-synchronous
measurements. It enables continuity through short-term periods of lost measurements from
one of the sensors. Lost measurements are a characteristic observed on some brands of
RTK-GNSS receivers, and the solution described in this paper adapts well to this situation.

We have not explored the possibility of using LiDAR stabilisation in GNSS-denied envi-
ronments; however, the approach described here could be readily adapted to such situations.

In the paper introduction, we identified that LiDAR- and GNSS-aided IMU solutions
can be effective when three-dimensional LiDAR measurements are available, but that
three GNSS receivers are impractical or cost-prohibitive. Our recommendation, based on
experience, is that if three receivers are possible, they should be used, particularly if an
accurate pose solution to high frequencies is required.
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The following abbreviations are used in this manuscript:

DC Direct current, referring to the zero-frequency component of a signal.
DOF Degree(s)-of-freedom
EKF Extended Kalman filter
EIF Extended information filter
FIM Fisher information matrix
FIV Fisher information vector
GNSS Global Navigation Satellite System
IEKF Indirect extended Kalman filter
IMU Inertial measurement unit
LiDAR Light detection and ranging
RMS Root mean squared
RTK Real-time Kinematic
TTT Track-type tractor
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