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ABSTRACT Adaptation from de novo mutation can produce so-called soft selective sweeps, where adaptive alleles of independent
mutational origin sweep through the population at the same time. Population genetic theory predicts that such soft sweeps should be
likely if the product of the population size and the mutation rate toward the adaptive allele is sufficiently large, such that multiple
adaptive mutations can establish before one has reached fixation; however, it remains unclear how demographic processes affect the
probability of observing soft sweeps. Here we extend the theory of soft selective sweeps to realistic demographic scenarios that allow
for changes in population size over time. We first show that population bottlenecks can lead to the removal of all but one adaptive
lineage from an initially soft selective sweep. The parameter regime under which such “hardening” of soft selective sweeps is likely is
determined by a simple heuristic condition. We further develop a generalized analytical framework, based on an extension of the
coalescent process, for calculating the probability of soft sweeps under arbitrary demographic scenarios. Two important limits emerge
within this analytical framework: In the limit where population-size fluctuations are fast compared to the duration of the sweep, the
likelihood of soft sweeps is determined by the harmonic mean of the variance effective population size estimated over the duration of
the sweep; in the opposing slow fluctuation limit, the likelihood of soft sweeps is determined by the instantaneous variance effective
population size at the onset of the sweep. We show that as a consequence of this finding the probability of observing soft sweeps
becomes a function of the strength of selection. Specifically, in species with sharply fluctuating population size, strong selection is more
likely to produce soft sweeps than weak selection. Our results highlight the importance of accurate demographic estimates over short
evolutionary timescales for understanding the population genetics of adaptation from de novo mutation.

ADAPTATION can proceed from standing genetic varia-
tion or mutations that are not initially present in the

population. When adaptation requires de novo mutations,
the waiting time until adaptation occurs depends on the
product of the mutation rate toward adaptive alleles and
the population size. In large populations, or when the muta-
tion rate toward adaptive alleles is high, adaptation can be
fast, whereas in small populations the speed of adaptation
will often be limited by the availability of adaptive mutations.

Whether adaption is mutation limited or not has impor-
tant implications for the dynamics of adaptive alleles. In
a mutation-limited scenario, only a single adaptive mutation
typically sweeps through the population and all individuals

in a population sample that carry the adaptive allele coalesce
into a single ancestor with the adaptive mutation (Figure 1A).
This process is referred to as a “hard” selective sweep
(Hermisson and Pennings 2005). Hard selective sweeps
leave characteristic signatures in population genomic data,
such as a reduction in genetic diversity around the adaptive
site (Maynard Smith and Haigh 1974; Kaplan et al. 1989; Kim
and Stephan 2002) and the presence of a single, long haplo-
type (Hudson et al. 1994; Sabeti et al. 2002; Voight et al.
2006). In non-mutation-limited scenarios, by contrast, several
adaptive mutations of independent origin can sweep through
the population at the same time, producing so-called “soft”
selective sweeps (Pennings and Hermisson 2006a). In a soft
sweep, individuals that carry the adaptive allele collapse into
distinct clusters in the genealogy and several haplotypes can
be frequent in the population (Figure 1A). As a result, soft
sweeps leave more subtle signatures in population genomic
data than hard sweeps and are thus more difficult to detect.
For example, diversity is not necessarily reduced in the vicinity
of the adaptive locus in a soft sweep because a larger proportion
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of the ancestral variation present prior to the onset of selection
is preserved (Innan and Kim 2004; Przeworski et al. 2005;
Pennings and Hermisson 2006b; Burke 2012; Peter et al. 2012).

There is mounting evidence that adaptation is not mutation
limited in many species, even when it requires a specific
nucleotide mutation in the genome (Messer and Petrov 2013).
Recent case studies have revealed many examples where, at
the same locus, several adaptive mutations of independent
mutational origin swept through the population at the same
time, producing soft selective sweeps. For instance, soft
sweeps have been observed during the evolution of drug

resistance in HIV (Fischer et al. 2010; Messer and Neher
2012; Pennings et al. 2014) and malaria (Nair et al. 2007),
pesticide and viral resistance in fruit flies (Catania et al. 2004;
Aminetzach et al. 2005; Chung et al. 2007; Karasov et al.
2010; Schmidt et al. 2010), warfarin resistance in rats (Pelz
et al. 2005), and color patterns in beach mice (Hoekstra et al.
2006; Domingues et al. 2012). Even in the global human
population, adaptation has produced soft selective sweeps,
as evidenced by the parallel evolution of lactase persistence
in Eurasia and Africa through recurrent mutations in the lac-
tase enhancer (Bersaglieri et al. 2004; Tishkoff et al. 2007;
Enattah et al. 2008; Jones et al. 2013) and the mutations in
the gene G6PD that evolved independently in response to
malaria (Louicharoen et al. 2009). Some of these sweeps arose
from standing genetic variation while others involved recur-
rent de novo mutation. For the remainder of our study, we
focus on the latter scenario of adaptation arising from de novo
mutation.

The population genetics of adaptation by soft selective
sweeps was first investigated in a series of articles by
Hermisson and Pennings (Hermisson and Pennings 2005;
Pennings and Hermisson 2006a,b). They found that in a hap-
loid population of constant size the key evolutionary parameter
that determines whether adaptation from de novo mutations
is more likely to produce hard or soft sweeps is the population-
scale mutation rate Q = 2NeUA, where Ne is the variance ef-
fective population size in a Wright–Fisher model and UA is the
rate at which the adaptive allele arises per individual per gen-
eration. When Q � 1, adaptation typically involves only a sin-
gle adaptive mutation and produces a hard sweep, whereas
when Q becomes on the order of one or larger, soft sweeps
predominate (Pennings and Hermisson 2006a).

The strong dependence of the likelihood of soft sweeps on
Q can be understood from an analysis of the involved time-
scales. An adaptive mutation with selection coefficient s that
successfully escapes early stochastic loss requires tfix � log
(Nes)/s generations until it eventually fixes in the population
(Hermisson and Pennings 2005; Desai and Fisher 2007). The
expected number of independent adaptive mutations that
arise during this time is on the order of NeUAlog(Nes)/s—
i.e., the product of the population-scale mutation rate toward
the adaptive allele and its fixation time. Yet only an approx-
imate fraction 2s of these mutations escapes early stochastic
loss and successfully establishes in the population (Haldane
1927; Kimura 1962). Thus, the expected number of indepen-
dently originated adaptive mutations that successfully estab-
lish before the first one has reached fixation is of order (2s)
NeUAlog(Nes)/s = Q log(Nes) and, therefore, depends only
logarithmically on the selection coefficient of the adaptive
allele.

Our current understanding of the likelihood of soft sweeps
relies on the assumption of a Wright–Fisher model with fixed
population size, where Q remains constant over time. This
assumption is clearly violated in many species, given that
population sizes often change dramatically throughout the
evolutionary history of a species. To assess what type of

Figure 1 Hard and soft sweeps in populations of constant size and under
recurrent population bottlenecks. (A) Allele-frequency trajectories and
corresponding coalescent genealogies for a hard selective sweep (left)
and a soft selective sweep (right). In the soft sweep scenario, a second
beneficial mutation establishes test generations after the first mutation
but before the beneficial allele has fixed. The distinguishing feature be-
tween a hard and a soft sweep can be seen in the genealogy of a pop-
ulation sample of individuals with the adaptive allele: In a hard sweep, the
sample coalesces into a single ancestor, whereas in a soft sweep the
sample coalesces into multiple ancestors with independently arisen adap-
tive mutations. (B) Illustration of our simplified model used to explore the
hardening phenomenon. Population bottlenecks occur every DT genera-
tions wherein the population size is reduced from N1 to N2 for a single
generation. The average waiting time between independently establish-
ing beneficial mutations is test. From establishment, it takes t2 genera-
tions for the second mutation to reach frequency 1/N2, from where on it
is unlikely to be lost during the bottleneck. The hardening phenomenon is
illustrated by the loss of the dark blue allele during the bottleneck. The
dashed blue line indicates the threshold trajectory required for the muta-
tion to successfully survive the bottleneck.
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sweeps to expect in a realistic population, we must understand
how the likelihood of soft sweeps is affected by demographic
processes.

In many organisms, population sizes can fluctuate con-
tinuously and over timescales that are not necessarily long
compared to those over which adaptation occurs. For example,
many pathogens undergo severe bottlenecks during host-to-
host transmission (Artenstein and Miller 1966; Gerone et al.
1966; Wolfs et al. 1992; Wang et al. 2010), insects can experi-
ence extreme, seasonal boom–bust cycles (Wright et al. 1942;
Ives 1970; Baltensweiler and Fischlin 1988; Nelson et al. 2013),
and even some mammals experience dramatic, cyclical changes
in abundance (Krebs and Myers 1974; Myers 1998). Extensive
work has been devoted to the question of how such fluctuations
affect the fixation probabilities of adaptive mutations (Ewens
1967; Otto and Whitlock 1997; Pollak 2000; Patwa and Wahl
2008; Engen et al. 2009; Parsons et al. 2010; Uecker and
Hermisson 2011; Waxman 2011) but it remains unclear how
they affect the likelihood of observing soft sweeps.

In this study we investigate the effects of demographic
processes on adaptation from de novo mutations. We show
that recurrent population bottlenecks can give rise to a phe-
nomenon that we call the hardening of soft selective sweeps.
Hardening occurs when only one beneficial lineage in an ini-
tially soft sweep persists through a population bottleneck. We
then develop a generalized analytical framework for calculat-
ing the likelihood of soft sweeps under arbitrary demographic
scenarios, based on the coalescent with “killings” process. We
find that when population size varies over time, two important
symmetries of the constant population-size scenario are broken:
first, the probability of observing soft sweeps becomes a function
of the starting time of the sweep and, second, it becomes a func-
tion of the strength of selection. In particular, we show that
strong selection is often more likely to produce soft sweeps than
weak selection when population size fluctuates.

Methods

Forward simulations of adaptation under recurrent
population bottlenecks

We simulated adaptation from de novomutation in a modified
Wright–Fisher model with selection. Each simulation run was
started from a population that was initially monomorphic for
the wild-type allele, a. New adaptive mutations entered the
population by a Poisson process with rate N1UA[1 2 x(t)],
where 1 2 x(t) is the frequency of the wild-type allele. The
population in each generation was produced by multinomial
sampling from the previous generation, with sampling prob-
abilities being proportional to the difference in fitness of each
lineage and the mean population fitness. Population bottlenecks
were simulated through a single-generation downsampling
to size N2 (without selection) every DT generations. We did
not require that the first beneficial mutation arise in the first
generation. Each simulation run started DT generations before
the first bottleneck. All adaptive lineages were tracked in the
population until the adaptive allele had reached fixation. One

thousand simulations were run for each parameter combina-
tion. Empirical probabilities of observing a soft sweep in a given
simulation runwere obtained by calculating the expected prob-
ability that two randomly drawn adaptive lineages are not
identical by decent, based on the population frequencies of
all adaptive lineages in the population at the time of sampling.

Numerical Monte Carlo integration

Analytical predictions for Psoft,2(t, s) and Psoft,10(t, s) in Figure
4 and Figure 5 were obtained by the following procedure: For
the given demographic model, selection coefficient, and start-
ing time of the sweep, we first calculated the fixation proba-
bility of the adaptive allele via Equation 9 using Monte Carlo
integration routines from the GNU Scientific Library (Galassi
et al. 2009). This fixation probability was then used in Equation
8 to obtain the deterministic trajectory x*(t). Solving x*(tn) =
1/2 yielded the sampling time tn. We then recursively estimated
the lower bound t̂j of integral in (10) for each k such that the
expected number of events occurring between t̂k and t̂kþ1 con-
verged to 16 1024. Finally, we integrated the coalescence rate
from Equation 4 over the interval ½̂tk; t̂kþ1� to determine the
probability that the event occurring at t̂k was a coalescent
event, yielding Pcoal,k = 1 2 Psoft,k. These probabilities were
calculated for k = 1, . . ., n21 and used in Equation 7 to get
Psoft,n(t, s). Note that this approach can easily be adjusted for
any other sampling time or adaptive allele frequency at
sampling.

Forward simulations in cycling and
expanding populations

We simulated adaptation from de novomutation in cycling popu-
lations and an expanding population using the Wright–Fisher
models specified above. Each simulated population was initially
monomorphic for the wild-type allele. We began our simula-
tions at four different time points (t0) along the population-size
trajectory and ran each simulation on the condition that the
first beneficial allele that arose in generation t0 did not go
extinct during the simulation. Simulations were run until
the adaptive allele was .50% frequency. Ten thousand simu-
lations were run for each combination of parameters in the
cycling population example, and one thousand simulations
were run for each combination of parameters in the human
population expansion example. All code was written in Python
and C++ and is available upon request.

Results

We study a single locus with two alleles, a and A, in a haploid
Wright–Fisher population (random mating, discrete genera-
tions) (Ewens 2004). The population is initially monomorphic
for the wild-type allele a. The derived allele A has a selective
advantage s over the wild-type and arises at a rate UA per in-
dividual, per generation. We ignore back mutations and con-
sider the dynamics of the two alleles at this locus in isolation;
i.e., there is no interaction with other alleles elsewhere in the
genome.
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In a classical hard sweep scenario, a single adaptive allele
arises, successfully escapes early stochastic loss, and ultimately
sweeps to fixation in the population. In a soft sweep, several
adaptive mutations establish independently in the population
and rise in frequency before the adaptive allele has fixed in the
population. After fixation of the adaptive allele, individuals in
a population sample do not coalesce into a single ancestor
with the adaptive allele but fall into two or more clusters,
reflecting the independent mutational origins of the different
adaptive lineages (Figure 1A). Note that the distinction be-
tween a hard and a soft sweep is based on the genealogy of
adaptive alleles in a population sample. It is therefore possible
that the same adaptive event yields a soft sweep in one sample
but remains hard in another, depending on which individuals
are sampled.

Soft sweeps in populations of constant size

The likelihood of soft sweeps during adaptation from de novo
mutation has been calculated by Pennings and Hermisson
(2006a) for a Wright–Fisher model of constant population size
N. Using coalescent theory, they showed that in a population
sample of size n, drawn right after fixation of the adaptive
allele, the probability of observing at least two independently
originated adaptive lineages is given by

Psoft;nðQÞ�12
Yn21

k¼1

k
kþQ

; (1)

where Q = 2NUA is the population-scale mutation rate—twice
the number of adaptive alleles that enter the population per
generation. Thus, the probability of a soft sweep is primarily
determined by Q and is nearly independent of the strength
of selection.

The transition between the regimes where hard and where
soft sweeps predominate occurs whenQ becomes on the order
of 1 in the constant population-size scenario. When Q � 1,
adaptive mutations are not readily available in the population
and adaptation is impeded by the waiting time until the first
successful adaptive mutation arises. This regime is referred to
as the mutation-limited regime. Adaptation from de novo mu-
tation typically produces hard sweeps in this case. When Q $

1, by contrast, adaptive mutations arise at least once per gen-
eration on average. In this non-mutation-limited regime, soft
sweeps predominate.

Soft sweeps under recurrent bottlenecks:
Heuristic predictions

The standard Wright–Fisher model assumes a population of
constant size N. To study the effects of population-size changes
on the probability of soft sweeps, we relax this condition and
model a population that alternates between two sizes. Every
DT generations the population size is reduced from N1 to N2 �
N1 for a single generation and then returns to its initial size in
the following generation (Figure 1B). We defineQ= 2N1UA as
the population-scale mutation rate during the large population
phases.

We assume instantaneous population-size changes and do
not explicitly consider a continuous population decline at the
beginning of the bottleneck or growth during the recovery
phase. This assumption should be appropriate for sharp,
punctuated bottlenecks and allows us to specify the “severity”
of a bottleneck in terms of a single parameter, N2/N1. We also
assume that mutation and selection operate only during the
phases when the population is large, whereas the two alleles,
a and A, are neutral with respect to each other and no new
mutations occur during a bottleneck. This assumption is justi-
fied for severe bottlenecks with N2 � N1 and when bottlenecks
are neutral demographic events. Note that many effects of
a population bottleneck depend primarily on the ratio of its
duration over its severity. In principle, most of the results we
derive below should therefore be readily applicable to more
complex bottleneck scenarios by mapping the real bottleneck
onto an effective single-generation bottleneck, provided that
the real bottleneck is not long enough that beneficial mutations
appear during the bottleneck.

Adaptive mutations arise in the large population at rate
N1UA, but only a fraction 2s of these mutations successfully
establishes in the large population; i.e., these mutations sto-
chastically reach a frequency�1/(N1s) whereupon they are no
longer likely to become lost by random genetic drift (assuming
that the amount of drift remains constant over time). Thus,
adaptive mutations establish during the large phases at an
approximate rate Qs. We assume that successfully establishing
mutations reach their establishment frequency fast compared
to the timescale DT between bottlenecks, in which case estab-
lishment can be effectively modeled by a Poisson process. This
assumption is reasonable when selection is strong and the
establishment frequency low. Note that those adaptive muta-
tions that do reach establishment frequency typically achieve
this quickly in �g/s generations, where g � 0.577 is the
Euler–Mascheroni constant (Desai and Fisher 2007; Eriksson
et al. 2008).

Under the Poisson assumption, the expected waiting time
until a successful adaptive mutation arises in the large pop-
ulation phase is given by test = 1/(Qs). After establishment,
its population frequency is modeled deterministically by logis-
tic growth: x(t) = 1/[1 + (N1s)exp(2st)]. Fixation would
occur tfix � log(N1s)/s generations after establishment, as-
suming that the population sizes were to remain constant.

If an adaptive mutation establishes during the large phase
but has not yet fixed at the time the next bottleneck occurs, its
fate will depend on its frequency at the onset of the bottleneck.
In our model, the bottleneck is a single generation of random
downsampling of the population to a size N2 � N1. Any mu-
tation present at the onset of the bottleneck will likely survive
the bottleneck only when it was previously present at a fre-
quency .1/N2, i.e., when at least one copy is expected to be
present during the bottleneck. Less frequent mutations will typ-
ically be lost (Figure 1B). To reach frequency 1/N2 in the pop-
ulation, an adaptive mutation needs to grow for approximately
another t2 = log(N1s/N2)/s generations after establishment.
We can therefore define the bottleneck establishment time as
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the sum of the initial establishment time (assuming instanta-
neous establishment), test, and the waiting time until the mu-
tation has subsequently reached a high-enough frequency to
likely survive a bottleneck, t2:

t9est¼ 1
Qs

þ logðN1s=N2Þ
s

: (2)

We show below that the comparison between bottleneck es-
tablishment time, t9est, and bottleneck recurrence time, DT,
distinguish the qualitatively different regimes in our model.

Mutation-limited adaptation: It is clear that bottlenecks
can decrease only the probability of a soft sweep in our model
relative to the probability in the constant population-size
scenario, as they systematically remove variation from the
population by increasing the variance in allele frequencies
between generations. Consequently, whenQ� 1, sweeps are
hard because adaptation is already mutation-limited during
the large phases. Note that mutation limitation does not nec-
essarily imply that adaptation is unlikely in general; it may
just take longer until an adaptive mutation successfully estab-
lishes in the population. When the recurrence time, DT, is
much larger than the establishment time, test, adaptation is
still expected to occur between two bottlenecks.

Non-mutation-limited adaptation: If Q $ 1, adaptation is
not mutation limited during the large population phases. In
the absence of bottlenecks (or when bottlenecks are very
weak), adaptation from de novo mutation often produces soft
selective sweeps. A strong population bottleneck, however, can
potentially remove all but one adaptive lineage and result in
a scenario in which only this one lineage ultimately fixes. In
this case, we say that the bottleneck has hardened the initially
soft selective sweep.

We can identify the conditions that make hardening likely
from a simple comparison of timescales: Hardening should
occur whenever Q $ 1 and at the same time

DT, t9est; (3)

such that a second de novo mutation typically does not have
enough time to reach a safe frequency that assures its survival
before the next bottleneck sets in (Figure 1B).

The argument that the second adaptive mutation needs to
grow for t2 generations after its establishment to reach a safe
frequency 1/N2 makes sense only when the mutation is actually
at a lower frequency than 1/N2 at establishment, which
requires that bottlenecks are sufficiently severe (N2/N1 , s).
For weaker bottlenecks, most established mutations should typ-
ically survive the bottleneck and hardening will generally be
unlikely. Note that the condition N2/N1 . s alone does not
imply that soft sweeps should predominate—this still depends
on the value of Q. In the other limit, where bottleneck severity
increases until N2 / 1, all sweeps become hardened. This
imposes the requirement that t2 � tfix or correspondingly that
N2 � 1 for our bottleneck establishment time to be valid.

The heuristic argument invokes a number of strong sim-
plifications, including that allele-frequency trajectories are
deterministic once the adaptive allele has reached its estab-
lishment frequency, that alleles at frequencies,1/N2 have no
chance of surviving a bottleneck, and that establishment
occurs instantaneously during a large population phase. In
reality, however, an adaptive mutation spends time in the
population before establishment. And if this time becomes
on the order of DT, then adaptive mutations encounter
bottlenecks during the process of establishment. In this
case, establishment frequency will be .1/(N1s) and estab-
lishment time will be longer than 1/(Qs) due to the in-
creased drift during bottlenecks. We address these issues
more thoroughly below when we analyze general demo-
graphic scenarios.

Our condition relating the bottleneck recurrence time and
the bottleneck establishment time (3) makes the interesting
prediction that for fixed values of Q, DT, and N2/N1, there
should be a threshold selection strength for hardening.
Sweeps involving weaker selection than this threshold are
likely to be hardened, whereas stronger sweeps are not. Thus,
both hard and soft sweeps can occur in the same demographic
scenario, depending on the strength of selection. This is in
stark contrast to the constant population-size scenario, where
primarily the value of Q determines whether adaptation pro-
duces hard or soft sweeps while the strength of selection enters
only logarithmically.

Soft sweeps under recurrent bottlenecks:
Forward simulations

We performed extensive forward simulations of adaptation
from de novo mutation under recurrent population bottlenecks
to measure the likelihood of soft sweeps in our model and to
assess the accuracy of condition (3) under a broad range of
parameter values. In our simulations we modeled the dynam-
ics of adaptive lineages at a single locus in a modified Wright–
Fisher model with selection (Methods). To estimate the
empirical probability of observing a soft sweep in a given sim-
ulation run, we calculated the probability that two randomly
sampled individuals are not identical by decent at the time of
fixation of the adaptive allele; i.e., their alleles arose from
independent mutational origins.

Figure 2 shows phase diagrams of the empirical probabil-
ities of soft sweeps in our simulations over a wide range of
parameter values. We investigated three Q-regimes that differ
in the relative proportions at which hard and soft sweeps arise
during the large phases before they experience a bottleneck:
(i) Mostly hard sweeps arise during the large phase (Q= 0.2),
(ii) mostly soft sweeps arise during the large phase (Q = 2),
and (iii) practically only soft sweeps arise during the large
phase (Q = 20). For each value of Q, we investigated three
different bottleneck severities: N1/N2 = 102, N1/N2 = 103,
and N1/N2 = 104.

Our simulations confirm that hardening is common in
populations that experience sharp, recurrent bottlenecks. The
evolutionary parameters under which hardening is likely are
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qualitatively distinguished by the heuristic condition (3).
Hardening becomes more likely with increasing severity of
the population bottlenecks. For a fixed value of Q and a fixed
severity of the bottlenecks, hardening also becomes more
likely the weaker the strength of positive selection and the
shorter the recurrence time between bottlenecks, as pre-
dicted. For the scenarios with Q = 0.2, most sweeps are
already hard when they arise. Thus, there are only few soft
sweeps that could be subject to hardening, leading to system-
atically lower values of Psoft compared to the scenarios with
higher values of Q. Note that the transition between the
regimes where hardening is common and where it is uncom-
mon can be quite abrupt. For example, in the scenario where
Q = 2, N1/N2 = 104, and DT = 100 generations, an adaptive
allele with s = 0.056 almost always (90%) produced a hard

sweep in our simulations, whereas an allele with s = 0.1
mostly (57%) produced a soft sweep.

Probability of soft sweeps in complex
demographic scenarios

In this section we describe an approach for calculating the
probability of observing soft sweeps from recurrent de novo
mutation that can be applied to complex demographic scenar-
ios. We assume that the population is initially monomorphic
for the wild-type allele, a, and that the adaptive allele, A, has
selection coefficient s and arises through mutation of the wild-
type allele at rate UA per individual, per generation. Let
Psoft,n(t0, s) denote the probability that a sweep arising at time
t0 is soft in a sample of n adaptive alleles. Generally Psoft,n(t0, s)
also is a function of the trajectory, x(t $ t0), of the adaptive

Figure 2 Hardening of soft selective sweeps under recurrent population bottlenecks. The different bottleneck severities are shown from weaker to
stronger(top to bottom) and different population-scale mutation rates, Q, during the large population phases. The coloring of the squares specifies the
proportion of soft sweeps observed in samples of two individuals at the time of fixation for 1000 simulations runs (Methods) with selection coefficient (s)
and bottleneck recurrence time (DT) at the center of each square. The red lines indicate the boundary condition DT ¼ t9est between the regime, where
hardening is predicted to be likely (left of line) and unlikely (right of line) according to our heuristic condition (3). The dashed black line indicates the
boundary condition N2/N1 = s on the severity of the bottleneck; below the line, bottlenecks are not severe enough for the hardening condition to be
applicable. Note that for the low population-scale mutation rate Q = 0.2 (left) only very few sweeps are soft initially during the large population phase,
and hardening therefore is unlikely from the outset. In contrast, the top right shows very little hardening because mutations establish so frequently that
weaker bottlenecks are unlikely to remove all but one of the mutations that establish during the sweep.
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allele, the specific demographic scenario, N(t $ t0), and the
sampling time, tn.

We can calculate Psoft,n(t0, s) given x(t), N(t), and tn using
a straightforward extension of the approach employed by
Pennings and Hermisson (2006a) in deriving Psoft,n(Q) for
a population of constant size, which resulted in Equation 1.
In particular, we can model the genealogy of adaptive alleles
in a population sample by a coalescent process with “killings”
(Durrett 2008). In this process, two different types of events
can occur in the genealogy of adaptive alleles when going
backward in time from the point of sampling: two branches
can coalesce, or a branch can mutate from the wild-type allele
to the adaptive allele (Figure 3). In the latter case, the branch
in which the mutation occurred is stopped (referred to as
killing). Thus, each pairwise coalescence event and each mu-
tation event reduce the number of ancestors in the genealogy
by one. The process stops when the last branch is stopped by
a mutation (which cannot occur further back in the past than
time t0, the time when the adaptive allele first arose in the
population).

Hard and soft sweeps have straightforward interpretations
in this framework: In a hard sweep, all individuals in the
sample carry the adaptive allele from the same mutational
origin and therefore coalesce into a single ancestor before the
process finally stops. In a soft sweep, on the other hand, at
least one additional mutation occurs before the process stops
(Figure 3).

We depart from the Wright–Fisher framework here and
instead model this coalescent as a continuous-time Markov
process. The instantaneous rates of coalescence (lcoal)
and mutation (lmut) at time t, assuming that k ancestors
are present in the genealogy at this time, are then given
by

lcoalðt; kÞ�
kðk2 1Þ

2NeðtÞxðtÞ and lmutðt; kÞ� kUA½12 xðtÞ�
xðtÞ ;

(4)

where Ne(t) is the single-generation variance effective pop-
ulation size in generation t. Note that these are the same
rates that are derived and used by Pennings and Hermisson
(2006a), with the only difference being that in our case the
population size Ne(t) can vary over time.

Let us for now assume that we were to actually know
the times t1, . . ., tn21 at which coalescence or mutation
events happen in the genealogy, where tk for k = 1, . . ., n
2 1 specifies the time at which the coalescence or mutation
event happens that reduces the number of ancestors from k
+ 1 to k, and tn specifies the time of sampling (Figure 3).
Note that we do not make any assumptions about when the
sample is taken; we require only that n copies of the adap-
tive allele are present in the sample. Given a pair of suc-
cessive time points, tk and tk+1, we can calculate the
probability Pcoal(tk) that this event is a coalescence event,
rather than a mutation event, using the theory of compet-
ing Poisson processes:

PcoalðtkÞ¼

R tkþ1

tk
lcoalðt; kþ 1ÞdtR tkþ1

tk
½lcoalðt; kþ 1Þ þ lmutðt; kþ 1Þ�dt

¼ k
kþQk

:

(5)

The last equation holds if we define an effective Qk as

Qk ¼ 2UAAkðð12 xÞ=xÞHkðNe xÞ; (6)

whereHkðyÞ ¼ ðtkþ1 2 tkÞ=
R tkþ1

tk
yðtÞ21dt denotes the harmonic

mean and AkðyÞ ¼
R tkþ1

tk
yðtÞdt=ðtkþ1 2 tkÞ the arithmetic

mean, estimated over the interval [tk, tk+1]. This effective
Qk recovers the original result Qk = 2NeUA from Pennings
and Hermisson (2006a) for the special case of constant pop-
ulation size, where HkðNexÞ ¼ NeA21

k ð1=xÞ and mutation
and coalescence should be likely only during the early phase
of a sweep, when Akðð12 xÞ=xÞ � Akð1=xÞ.

The effective Qk from Equation 6 describes the product
of two specific means estimated during the time interval be-
tween events at tk and tk+1: (i) the arithmetic mean of twice
the rate at which mutations toward the adaptive allele occur

Figure 3 Modeling the genealogy of adaptive alleles by a coalescent
process with killings. Population size N(t) can vary arbitrarily over time
in our model (top). An adaptive allele arises in the population (indicated
by x) in generation t0 and subsequently sweeps through the population
(red frequency trajectory x(t), middle). Before fixation, a second adaptive
lineage arises by mutation (indicated by second x) and also sweeps
through the population (blue frequency trajectory, middle). Bottom: pos-
sible genealogy of a population sample of n = 6 adaptive alleles, taken at
the time t6. When tracing the lineages back in time, a pair of branches
can coalesce (events t1, t2, t4, and t5) or a branch can mutate (events t0
and t3), indicating de novo mutational origin of the adaptive allele. In the
latter case the lineage is killed. The example shown is a soft sweep
because a second de novo mutation occurs before all individuals have
coalesced into a single ancestor.
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per individual and (ii) the harmonic mean of Nex, the effective
number of individuals that carry the adaptive allele at time t.
The first mean is independent of demography and is largest
during the early phase of a sweep when x(t) is small. The
second mean depends on the product of both the trajectory,
x(t), and the demography, Ne(t). Importantly, as a harmonic
mean, it is dominated by the smallest values of Nex during
the estimation interval. Thus, even if the estimation interval lies
in a later stage of the sweep, when x(t) is larger than it was
early in the sweep, the harmonic mean could nevertheless be
small if Ne(t) is small at some point during this interval. In
general, when population size varies over time, it is not always
true that most coalescence occurs during the early phase of
a sweep, and we therefore do not adopt this assumption here.
For instance, if a strong bottleneck is encountered late during
the sweep, most coalescence can occur within this bottleneck.

Given an arbitrary demographic scenario, Ne(t), and trajec-
tory x(t) of the adaptive allele, Equation 6 allows us to calculate
each effective Qk if we know the time points tk and tk+1. Given
the sequence {Qk} for all k = 1, . . ., n 2 1, we can then
calculate the probability that the sweep in our sample is hard,
as this is only the case if all individual events in the genealogy
happen to be coalescence events. The probability that this hap-
pens is the product of all Pcoal(tk). Hence, the probability that
the sweep is soft in our sample is

Psoft;nðfQkgÞ¼ 12 Phard;nðfQkgÞ

¼ 12
Qn21

k¼1

k
kþQk

:
(7)

Calculating Qk for a given demographic scenario

The above calculation of Psoft,n based on Equations 6 and 7
presupposed that we actually know the trajectory of the
adaptive allele and the times tk at which coalescence or
mutation events occur in the genealogy. This assumption is
unrealistic in practice. A full treatment of the problem in the
absence of such information then requires integrating over
all possible trajectories and all individual times at which
coalescence or mutation events can occur, where we weigh
each particular path x(t) and sequence of event times t1, . . .,
tn by their probabilities.

Instead of performing such a complicated ensemble average,
we use a deterministic approximation for the trajectory x(t) and
then model the times tk as stochastic random variables that
we estimate numerically. Specifically, we model the fre-
quency trajectory of an adaptive allele in the population by

x*ðt. t0Þ¼ esðt2t0Þ

Nðt0ÞPfixðt0; sÞ21þ esðt2t0Þ; (8)

where Pfix(t0, s) is the fixation probability of a new mutation
of selection coefficient s that arises in the population at time
t0 in a single copy (Uecker and Hermisson 2011). Calculat-
ing such fixation probabilities when population size varies
over time has been the subject of several studies and is well

understood (Ewens 1967; Otto and Whitlock 1997; Pollak
2000; Patwa and Wahl 2008; Engen et al. 2009; Parsons
et al. 2010; Uecker and Hermisson 2011; Waxman 2011).
For example, Uecker and Hermisson (2011) have derived
the following general formula for calculating Pfix(t0, s)
under arbitrary demographic scenarios:

Pfixðt0; sÞ ¼
2

1þ Nðt0Þ
RN
t0

�
e2sðt2t0Þ�NeðtÞ

�
dt
: (9)

Here Ne(t) again specifies the single-generation variance ef-
fective population size in generation t. This approximation
works well as long as the number of beneficial mutations that
enter the population during the sweep is not extremely high
(Q � 1), in which case one would need to explicitly include
the contribution from mutation in the formulation of the
birth–death process.

Assuming that the adaptive allele follows the deterministic
trajectory, x*(t), from Equation 8, we can calculate the expected
rates of coalescence, l*coalðt; kÞ, and mutation, l*mutðt; kÞ, in the
genealogy of adaptive alleles in a population sample. Let us
assume the sample of size n is taken at tn. We can estimate
the times tk (k = 1, . . ., n 2 1) at which the number of ances-
tors goes from k + 1 to k using the relation

n2 k ¼
Xn21

j¼k

Z t̂jþ1

t̂j

h
l*coalðt; jþ 1Þþ l*mutðt; jþ 1Þ

i
dt: (10)

In other words, the time estimates t̂k can be calculated recur-
sively going backward in time event-by-event from the point of
sampling until n 2 k events have occurred in the genealogy.
Given the time estimates t̂k, one can then calculate the esti-
mate for Qk via Equation 6 and estimate Psoft,n(t0, s) via Equa-
tion 7. See Methods for a more precise explanation of how this
is accomplished in practice.

Application for cycling populations

To illustrate and verify our approach for calculating Psoft,n(t0, s),
we examine selective sweeps in a population that undergoes
cyclical population-size changes. In particular, we model a hap-
loid Wright–Fisher population with a time-dependent popula-
tion size given by

NðtÞ¼ Nmin þ Nmax

2
þ Nmax2Nmin

2
sin

�
2pt
DT

�
: (11)

As illustrated in Figure 4A, this specifies a population that cycles
between a minimal size, Nmin, and a maximal size, Nmax, over
a period of DT generations. We investigate selective sweeps
with four different starting times (t0) at which the successfully
sweeping allele first arises within a cycle: t0 = 0, t0 = 0.25DT,
t0 = 0.5DT, and t0 = 0.75DT. These four cases describe, in
order, a starting time of the sweep midway during a growth
phase, at the end of a growth phase, midway of a decline phase,
and at the end of a decline phase (Figure 4A). For each starting
time we calculate the expected probability Psoft,2(t0, s) of
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observing a soft sweep in a sample of size 2 as a function of the
selection coefficient (s), of the adaptive allele, assuming that
the population is sampled when the adaptive allele has reached
population frequency x = 1/2. In contrast to sampling at the
time of fixation, this criterion does not depend on the actual
population size (e.g., in a growing population fixation can take
very long). Note that the probability Psoft,2(t0, s) is the proba-
bility that two adaptive alleles in a random population sample
are not identical by decent.

We derived our analytical predictions for Psoft,2(t0, s) by first
calculating Pfix(t0, s) for the given N(t), t0, and s via numerical
integration of Equation 9 and then inserting the result into
Equation 8 to obtain the trajectory x*(t), using the scaling
Ne(t) = N(t)/(1 + s) for concordance between the generalized
birth–death model used by Uecker and Hermisson (2011) and
the Wright–Fisher model. We then estimated t̂1 via nu-
merical integration of Equation 10 (Methods), assuming
that the adaptive allele reaches frequency x = 1/2 at

t2¼ t0þ
log½Neðt0ÞPfixðt0; sÞ�

s
: (12)

Figure 4B shows the comparison between our analytical pre-
dictions for Psoft,2(t0, s) and the observed frequencies of soft
sweeps in Wright–Fisher simulations for a scenario with popu-
lation sizes Nmin = 106 = 0.01Nmax, cycle period DT= 500, and
adaptive mutation rate UA = 1028, as a function of the strength
of positive selection and the starting time of the sweep within
a cycle. Simulation results are in good agreement with analytical
predictions over the whole range of investigated parameters.

We observe two characteristic limits in our cyclical popula-
tion-size model, specified by the relation between the duration of
the sweeps (which inversely depends on the selection strength)
and the timescale over which demographic processes occur:

i. Weak selection/fast fluctuation limit: When the duration
of a sweep becomes much longer than the period of pop-
ulation-size fluctuations, the probability of observing a soft
sweep converges to that expected in a population of con-
stant size, given by the harmonic mean of Ne(t) estimated
over a population cycle (dash–dotted line in Figure 4B).
The starting time of the sweep becomes irrelevant in this
case. To show this, we partition the embedded integralR
1=ðNexÞ  dt in Equation 6 into consecutive intervals, each

extending over one population cycle. Because x(t) changes
slowly compared with the timescale of a population cycle,
we can assume that x(t) is approximately constant over
each such interval. The harmonic mean then factorizes into
Hk(Nex) = Hk(Ne)Hk(x), and Equation 6 reduces to

Qk ¼ 2UAHkðNeÞ½12HkðxÞ��2UAHkðNeÞ: (13)

The last approximation holds as long as k is not too large, in
which case the lowest value of x(t) in the interval, and thus
also Hk(x), are still small, since the harmonic mean is dom-
inated by the smallest values.

Note that the above argument applies more broadly and
is not necessarily limited to scenarios where population-size
fluctuations are exactly cyclical. In general, a sufficient condi-
tion for the factorization in Equation 13 is the existence of
a timescale j that is much shorter than the duration of the
sweep, where harmonic averages of N(t) estimated over time
intervals of length j are already approximately constant for
every interval lying within the duration of the sweep. In other
words, factorization works for all demographic models that
have fast fluctuation modes that we can effectively average
out but no slow fluctuation modes occurring over timescales
comparable to the duration of the sweep.

Examples for demographic models where the weak
selection/fast fluctuation limit becomes applicable include
those where N(t) is any periodic function with a period much
shorter than the duration of the sweep. Another example
would be a model in which population sizes are drawn ran-
domly from a distribution with fixed mean, where the number
of drawings over the duration of the sweep is large enough
such that harmonic averages already converge to the mean
over timescales much shorter than the duration of the sweep.

ii. Strong selection/slow fluctuation limit: When the duration
of a sweep becomes much shorter than the timescale over
which population size changes, the probability of observing
a soft sweep in the cyclical population model converges to
that which is expected in a population of constant size Ne(t0),
the effective population size at the starting time of the sweep.
In this case the effective Qk from Equation 6 reduces to

Qk ¼ 2UANeðt0Þ½12HkðxÞ��2UANeðt0Þ: (14)

We can also recover these weak and strong selection limits for
our earlier simulations of the recurrent bottleneck scenario.
Figure 4C shows the transition from what is expected in a con-
stant population given by the harmonic mean population size
over one bottleneck cycle, H(Ne), to a constant population at
the instantaneous population size, Ne(t0) � N1. The expect-
ations in the limits were calculated using Equation 1 while
substituting the appropriate effective population size. Again
we see that even for the same demographic scenario, the prob-
ability of observing a soft sweep can vary dramatically with
selection coefficient. This implies that there is generally no one
effective population size that will be relevant for determining
the expected selective sweep signature. Note also that while
the transition between the two regimes in our hardening
model is monotonic, the transition is not guaranteed to be
monotonic in more complex demographic scenarios, as seen
for some of the transitions in our cycling population model.

Discussion

In this study we investigated the population parameters
that determine the probability of observing soft selective
sweeps when adaptation arises from de novo mutations. Our
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understanding of soft sweeps has hitherto been limited to
the special case in which population size remains constant
over time. In this special case, the probability of soft sweeps
from recurrent de novo mutation depends primarily on the
population-scale mutation rate toward the adaptive allele,
Q = 2NeUA, and is largely independent of the strength of
selection (Pennings and Hermisson 2006a). We devised a uni-
fied framework for calculating the probability of observing
soft sweeps when population-size changes over time and
found that the strength of selection becomes a key factor
for determining the likelihood of observing soft sweeps in
many demographic scenarios.

The hardening phenomenon

We first demonstrated that population bottlenecks can give
rise to a phenomenon that we term the hardening of soft
selective sweeps. Hardening describes a situation where
several adaptive mutations of independent origin—initially
destined to produce a soft sweep in a constant population—
establish in the population, but only one adaptive lineage

ultimately survives a subsequent bottleneck, resulting in
a hard selective sweep.

Using a simple heuristic approach that models the tra-
jectories of adaptive alleles forward in time, we showed that
in populations that experience recurrent, sharp bottlenecks,
the likelihood of such hardening depends on the comparison
of two characteristic timescales: (i) the recurrence time
(DT) between bottlenecks and (ii) the bottleneck establish-
ment time ðt9estÞ, which specifies the waiting time until a de
novo adaptive mutation reaches a high-enough frequency
such that it is virtually guaranteed to survive a bottle-
neck. We derived a simple heuristic approximation,
t9est ¼ ½Q21 þ logðN1s=N2Þ�=s, that applies when bottlenecks
are severe enough (N1s. N2 with N2 � 1). If soft sweeps are
expected to arise between bottlenecks— i.e., if Q is on the
order of one or larger during those phases—then hardening is
common when DT, t9est, whereas it is unlikely when
DT. t9est. The bottleneck establishment time increases only
logarithmically with the severity of the bottleneck and scales
inversely with the selection coefficient of the adaptive mutation.

Figure 4 Weak and strong selection limits. (A) In the cyclical population example, N(t) cycles between a maximum size Nmax = 108 and a minimum size
Nmin = 106 over a period of DT = 500 generations. Adaptive mutations occur at a de novo rate of UA = 1028 per individual, per generation. We condition
selective sweeps on four different starting times: T1, T2, T3, and T4. (B) Comparison of our analytical predictions for the probabilities Psoft,2(t) of observing
a soft sweep in a sample of two adaptive alleles, drawn randomly at the time when the adaptive allele has reached a population frequency of 50%
(colored lines), with empirical probabilities observed in Wright–Fisher simulations (colored circles, see Methods). Convergence to the harmonic mean
expectation, E(QH), is seen for weak selection, while convergence to the instantaneous population-size expectation, E(Q1) and E(Q2), is seen for strong
selection. The convergence of the orange and green lines is also expected in the strong selection limit as they share the same instantaneous population
size at t0. (C) Weak selection/fast fluctuation and strong selection/slow fluctuation limits in our recurrent bottleneck model from Figure 2: The observed
probabilities of soft sweeps in the recurrent bottleneck simulations transition from the harmonic mean expectations (dashed black lines) to the
instantaneous population-size expectations (solid black lines). The dotted vertical lines indicate the position of our heuristic boundary DT ¼ t9est for
selection coefficients that meet the criteria s . N2/N1, where our heuristic is valid.
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In stark contrast to a population of constant size, the probability
of observing soft sweeps can therefore strongly depend on the
strength of selection in the recurrent bottleneck scenario.

Generalized analytical framework for
complex demographies

The heuristic condition DT, t9est provides a rough estimate of
whether hardening is expected in a recurrent bottleneck sce-
nario, but it lacks generality for more complex demographic
scenarios and does not provide the actual probabilities of
observing soft sweeps. We showed that such probabilities
can be approximated analytically for a wide range of demo-
graphic models by mapping the problem onto a coalescent
with killings process (Durrett 2008). Our approach is very
similar to that employed by Pennings and Hermisson
(2006a) for the constant size model, with the primary differ-
ence being that we allow for coalescence and mutation rates
to vary over time as population size changes.

In the coalescent with killings framework (Figure 3), the
probability of a soft sweep is determined by the competition
between two processes: coalescence in the fraction x(t) of the
population that carry the adaptive allele, and emergence of
new adaptive lineages through de novo mutation (referred to
as killings when going backward in time) in the fraction 12 x
(t) of the population that do not yet carry the adaptive allele.
A sweep is hard in a population sample if all individuals in
that sample coalesce before a second adaptive mutation arises
and soft otherwise. In our analytical approach, we assume
that the trajectory x(t) can be described by a logistic function.
The probability of observing a soft sweep can then be calcu-
lated through numerical integration of the expected rates of
coalescence and mutation in the genealogy, which are simple
functions of x(t) and Ne(t), the variance effective population
size in generation t.

Note that by adjusting the endpoint of the integration
interval to the time at which the adaptive allele reaches
a given frequency, our approach can easily be extended to the
analysis of partial selective sweeps. Similarly, by extending
the time interval beyond the fixation of the adaptive allele,
one can study the loss of adaptive lineages due to random
genetic drift after the completion of a soft sweep. Moreover,
since our model requires only an estimate of the frequency
trajectory of the adaptive allele, x(t), it should be easily ex-
tendable to other, more complex scenarios, including time-
varying selection coefficients (Uecker and Hermisson 2011),
as long as one can still model x(t) in the particular scenario.
We leave these possible extensions for future exploration.

Even though the results presented in this article were
derived for haploid populations, it is straightforward to
extend them to other levels of ploidy. The key prerequisite
is again that we still have an estimate for the frequency
trajectory of the adaptive allele, which can be complicated by
dominance effects when ploidy increases. Given the trajec-
tory, the population size N(t) simply needs to be multiplied by
the ploidy level to adjust for the changed rate of coalescence
in the genealogy. For example, in a diploid population with

codominance, the population-scale mutation rate needs to be
defined as Q = 4NeUA, twice the value for a haploid popula-
tion of the same size.

Weak and strong selection limits

Our approach reveals interesting analogies to Kingman’s co-
alescent (Kingman 1982) with respect to our ability to map
the dynamics onto an effective model of constant population
size. Sjödin et al. (2005) showed that genealogies at neutral
loci can be described by a linear rescaling of Kingman’s co-
alescent with a corresponding coalescent effective population
size, as long as demographic processes and coalescence
events operate on very different timescales. Specifically, when
population-size fluctuations occur much faster compared with
the timescale of coalescence, the coalescent effective popula-
tion size is given by the harmonic mean of the variance effective
population size, Ne(t), estimated over the timescale of coales-
cence. In the opposite limit where population-size fluctuations
occur much more slowly than the timescales of neutral coales-
cence, the variance effective population size is approximately
constant over the relevant time interval and directly corre-
sponds to the instantaneous coalescent effective population size.

Analogously, in our analytical framework for determining
the likelihood of soft sweeps, we can again map demography
onto an effective model with constant effective population
size in the two limits where population-size fluctuations are
either very fast or very slow. The relevant timescale for
comparison here is the duration of the selective sweep, tfix �
log(Ns)/s, which is inversely proportional to the selection co-
efficient of the sweep. Hence, the fast fluctuation limit corre-
sponds to a weak selection limit, and the slow fluctuation
limit corresponds to a strong selection limit. In the strong
selection/slow fluctuation limit, the relevant effective popu-
lation size is the instantaneous effective population size at the
start of the sweep; in the weak selection/fast fluctuation limit,
it is the harmonic mean of the variance effective population
size estimated over the duration of the sweep.

One important consequence of this finding is that, even in
the same demographic scenario, the probability of observing
soft sweeps can differ substantially for weakly and strongly
selected alleles. This is because the harmonic mean that
determines the effective population size in the weak selec-
tion/fast fluctuation limit will be dominated by the phases
where population size is small. For a weakly selected allele in
a population that fluctuates much faster than the duration of
the sweep, it will be close to the minimum size encountered
during the sweep, resulting in a low effective population size
and, correspondingly, a low probability of observing a soft
sweep. A strongly selected allele, on the other hand, can arise
and sweep to fixation between collapses of the population.
The effective population size remains large in this case,
increasing the probability of observing a soft sweep. Hence,
the stronger the selective sweep, the higher the chance that it
will be soft in a population that fluctuates in size.

Similar behavior is observed for the fixation probabilities
of adaptive alleles in fluctuating populations. In particular,
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Otto and Whitlock (1997) showed that the fixation pro-
cess of an adaptive allele depends on the timescale of the
fixation itself. Only short-term demographic changes en-
countered during the fixation event matter for strongly
selected alleles, whereas slower changes affect only weakly
selected alleles. Otto and Whitlock (1997) therefore con-
cluded that “there is no single effective population size that
can be used to determine the probability of fixation for all
new beneficial mutations in a population of changing size”
(p. 728).

Hard vs. soft selective sweeps in natural populations

How relevant is our finding that the likelihood of observing soft
sweeps can strongly depend on the strength of selection for
understanding adaptation in realistic populations? We know
that both necessary ingredients for this effect to occur—strong
temporal fluctuations in population size and difference in the
fitness effects of de novo adaptive mutations—are common in
nature.

Population-size fluctuations over several orders of magni-
tude are observed in various animal species, ranging from
parasitic worms to insects and even small mammals (Berryman
2002). Unicellular organisms often undergo even more
dramatic changes in population size. For instance, during
Malaria infection only 10 to a 100 sporozoites are typically
ejected by a feeding mosquito—the numbers of sporozoites
that successfully enter the human blood stream are even
smaller—yet this population grows to many billions of para-
sites within an infected individual (Rosenberg et al. 1990).
Similarly, in the majority of cases, acute HIV infection was
found to result from a single virus (Keele et al. 2008). Severe
population bottlenecks resulting from serial dilution are also
commonly encountered in evolution experiments with bact-
eria and yeast (Wahl et al. 2002). Even our own species has
likely experienced population-size changes over more than
three orders of magnitude within the past 1000 generations
(Gazave et al. 2014).

It is also well established that fitness effects of de novo
adaptive mutations can vary over many orders of magnitude
within the same species. For example, codon bias is typically
associated with only weak selective advantages, whereas the
fitness advantage during the evolution of drug resistance in
pathogens or pesticide resistance in insects can be on the order
of 10% or larger.

Taken together, we predict that we should be able to
observe strong dependence of the likelihood of hardening on
the strength of selection for adaptation in natural populations
that experience a demographic phase where adaptation is not
mutation limited. The likelihood of observing soft sweeps will
depend on the types of natural population fluctuations that
occur and whether they can be characterized by the weak
selection/fast fluctuation limit or the strong selection/slow
fluctuation limit.

To demonstrate this possibility, consider a cycling pop-
ulation illustrated in Figure 5A that is based on data from
the extreme fluctuations observed in multiple species of

moths, including the tea tortrix, Adoxophyes honmai, and
the larch budmoth, Zeiraphera diniana. These diploid moth
species have been observed to undergo changes in popula-
tion size spanning many orders of magnitude over short peri-
ods of just four to five generations (Baltensweiler and Fischlin
1988; Nelson et al. 2013). Let us further assume that these
changes result in a change in the adaptive population-scale
mutation rate between Qmin = 1023 and Qmax = 1. In this
case, adaptation is not mutation limited during population
maxima and is mutation limited during population minima.
Consequently, hardening of soft selective sweeps could be
common.

Figure 5B shows the likelihood of soft sweeps in this sce-
nario according to Equation 7, as a function of the strength of
selection and the starting time of the sweep. The probability of
observing soft sweeps generally remains low in this scenario,
except for cases of extremely strong selection. We can under-
stand this result from the fact that the timescale of population-
size fluctuations is so fast that all but the most strongly selected
alleles still fall within the weak selection limit, described by the
harmonic mean effective population size.

This result has important consequences for the study of
other populations that fluctuate over similarly short timescales,
such as the fruit fly Drosophila melanogaster. Natural popula-
tions of D. melanogaster undergo �10–20 generations over
a seasonal cycle, often experiencing enormous population sizes
during the summer that collapse again each winter (Ives 1970).
Our result then suggests that only the most strongly selected
alleles, which can arise and sweep over a single season, may
actually fall within the strong selection limit. All other sweeps
should still be governed by the harmonic mean of the popula-
tion size averaged over a yearly cycle, which will be dominated
by the small winter population sizes. Note that this also could
mean that some of the strongest adaptations would be missed
by genome scans unless they incorporate recent methodologies
that are capable of detecting signatures associated with soft
selective sweeps (Garud et al. 2013; Ferrer-Admetlla et al.
2014).

Let us consider another example, motivated by the pro-
posed recent demographic history of the European human
population (Coventry et al. 2010; Nelson et al. 2012; Tennessen
et al. 2012; Gazave et al. 2014). Specifically, we consider a pop-
ulation that was small throughout most of its history and has
recently experienced a dramatic population expansion. We as-
sume demographic parameters similar to those estimated by
Gazave et al. (2014), i.e., an ancestral population size of Nanc =
104, followed by exponential growth over a period of 113
generations, reaching a current size of Ncur � 520,000 individ-
uals (Figure 5C). We further assume that exponential growth
halts at present and that population size remains constant
thereafter. Note that this scenario is qualitatively different from
the previously discussed models in that population-size
changes are nonrecurring. As a result, the weak selection/fast
fluctuation limit does not exist in this case. For determining
whether a given selective sweep will likely be hard or soft in
this model, its starting time becomes of crucial importance.
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We assume an adaptive mutation rate of UA = 5 3 1027

for this example to illustrate the transition between mutation-
limited behavior in the ancestral population, where Qanc =
4NancUA � 0.02, and non-mutation-limited behavior in the
current population, where Qcur = 4NcurUA � 1.0. Note that
this adaptive mutation rate is higher than the single nucleo-
tide mutation rate in humans, but it may be appropriate for
describing adaptations that have larger mutational target size,
such as loss-of-function mutations or changes in the expres-
sion level of a gene. Moreover, if we were to assume that the
current effective population size of the European human pop-
ulation is in fact Ncur � 2 3 107—still over an order of mag-
nitude smaller than its census size—we would already be in
the non-mutation-limited regime for UA � 1028, the current
estimate of the single-nucleotide mutation rate in humans
(Kong et al. 2012).

Figure 5D shows the probabilities of soft sweeps in this
scenario predicted by our approach as a function of the strength
of selection and starting time of the sweep. The results confirm
our intuition that almost all sweeps that start prior to the ex-
pansion are hard in a sample of size 10, as expected for adap-
tation by de novo mutation in a mutation-limited scenario,
whereas sweeps starting in the current, non-mutation-limited
regime are almost entirely soft, regardless of the strength of
selection. Sweeps starting during the expansion phase show an
interesting crossover behavior between hard and soft sweeps.
The strength of selection becomes important in this case. Spe-
cifically, sweeps that start during the expansion have a higher
probability of producing soft sweeps when they are driven by
weaker selection than when they are driven by stronger selec-
tion. This effect can be understood from the fact that stronger
sweeps go to fixation faster than the weaker sweeps. Hence, in

Figure 5 Probability of observing soft sweeps in two demographic scenarios. (A) Example inspired by data from the extreme fluctuations observed in
multiple species of moths (Baltensweiler and Fischlin 1988; Nelson et al. 2013). We assume that the adaptive population-scale mutation rate varies
between Qmin = 1023 and Qmax = 1 over a period of DT = 5 generations. (B) Predictions for the probability of observing a soft sweep in a sample of two
adaptive lineages drawn randomly at the time point when the adaptive allele has reached a population frequency of 50%, conditional on four different
starting times of the sweep (T1 to T4). The noise stems from the numerical Monte Carlo integrations. The probability of observing a soft sweep is close to
the harmonic mean expectation, E(QH), for virtually all starting times and selection strengths, except when selection is extremely strong. (C) De-
mographic model proposed for the European human population (Gazave et al. 2014). The ancestral population size is Nanc = 104. Starting at 113
generations in the past, the population expands exponentially at a constant rate of r = 0.0554, until it reaches its current size of Ncur � 520,000.
Population size is assumed to remain constant thereafter. Note that the y-axis is plotted logarithmically. We set the beneficial mutation rate in this
example at UA = 5 3 1028. (D) Analytic predictions for the probability of observing a soft sweep in a sample of size n = 10 (solid lines) when the sweep
starts at present (T4), midway during the expansion (T3 = 50 generations ago), at the beginning of the expansion (T2 = 113 generations ago), and prior to
the expansion (T1 = 500 generations ago). Sweeps that start prior to the expansion are almost exclusively hard, whereas sweeps starting today will be
primarily soft, regardless of the strength of selection. Sweeps starting at the beginning or during the expansion show an interesting crossover behavior:
Smaller selection coefficients are more likely than larger selection coefficients to produce soft sweeps because weaker sweeps take longer to complete
and thus experience more time at larger population sizes. Note that all sweeps have selection coefficients .1/2Nanc, below which drift stochasticity
would prevent a meaningful deterministic approximation to the frequency trajectory. Open circles and dotted lines show results for sample size of n = 2
for comparison.
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a growing population, a weaker sweep will experience larger
population sizes during its course than a stronger sweep start-
ing at the same time, increasing its probability of becoming soft.

When expanding the intuition from our single-locus model
to whole genomes, we must bear in mind that the effective Q
determining the probability of soft sweeps is not the same for
different loci across the genome because mutational target
sizes and thus adaptive mutation rates vary at different loci.
For example, adaptive loss-of-function mutations likely have
a much higher value of UA than adaptive single-nucleotide
mutations. Therefore, no single value ofQ will be appropriate
for describing the entire adaptive dynamics of a population.
Adaptation across the genome can simultaneously be muta-
tion limited and non-mutation limited in the same popula-
tion, depending on population-size fluctuations, mutation
rate, target size, and the strength of selection. Furthermore,
we should be very cautious when assuming that estimators
for Q based on genetic diversity will inform us about whether
recent adaptation produce hard or soft sweeps. Estimators
based on the levels of neutral diversity in a population, such
as Qp and Watterson’s QW (Ewens 2004), can be strongly
biased downward by ancient bottlenecks and recurrent linked
selection.

Finally, the overall prevalence of soft sweeps should depend
on when adaptation and directional selection is common. If
adaptation is limited by mutational input, then most adaptive
mutations should arise during the population booms, biasing
us toward seeing more soft sweeps. On the other hand, it is
also possible—maybe even more probable—that adaptation
will be common during periods of population decline, such
as when population decline is caused by a strong selective
agent like a new pathogen, competitor, predator, or a shortage
in the abundance of food. If adaptation is more common dur-
ing population busts, this should lead us to observe more hard
sweeps.

These considerations highlight one of the key limits of the
current analysis—we have considered only scenarios in which
population size and selection coefficients are independent of
each other. In the future, we believe that models that consider
population size and fitness in a unified framework will be
necessary to fully understand signatures that adaptation leaves
in populations of variable size.
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