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ABSTRACT

Controller proteins such as C.AhdI regulate the
expression of bacterial restriction–modification
genes, and ensure that methylation of the host
DNA precedes restriction by delaying transcription
of the endonuclease. The operator DNA sequence
to which C.AhdI binds consists of two adjacent
binding sites, OL and OR. Binding of C.AhdI to OL

and to OL 1 OR has been investigated by circular
permutation DNA-bending assays and by circular
dichroism (CD) spectroscopy. CD indicates consid-
erable distortion to the DNA when bound by C.AhdI.
Binding to one or two sites to form dimeric and
tetrameric complexes increases the CD signal at
278 nm by 40 and 80% respectively, showing
identical local distortion at both sites. In contrast,
DNA-bending assays gave similar bend angles for
both dimeric and tetrameric complexes (47 and 388,
respectively). The relative orientation of C.AhdI
dimers in the tetrameric complex and the structural
role of the conserved Py-A-T sequences found at
the centre of C-protein-binding sites are discussed.

INTRODUCTION

Restriction–modification (R–M) systems encode a DNA
methyltransferase and an endonuclease. The methyltrans-
ferase (MTase) methylates specific bases within the DNA
recognition sequence; the restriction endonuclease
(ENase) cleaves DNA that is unmethylated at these
sites, whilst host DNA is methylated and avoids restric-
tion (1). This defence mechanism prevents incorporation
of foreign DNA into the host and thus acts as a primitive
form of ‘immune system’.

To avoid the possibility of ENase activity occurring
prior to methylation of the host DNA, the system must be
temporally regulated and ENase expression delayed until
such time as the MTase has modified all potential host
target sites. It is found that many R–M systems contain an
additional gene coding for a small protein (the controller,

or C, protein) (2–12) that regulates ENase expression (and
may also, in some cases, modulate expression of the
MTase).
The C-proteins bind to a control sequence upstream of

the C-gene, which, in turn, is located upstream of the
ENase (R) gene, such that the C and R genes are
transcribed as one operon. High levels of transcription
from the PvuII C/R promoter require C-protein expres-
sion (13) and C-dependent transcriptional regulation has
been reported for other R–M systems (7,12,14). In
addition, a weak C-independent promoter has been
reported in PvuII (13), which would allow subsequent
transcription from the C-dependent promoter. In AhdI,
both C-dependent and C-independent transcription have
also been demonstrated (K. Severinov, personal
communication).
The high-resolution structure of C.AhdI from the R–M

system of Aeromonas hydrophila was the first to be
reported (15). The structure reveals a largely alpha-helical
dimeric protein, including a helix-turn-helix motif respon-
sible for DNA sequence recognition. Efficient binding to
DNA requires dimerization of C.AhdI (16). However,
since the interaction between the two subunits of the
dimer is weak (Kd¼ 2.5 mM), expression of C.AhdI
(and thus R.AhdI) from this promoter cannot be
established until sufficiently high concentrations of
C.AhdI have accumulated (via expression from the weak
C-independent promoter) to favour protein dimerization
(16). C.AhdI dimers then bind to the C/R operator and
activate transcription from the strong C-dependent
promoter, leading to an exponential increase in C-protein
(and thus the endonuclease) by positive feedback. It is
clear that a mechanism for switching off transcription
is also required in any such positive feedback system.
We have previously shown that the controller protein

C.AhdI binds cooperatively to a sequence about 30 bp
upstream of its own gene (16,17). This sequence contains a
quasi-symmetrical repeating sequence resembling that
found upstream of many C-genes in a variety of type II
R–M systems (6,13). EMSA and analytical ultracentrifu-
gation studies have shown that C.AhdI forms dimeric and
tetrameric complexes on the promoter, and the binding
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constants for these interactions have been established (17).
It was proposed that the binding of C.AhdI dimers at the
distal site (OL) upstream of the C-gene activates transcrip-
tion of the C and R genes, through interaction with the
�-70 subunit of RNA polymerase bound at the adjacent
�35 site, whereas subsequent binding of the C-protein to
the proximal (OR) site (overlapping the �35 site) to form
tetramers represses transcription from this operon (17).
Binding of C.AhdI to the proximal site may provide the
required mechanism for subsequently switching off
transcription of its own gene, and thus also down-
regulating R.AhdI, to avoid overproduction of the
endonuclease (17).
There is no experimentally derived structure available

for the C.AhdI–promoter complex, although models have
been discussed (17). The 15-bp spacing between the two
binding sites would suggest that the dimers may be bound
to opposite faces of the DNA helix. However, both
bending and twisting of DNA can be important features in
protein–DNA complexes (18). Any large conformational
changes (bending or twisting) induced in the DNA would
significantly affect the relative orientation of dimers and
thus their intermolecular contacts in the DNA–protein
complex.
Here, we report the results of DNA-bending assays and

circular dichroism (CD) experiments to identify possible
changes in the conformation of the DNA upon formation
of dimeric and tetrameric nucleoprotein complexes.
Since binding to both operator sites in the native
promoter is highly cooperative, it is difficult to find
experimental conditions where only a single dimer is
bound to the DNA. Consequently, as well as the natural
sequence containing both binding sites (35WT), for each
experiment we have also used a mutated version of the
natural 35 bp operator in which one operator sequence
(OR) is changed to a non-specific sequence, since this
DNA sequence (35L) does not readily form tetrameric
complexes (17).

MATERIALS AND METHODS

Expression and purification of C.AhdI

C.AhdI was expressed and purified according to the
methods previously described by Streeter et al. (16).
Following over-expression of C.AhdI in E. coli BL21
(DE3) cells, DNA was dissociated from bound proteins by
addition of 1M NaCl. C.AhdI was then precipitated by
addition of 30% w/v (NH4)2SO4, resuspended, dialysed
and purified on a heparin column. C.AhdI was then
further purified by isoelectric precipitation, followed by
cation exchange chromatography using an SP Sepharose
column and size exclusion chromatography. Where
required, the protein was concentrated by an additional
SP Sepharose step using a salt step gradient. Purity at each
step was determined by Tris-tricine SDS-PAGE. The
concentration of the protein was determined by UV
absorption at 276 nm, using the theoretical extinction
coefficient of 2900M�1 � cm�1.

Preparation of DNA samples

DNA-binding studies required the use of pure DNA
duplexes of accurately measured concentration. DNA
duplexes were formed and purified using a SuperdexTM 75
10/30 high-resolution column and the concentration of the
resulting duplexes was measured by UV absorption at
260 nm. The extinction coefficients used for 35WT and
35L duplexes were 497 568 and 545 276M�1 � cm�1, as
calculated from the base composition and the measured
hypochromicity of the duplexes (17).

Cloning of the C.AhdI-binding site into a pBend vector

The vector, pBend5 (19), was used to generate fragments
for DNA-bending assays. pBend5 contains a HpaI site to
allow blunt-end ligation of the protein-binding site
into a site at the centre of the EcoRI–HindIII fragment
(Figure 1). Here, 35-bp DNA duplexes corresponding to

Figure 1. Insertion of the C.AhdI-binding sites (A) 35WT and (B) 35L
into pBEND5. The restriction sites of the enzymes used are shown. The
inserted sequence is shown in grey and the operator sites are
underlined.
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the complete (OLþOR) and the left (OL) operator
sequences were inserted into the pBend5 vector by HpaI
digestion of the pBend5 fragment and blunt-end ligation.
Successful insertion of the binding sites was verified by
EcoRI–HindIII digestion of the resulting plasmids, where
insertion of the binding site increases the fragment size
from 242 to 277 bp. DNA sequencing subsequently
confirmed the successful insertion of the fragments and
identified their orientation.

Bending assay

Equal-sized restriction fragments containing the protein-
binding sites at one of nine locations within the DNA were
generated by digestion with MluI, NheI, SpeI, XhoI,
EcoRV, PvuII, StuI, KpnI or BamHI. The position of
these restriction sites relative to those of the 35WT and
35L sequences within the EcoRI-HindIII fragment is
shown in Figure 1. The resulting EcoRV fragment
contains the binding site in the middle, whereas the
MluI and BamHI fragments contain the binding site near
either end of the fragment. Individual fragments were
purified by gel extraction and the concentration deter-
mined by UV spectroscopy. Each DNA fragment
(250 nM) was incubated with equal volumes of 1 mM
C.AhdI in 10mM Tris-HCl, pH 8.5, and the mixtures were
incubated at 48C for 30min; the resulting complexes were
analysed on a 10% non-denaturing polyacrylamide gel
and DNA bands were detected by EtBr staining.

Circular dichroism

CD spectra were recorded on a �� �180 spectrometer
(Applied Photophysics) which was continuously purged
with nitrogen gas. The temperature of the samples was
maintained at 20.0� 0.18C using a Peltier temperature
block. The instrument was calibrated for ellipticity units
(in millidegrees) and wavelength (in nm) using camphor
sulphonic acid at 290.5 nm and the xenon fine structure in
the region 460–490 nm, respectively. Due to the solvent
conditions (40mM Na citrate pH5.6, 100mM NaCl,
1mM EDTA), the wavelength scans were limited to
360–230 nm in all cases with the slits set to 2 nm on the
monochromator. All data were acquired at 1-nm intervals
with the number of sampling set to 10 500 operating in
conjunction with the adaptive sampling, set to error� 0.01
and maximum sampling 500 000. In addition, each sample
was scanned four times and the resultant data was signal
averaged. Smoothing was not required for this data set as
the signal to noise was excellent. Concentrations of DNA
and protein were determined from the UV absorption at
260 and 276 nm, respectively.

All measurements were recorded with a path length of
4mm at 208C. Spectra of the buffer were recorded and
subtracted for each sample spectrum recorded. The
baseline at 360 nm was then set to zero to remove cell
surface/positioning and instrumental variations. An ali-
quot of 1ml of DNA was pipetted into a Hellma
119.004F-QS strain-free cuvette for both 35WT and 35L
experiments. Aliquots of protein (50 mM C.AhdI) were
then added and CD spectra (360–230 nm) recorded on
each addition and corrected for dilution. Finally, protein

spectra were run from 360 to 230 nm and confirmed that
C.AhdI only contributed to the CD spectrum below
250 nm.
For thermal stability studies, CD melting curves were

recorded for the free DNA (35WT) and for C.AhdI
complexes at 2:1 and 4:1 protein:DNA ratios in the above
buffer. The temperature was ramped from 2 to 908C at a
rate of 0.38C/min. The CD signal at 274 nm was recorded
every 0.18C.

RESULTS

DNA bending by C.AhdI

The electrophoretic mobility of bent DNA depends on the
position of the bend (20). A number of vectors have been
constructed to allow determination of the degree of
protein-induced DNA bending from EMSA experiments
(19). The bending vector, pBend5, contains a 242 bp
EcoRI-HindIII fragment that consists of duplicated
restriction sites, separated by single XbaI, HpaI and SalI
sites (Figure 1). A DNA-binding sequence can be cloned
into the middle of this fragment, with one series of
restriction sites on either side. Digestion of the resulting
plasmid with any of these restriction enzymes results in
fragments of equal size, but with the DNA-binding site
situated at different positions, either in the middle of the
fragment or towards its ends. If the DNA is bent when the
protein binds, the fragment with the binding site located
near the end should be the least retarded.
In order to investigate binding of a C.AhdI dimer and a

C.AhdI tetramer to the left (OL) and complete (OLþOR)
operators, respectively, a bending assay was performed
using two DNA-binding sequences: the 35L sequence
consisting of the native OL sequence but with the OR

sequence mutated and the native 35WT sequence, in which
both OL and OR are intact. We have previously shown
that 35L binds a single dimer of C.AhdI, whereas 35WT
binds two C.AhdI dimers in a highly cooperative manner
(17). Thus DNA bending by dimeric and tetrameric
complexes can be compared.
Gel retardation analysis of the fragments containing the

complete C.AhdI operator sequence reveals clear retarda-
tion of the fragment containing 35WT positioned in the
centre, the extent of retardation decreasing symmetrically
as the binding site is positioned nearer the ends of the
fragment (Figure 2). The mobilities of each of the DNA
fragments in the absence of protein were similar, indicat-
ing that there is no intrinsic bending of the DNA prior to
protein–DNA complex formation.
Similarly, analysis of binding to the left C.AhdI

operator (35L) also indicated bending of DNA upon
protein binding, since the mobility was gradually retarded
as the protein-binding site was moved towards the middle
of the DNA fragment (Figure 3). As with 35WT, 35L also
demonstrated minimum mobility when in the middle of
the EcoRV-digested fragment. However, the mobility of
the bands was not entirely symmetrical for the two
apparently equivalent fragments. The equivalent MluI
and BamHI fragments in which the left operator is
located at opposing ends of the DNA fragment had
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different mobilities, with the BamHI fragment being more
retarded than that of MluI. This is caused by the
displacement of OL from the centre of the 35L insertion.
Thus, the centre of the protein-binding site is some 17 bp
closer to the end of the MluI fragment than in the
BamHI fragment, resulting in a greater mobility in the
former case.
Using the method of Thompson and Landy (21), the

relative mobilities of the complexes formed by the
fragments containing the protein-binding site at their
ends (me) or at their centre (mm) were used to estimate the
bend angle, �, according to the formula: me/mm¼ cos (�/2).
For the tetrameric complex with 35WT, the bend angle
was estimated to be �408, while for the dimeric complex
with 35L, the bend angle was estimated to be �518.
Bend angles were also determined by the method

described by Ferrari et al. (22), which takes
into consideration the mobilities of all fragments. The
Ferrari model is based on the quadratic equation:
y¼ ax2� bxþ c, where y is the mobility of the bound
DNA (Rbound) normalized to the mobility of the
corresponding free DNA (Rfree), x is the flexure displace-
ment (length from the middle of the binding site to the 50

end of the fragment/total fragment length), the bend

angle � being given by a¼�b¼ 2c(1� cos �). The ratio
Rbound/Rfree for both 35WT and 35L was plotted against
the relative flexure displacements and data was fitted to
the model described above.

For 35WT, the fitted equation was:
y¼ 0.3660x2� 0.3743xþ 0.8785 (R2

¼ 0.9455). The para-
meters a and b are in close agreement and indicate a
DNA-bending angle of 38� 28. For 35L, the fitted
equation was: y¼ 0.6062x2� 0.5764xþ 0.949 with
(R2
¼ 0.8043). The fit to the 35L data was less good than

that for 35WT, possibly due to the asymmetric position of
the protein-binding site in the 35L sequence. Nevertheless,
the constants a and b were in fairly close agreement and
lead to an estimate for the bending angle of 47� 58 for the
dimeric complex. This value can be compared with the
angle of 548 reported for binding of C.EcoO109I to a 15-
bp DNA sequence (12), which presumably binds as a
dimer to this site.

Circular dichroism analysis of C.AhdI–DNA complexes

Circular dichroism spectroscopy was used to monitor
local changes in the DNA structure upon binding of
C.AhdI. Experiments were performed with 35-bp DNA
duplexes containing either the left or complete operator
sequence, to observe the effects of both dimer and
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Figure 2. DNA bending by C.AhdI tetramers. (A) Native polyacryla-
mide gel electrophoresis of C.AhdI bound to a 158-bp fragment with
the binding site (35WT) located at different positions. Samples are run
adjacent to 100-bp DNA ladders (M) and free MluI and EcoRV DNA
fragments. (B) Plot of the relative band mobilities against flexure
displacement and associated fit.
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Figure 3. DNA bending by C.AhdI dimers. (A) Native polyacrylamide
gel of C.AhdI bound to a 158-bp fragment with the mutated operator
site, 35L, located at different positions. Samples are run adjacent to
100-bp DNA ladders (M) and free MluI and EcoRV DNA fragments.
(B) Plot of the relative band mobilities against flexure displacement and
associated fit.
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tetramer binding. In both cases, aliquots of 50 mM C.AhdI
were successively added to a 1ml sample of 4.5 mM DNA.
Figure 4 shows overlays of the CD spectra obtained for
35WT following successive additions of C.AhdI. There is
no significant wavelength shift when the protein binds
(maxima at 274.5 nm for 35WT and 277.5 nm for 35L),
but there is a large increase in the magnitude of the CD
signal in both cases. For binding to 35WT, this amounts
to an 80% increase in �" at saturation compared to the
unbound DNA.

Figure 5 shows the increase in �" as the protein:DNA
molar ratio increases, for both 35WT and 35L sequences.
Upon addition of C.AhdI to 35WT, an almost linear
increase in �" was observed up to a 4:1 protein to DNA

molar ratio, indicating strong stoichiometric binding to
both DNA-binding sites. The �" observed for C.AhdI
binding to 35L increases in a similar fashion up to a 2:1
protein to DNA ratio, and thereafter increases at a much
lower rate, consistent with strong binding of the first dimer
and very weak binding of the second dimer. The
pronounced increase in the CD signal for binding
C.AhdI dimers and tetramers (40 and 80%, respectively)
clearly indicates a significant deformation to the DNA
structure at each of the two adjacent DNA-binding sites.
The binding data could be fitted to the sequential

binding model used in previous studies of C.AhdI (17),
and gave identical values for the change in �" at each site
at saturation (��"¼ 1.2 cm�1 �M�1). The association
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Figure 4. CD spectra following C.AhdI binding. (A) The 35WT sequence and (B) the 35L sequence. Scans were taken from 360 to 230 nm for every
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at 208C.
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constant for the formation of C.AhdI dimers (K1) was
fixed at 4� 105M�1, as determined previously from AUC
experiments, although at the relatively high DNA
concentrations used in the CD titrations, this value is
not of great relevance as the protein is dimeric throughout
the titration. The binding constant for binding the first
dimer (K2) could be fitted with a value of 2� 107M�1 in

both cases. For binding of the second dimer to the OR

operator site in the 35WT DNA sequence,
K3¼ 3� 107M�1 was obtained. In contrast, binding of
the second dimer to 35L is three orders of magnitude
weaker (K3¼ 2� 104M�1), corresponding to weak non-
specific binding of the second dimer at this site, as
expected since the specific sequence required for C.AhdI
recognition has been mutated at this site.

In order to investigate the stability of the DNA
complexes formed, CD melting curves were recorded for
the DNA (35WT), and for protein complexes with DNA
at 2:1 and 4:1 molar ratios. The free DNA shows a
classical melting curve with a Tm of 65.28C (Figure 6A). It
is notable that for the 2:1 and 4:1 nucleoprotein
complexes, the large enhancement of the CD signal
remains throughout the temperature range until the
DNA melts. Thus the C.AhdI dimeric and tetrameric
complexes are highly thermostable; moreover, the struc-
tural changes induced in the DNA are retained until the
DNA denatures. Normalization of the data to represent
the fractional denaturation of the DNA (Figure 6B) shows
that the melting curves are almost identical. Detailed
inspection of the curves shows that there is a small
increase in the Tm from 65.2 to 66.58C for the tetrameric
complex and a somewhat higher Tm of 68.58C for the
dimeric complex. The slightly lower thermal stability of
the tetrameric complex, compared to the dimeric complex,
could reflect the higher intrinsic binding affinity at the OL

site, combined with a decrease in the cooperativity
(and thus a reduction in the effective affinity for the
second site) at higher temperatures.

DISCUSSION

Circular dichroism experiments indicate significant
changes in the structure of DNA arising from C.AhdI
binding. Specifically, binding of a C.AhdI dimer to the OL

site induces a 40% increase in the CD signal of the peak at
278 nm and binding of two such dimers to the intact
operator site induces an 80% increase in the CD signal,
when compared to the CD spectra of the free DNA. The
structural changes observed for the binding of consecutive
C.AhdI dimers to the operator sequence are additive, in
contrast to the situation observed in bending assays. This
reflects the fact that CD is reporting on local structure
rather than the global structure responsible for electro-
phoretic mobility.

Hillen et al. (23) carried out a systematic study of the
CD spectra of DNA fragments of various sequences in the
range 12–360 bp and, although the detailed spectra differ
in detail, all had values of �" of around 2.5 (cm�1 �M�1)
per nucleotide, typical of B-form DNA. A-form DNA (for
example, when induced by non-aqueous solvents) typically
shows much higher values of �".

The CD spectrum of DNA can also change significantly
when bound by proteins that distort the DNA structure
locally. The magnitude of the positive CD peak most often
increases when DNA–protein complexes are formed, for
example as seen for gal repressor (24) and lac repressor
(25); however, in some instances e.g. cro repressor (26), the
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CD signal decreases on forming the DNA–protein
complex. The observed increase in �" in the C.AhdI
tetrameric complex (from 2.9 to 5.2 cm�1 �M�1 per
nucleotide) is amongst the largest observed, comparable
but even larger than the increase in CD when two TET
repressor dimers bind to the tet operator sequence (from
2.9 to 4.8 cm�1 �M�1 per nucleotide (27)). It is interesting
to note that the bend angle (488) introduced into DNA
when a TET repressor dimer binds to its operator
sequence (28) is almost identical to the bend angle (478)
when a C.AhdI dimer binds DNA, correlating with a
similar increase in CD signal at 276 nm.

The optimal DNA length required for dimer and
tetramer binding was previously measured by electro-
phoretic mobility shift assays (EMSA) to be �21 and
�35 bp, respectively, indicating significant (�7 bp) overlap
between the two C.AhdI dimers in the tetramer complex
(17). It was therefore proposed that the two dimers must
occupy different faces of the DNA helix. This would be
consistent with the observed spacing of 15 bp between the
centres of the two binding sites, if standard B-form DNA
was assumed. However, formation of DNA–protein
complexes frequently distort the DNA and indeed, this
is the case for C.AhdI as judged by the results of circular
dichroism.

Using mobility shift assays, we have shown that binding
of a C.AhdI dimer to OL causes the DNA to bend by
�478, while binding of two dimers to the complete
operator sequence containing both OL and OR induces a
bend of �388. Assuming the local bend at each site is
equal, one can relate the overall bend angle to the
rotational phasing of the two dimers in the tetrameric
complex. If the two C.AhdI dimers bound on the same
face of the DNA (�¼ 0), the bend angle for the tetramer
complex would be double that for the dimer complex.
However, we find that the bending is not additive; rather,
formation of the tetramer leads to a lower overall bend
angle than that caused by binding of one dimer,
supporting the hypothesis that the two dimers occupy
different faces of the DNA. Clearly, however, the bend
angles do not cancel out to zero (as might be expected if
the proteins were bound on opposite faces of the DNA
helix, i.e. �¼ 1808).

It is possible to estimate the twist angle (�) between the
planes of adjacent bending centres trigonometrically from
the overall bend angles observed for dimeric and tetra-
meric complexes. For two identical bends (�) introduced
into a linear structure, where the planes defining each bend
deviate from co-planarity by an angle �, giving an overall
bend angle �, it can be shown (Dr D. Whitley, personal
communication) that cos �¼ sqrt(1� s2) cos (�þ �), where
s¼ (sin � � sin �), �¼ tan�1 (tan � � cos �). This analysis
assumes that the distance separating the two bends is
small compared with the overall length, as is the case here.
From this we derive a twist angle, �¼ 1258 corresponding
to 11.1 bp per turn over the 15 bp separating the two
centres (or the equally valid mirror image solution,
�¼�1258¼ 2358, corresponding to 9.1 bp per turn).
This can be compared with theoretical values of �¼ 1808
for 10 bp per turn, or 1558 for 10.5 bp per turn. Thus our
data indicate that in addition to DNA bending, there is

significant twisting of the DNA, but we cannot distinguish
between the two possibilities of underwinding or
overwinding.
Dickerson (29) has performed a systematic study of

DNA bending by proteins, and found that such bending is
almost always due to the roll angle at adjacent Py-Pu
steps, notably at CA and TA dinucleotides. It is of interest
to note that the trinucleotide spacer at the centre of both
C.AhdI-binding sites (CAT and TAT, respectively) is
strongly conserved over a wide range of known and
predicted C-protein-binding sites from different bacterial
species (13). This suggests a structural role since these
sequences are asymmetrical and unlikely to make
sequence-specific interactions with the C-protein dimer.
It may also be relevant that the most commonly found
nucleotide following the T of the trinucleotide spacer is A
(i.e. the first base in the consensus recognition sequence
AGTC). The conservation of Py-A-T sequences in the
trinucleotide spacer could therefore reflect a requirement
for protein-induced DNA bending at these sites.
Finally, the results presented should be of more general

significance in cases where two or more proteins bend
adjacent sequences of DNA. We show that the overall
bend angle observed is unlikely to be simply the sum of the
individual bend angles, but will be highly dependent on
the rotational phasing of the binding sites and thus the
twist angle of the intervening base pairs.
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