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Although there are molecularly distinct subtypes of prostate cancer, no

molecular classification system is used clinically. The ribonucleotide reduc-

tase small subunit M2 (RRM2) gene plays an oncogenic role in many can-

cers. Our previous study elucidated comprehensive molecular mechanisms

of RRM2 in prostate cancer (PC). Given the potent functions of RRM2,

we set out to determine whether the RRM2 signature can be used to iden-

tify aggressive subtypes of PC. We applied gene ontology and pathway

analysis in RNA-seq datasets from PC cells overexpressing RRM2. We

refined the RRM2 signature by integrating it with two molecular classifica-

tion systems (PCS and PAM50 subtypes) that define aggressive PC sub-

types (PCS1 and luminal B) and correlated signatures with clinical

outcomes in six published cohorts comprising 4000 cases of PC. Increased

expression of genes in the RRM2 signature was significantly correlated

with recurrence, high Gleason score, and lethality of PC. Patients with high

RRM2 levels showed higher PCS1 score, suggesting the aggressive PC fea-

ture. Consistently, RRM2-regulated genes were highly enriched in the

PCS1 signature from multiple PC cohorts. A simplified RRM2 signature

(12 genes) was identified by intersecting the RRM2 signature, PCS1 signa-

ture, and the PAM50 classifier. Intriguingly, inhibition of RRM2 specifi-

cally targets PCS1 and luminal B genes. Furthermore, 11 genes in the

RRM2 signature were correlated with enzalutamide resistance by using a

single-cell RNA-seq dataset from PC circulating tumor cells. Finally, high

expression of RRM2 was associated with an immunosuppressive tumor-im-

mune microenvironment in both primary prostate cancer and metastatic

prostate cancer using CIBERSORT analysis and LM22, a validated leuko-

cyte gene signature matrix. These data demonstrate that RRM2 is a driver
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of aggressive prostate cancer subtypes and contributes to immune escape,

suggesting that RRM2 inhibition may be of clinical benefit for patients

with PC.

1. Introduction

Prostate cancer is a heterogeneous disease and the

third leading cause of cancer death among American

men. Clinical decision making has been largely driven

by clinical and pathologic variables, such as tumor

stage, Gleason score, and serum prostate-specific anti-

gen (PSA) levels (Falzarano and Magi-Galluzzi, 2011;

Gleason and Mellinger, 1974). Inhibition of androgen

receptor (AR) signaling is the mainstay of therapy for

recurrent or advanced prostate cancer (Assikis and

Simons, 2004) but is limited in its utility because of

acquired resistance (Attard et al., 2016). There is an

unmet clinical need to identify patients with aggressive

and drug-resistant prostate cancer and develop thera-

pies to treat these patients.

Molecular classification has been successfully applied

in many cancers and is routinely used to guide treatment

decisions (Perou et al., 2000). In contrast, molecular sub-

typing of prostate cancer is based on the underlying

genomic alterations and is less established as a determi-

nant of prognosis and guide to treatment. Multiple stud-

ies have attempted to establish individual biomarkers or

gene expression signatures to predict aggressive cases of

prostate cancer (Bibikova et al., 2007; Cuzick et al., 2011;

Glinsky et al., 2005; Penney et al., 2011), but these studies

were limited by the small number of samples analyzed.

Recently, You et al. reported a novel molecular classifica-

tion of prostate cancer subtypes (PCS) that was gener-

ated from transcriptomic data from more than 4600

prostate cancer specimens. This classification categorizes

prostate cancer into three distinct molecular subtypes

(PCS1, PCS2, and PCS3) and was validated in ten inde-

pendent prostate cancer cohorts and several preclinical

in vitro and in vivo prostate cancer models (You et al.,

2016). The PCS classification system appears useful in

distinguishing aggressive disease using both the tumor

and blood of patients with prostate cancer. In addition to

the PCS signatures, the PAM50 classifier, which was

commercially developed as Prosigna to assess breast can-

cer risk (Nielsen et al., 2014), was recently proven to seg-

regate prostate cancer into three subtypes (luminal A,

luminal B, and basal) in retrospective and prospective

cohorts totaling 3782 samples (Zhao et al., 2017).

Both the PCS1 and luminal B signatures can be used

to effectively identify cases of prostate cancer with

poor prognosis, but treating these patients will require

an understanding of the molecular drivers of these

subtypes. Although the FOXM1 pathway was recently

identified as a key driver of PCS1 tumors (Ketola

et al., 2017), small molecules targeting transcription

factors are difficult to develop, and there are no speci-

fic FOXM1 inhibitors for clinical application. Similar

to FOXM1, ribonucleotide reductase subunit M2

(RRM2) is a highly expressed gene in the PCS1 and

luminal B signatures. RRM2 maintains the deoxyri-

bonucleotide triphosphate (dNTP) pool to support

DNA synthesis and repair (Kumar et al., 2011) and is

overexpressed in multiple cancers (Grade et al., 2011;

Kretschmer et al., 2011). We previously reported the

significant prognostic value of RRM2 in prostate can-

cer by analyzing 11 prostate cancer cohorts (Mazzu

et al., 2019). We elucidated the molecular mechanisms

underlying its potent oncogenic function by knocking

down or overexpressing RRM2 in multiple prostate

cancer cell lines. Additionally, we demonstrated that

COH29, an RRM2 inhibitor currently in clinical trials

for solid tumors, had efficacy against prostate cancer

cells in vitro and in vivo.

In this study, we further demonstrated that RRM2 is a

druggable driver of PCS1 and luminal B tumors. Bioin-

formatic analysis revealed that RRM2-regulated genes

are highly enriched in PCS1 genes and are significantly

correlated with clinical outcomes. Tumors with high

expression of RRM2 have tumor-infiltrating lymphocyte

(TIL) populations consistent with an immunosuppressive

microenvironment. Finally, we demonstrated that target-

ing RRM2 specifically inhibits the expression of genes in

the PCS1 and luminal B signatures.

2. Materials and methods

2.1. Clinical cohort summary

All publicly available prostate cancer cohorts used in

this study are summarized in Table 1.

2.2. Cell culture

LNCaP (RRID: CVCL_0395) and PC-3 (RRID:

CVCL_0035) cells were purchased from ATCC (Manassas,
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VA, USA). C4-2 (LNCaP C4-2, RRID: CVCL_4782) cells

were obtained from VitroMed (Burlington, NC, USA). As

previously described (Mazzu et al., 2019), lentiviral vectors

encoding RRM2 were infected in LNCaP and PC-3 cells,

and stable cell lines were generated and maintained using

puromycin selection. Efficiency of overexpression was veri-

fied by qPCR and western blot. All cells were maintained

in media with 10% FBS (Thermo Fisher Scientific, Wal-

tham, MA, USA) supplemented with 2 mM of L-glutamine

(Thermo Fisher Scientific) and 100 U�mL�1 penicillin/

streptomycin (Thermo Fisher Scientific) at 37 °C in 5%

CO2. Cell line authentication was performed by human

short-tandem repeat profiling at the Memorial Sloan Ket-

tering Cancer Center Integrated Genomics Operation

within the last 3 years. Experiments were performed in

mycoplasma-free cell lines.

2.3. Gene silencing and overexpression

SMARTpool siRNAs (Dharmacon, Lafayette, CO,

USA) were used for transfection with RNAiMAX

(Thermo Fisher Scientific) to knock down target gene

expression. For overexpression, cells were transduced

with lentiviral vectors encoding RRM2 and selected by

treatment with puromycin as described previously

(Mazzu et al., 2019). Efficiency of knockdown and

overexpression was verified after 2 or 3 days by qPCR

and western blot.

2.4. RNA sequencing

Total RNA was extracted from cells and analyzed as

previously described (Zhang et al., 2011). RNA

sequencing (RNA-seq) was performed by 50 million

2 9 50 bp reads at the Memorial Sloan Kettering

Cancer Center Integrated Genomics Operation, and

data were analyzed in PARTEK FLOW software (St.

Louis, MO, USA). The data are available from GEO

(GSE117921–GSE117924).

2.5. Bioinformatic analysis of clinical cohorts

Bioinformatic analysis of the clinical cohorts was per-

formed using data obtained from cBioPortal for Can-

cer Genomics (Gao et al., 2013) and Oncomine

(Rhodes et al., 2004). Heat maps and volcano plots

were generated using R version 3.4.3 (https://www.R-

project.org). Pathway analysis from RNA-seq data

was performed using gene set enrichment analysis

(GSEA) and ToppGene (Chen et al., 2009; Subrama-

nian et al., 2005).

The enrichments function in cBioPortal was used to

identify genes with expression that was significantly corre-

lated with RRM2 overexpression (RRM2: EXP > 1.5, z-

score) in prostate cancer clinical cohorts. Only genes with

expression that positively correlated with RRM2 levels

[R > 0.5, false discovery rate (FDR) < 0.05] from pub-

lished prostate cancer cohorts [The Cancer Genome Atlas

(TCGA), Kumar, and Stand Up To Cancer/Prostate Can-

cer Foundation (SU2C/PCF)] were selected (Kumar et al.,

2016; Network, 2015; Robinson et al., 2015). These genes

(n = 626) were intersected with gene expression data from

the PC-3 and LNCaP cell lines with stable RRM2 overex-

pression to develop the RRM2 signature.

Prostate cancer subtype scores were calculated with

gene set variation analysis (GSVA) using single-sample

Table 1. Details of the prostate cancer clinical cohorts that were used in the study. aCGH, array comparative genomic hybridization; BCR,

biochemical recurrence; dbGaP, database of Genotypes and Phenotypes; NCI GDC, National Cancer Institute Genomic Data Commons; OS,

overall survival; PRAD, prostate adenocarcinoma; RPPA, reverse-phase protein array; WES, whole-exome sequencing.

Cohort

name

Benign/normal

tissue number

Tumor

number

Primary

number

Metastasis

number

Clinical

outcome Data type Year Accession number Reference

TCGA 0 333 333 0 BCR WES, RNA-

seq, RPPA

2015 TCGA-PRAD (NCI

GDC Data Portal)

CGA Research

Network, TCGA Data

Portal

Taylor 29 normal 216 131 19 BCR aCGH, RNA-

seq

2010 GSE21032 (GEO) Taylor et al. (2010)

SU2C/

PCF

0 150 0 150 BCR WES, RNA-

seq

2015 Phs000915.v1.p1

(dbGaP)

Robinson et al. (2015)

Kumar 176 benign 176 22 154 BCR aCGH,

WES,

microarray

2016 GSE77930 (GEO) Kumar et al. (2016)

Grasso 28 benign 122 59 35 OS aCGH,

microarray

2012 GSE35988 (GEO) Grasso et al. (2012)

Setlur 0 363 363 0 OS microarray 2008 GSE8402 (GEO) Setlur et al. (2008)
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GSEA (ssGSEA) (Barbie et al., 2009). Briefly, PCS sig-

nature scores were defined by the quantification of the

composite expression of each gene in the signature in

each sample. We computed a z-score for the expression

of each gene in each sample by subtracting the pooled

mean from the RNA-seq expression values and divid-

ing by the pooled standard deviation. The overall sur-

vival analysis with the 12-gene signature was

performed using KM plotter (www.kmplot.com/mir

power) (Lanczky et al., 2016).

2.6. TIL maps and cell-type identification by

estimating relative subsets of RNA transcripts

analysis

In each cohort, samples were categorized as RRM2

high (upper quantile) or low (lower quantile) based on

mRNA expression. The fraction of TILs in TCGA

cases was determined with a machine-learning algorithm

that uses digital hematoxylin and eosin (H&E) slides

(Saltz et al., 2018). The abundance of immune cell frac-

tions in each sample was determined using cell-type

identification by estimating relative subsets of RNA

transcripts (CIBERSORT) and LM22, a validated

leukocyte gene signature matrix (Newman et al., 2015).

2.7. Statistical analysis

Results are reported as mean � standard deviation.

Comparisons between groups were performed using an

unpaired two-sided Student’s t-test or Wilcoxon rank-

sum test (P < 0.05 was considered significant). Dis-

ease-free survival (DFS) was examined using the

Kaplan–Meier method. Patients were divided into two

groups (upper and lower quartile based on RRM2

expression or RRM2 signature score), and Kaplan–
Meier curves were generated for each group. The log-

rank test was used to determine significance. Cox pro-

portional hazard regression was performed, adjusting

for clinical and demographic factors. The significance

of the correlation between gene expression and enzalu-

tamide resistance was analyzed by Fisher’s exact test.

The significance of the differences in the abundance of

immune cell types between groups was determined

using Wilcoxon’s rank-sum test with Benjamini–Hoch-

berg correction. Statistical analysis was completed

using R version 3.4.3 (https://www.R-project.org).

2.8. Data accessibility

RNA-seq data are available from the Gene Expression

Omnibus (GEO: GSE117921, GEO: GSE117922,

GEO: GSE117923, and GEO: GSE117924).

3. Results

3.1. Defining the RRM2 signature and its clinical

relevance in prostate cancer

Our prior study reported the potent oncogenic activity

and clinical significance of RRM2 in prostate cancer

(Mazzu et al., 2019). Although we demonstrated that

there was a significant correlation between increased

RRM2 levels and poor clinical outcomes, we believed

that the prognostic value of RRM2 had been underes-

timated because RRM2 expression is strictly regulated

during the cell cycle, with levels peaking during S-

phase, followed by rapid degradation (Chabes and

Thelander, 2000). However, its potent oncogenic activ-

ity is maintained to support tumor survival and pro-

gression (Fujita et al., 2010; Lee et al., 2014; Su et al.,

2014). We hypothesized that an RRM2 signature

would further elucidate the function of RRM2. To

modulate RRM2 activity in prostate cancer cells, we

developed two prostate cancer cell lines with stable

overexpression of RRM2 (PC-3-RRM2 and LNCaP-

RRM2) and used siRNA and COH29, a small mole-

cule inhibitor of RRM2 (Mazzu et al., 2019). Using

these cellular models, we were able to explore the tran-

scriptomic changes induced by RRM2, define the

downstream mechanisms through which RRM2 func-

tions, and identify an RRM2 signature.

To uncover downstream pathways, genes deregu-

lated with manipulation of RRM2 [FDR < 0.05,

�1.5 > fold change (FC) > 1.5] were subjected to gene

ontology (GO) analysis (Fig. 1A). To identify an

RRM2 signature, these genes were also compared to

the genes with expression that correlated with RRM2

levels in prostate cancer clinical cohorts. The clinical

significance of the RRM2 signature was evaluated in

multiple prostate cancer cohorts. To determine

whether RRM2 is a driver of PCSs with poor progno-

sis, the signatures of two well-established prostate can-

cer classifications (PCS and PAM50) were compared

to the RRM2 signature.

3.2. RRM2 function is disease-state-specific in

prostate cancer

We have previously analyzed the transcriptomic changes

in PC-3 cells, an AR-negative cell line, that overexpress

RRM2 (PC-3-RRM2); we used this as a castration-resis-

tant cellular model (Mazzu et al., 2019). To compare

RRM2 function in different disease states, we performed

RNA-seq of LNCaP cells, an AR-positive cell line, that

overexpress RRM2 (LNCaP-RRM2). We confirmed
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overexpression of RRM2 in both PC-3 and LNCaP cells

in our previous study (Mazzu et al., 2019). In both

stable cell lines, a similar number of genes were deregu-

lated by RRM2 overexpression (Fig. 1B). Among the

1230 PC-3 and 1457 LNCaP upregulated genes, there

were 146 genes that were upregulated in both cell lines.

Only 45 downregulated genes were shared among the

1033 PC-3 and 1219 LNCaP downregulated genes in

either cell line (Fig. 1C). Overall, less than 10% of genes

were regulated by RRM2 in both LNCaP and PC-3

cells, indicating the underlying function of RRM2 may

be disease-state-specific, as these two prostate cancer cell

lines may represent different disease states because of

their AR status.

Fig. 1. RRM2 function is disease-state-specific. (A) Schematic of the experimental design. As previously reported (Mazzu et al., 2019),

transcriptomic changes induced by RRM2 overexpression or inhibition (FDR < 0.05, �1.5 > FC > 1.5) from cellular models were integrated

with prostate cancer clinical cohorts to generate an RRM2 signature. Here, we applied the PCS and PAM50 gene sets to further

characterize the signature. (B) Volcano plots show transcriptomic changes induced by RRM2 overexpression in LNCaP (left) and PC-3 (right)

cells. (C) Venn diagrams show the overlap of genes upregulated (left) and downregulated (right) with RRM2 overexpression in LNCaP and

PC-3 cells (FDR < 0.05, �1.5 > FC > 1.5). (D) Venn diagram (left) depicts the overlap of GO analysis of genes upregulated by RRM2

overexpression. Bar graphs (right) show common biological processes activated in 2 cell lines with RRM2 overexpression. (E) Enrichment of

RRM2-upregulated genes from LNCaP in EMT and (F) angiogenesis. GSEA results are from LNCaP cells, and Venn diagrams show the

overlap between pathway genes and genes upregulated in LNCaP and PC-3 cells that overexpress RRM2. (G) GO enrichment of common

genes deregulated in LNCaP-RRM2/C4-2-siRRM2 (left) and PC-3-RRM2/C4-2-siRRM2 (right).
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Given the previously reported strong oncogenic role

of RRM2 in prostate cancer (Mazzu et al., 2019), we

performed GO analysis on the RRM2-upregulated

genes in LNCaP and PC-3 cells and found that 47 bio-

logical processes were activated in both cell lines

(Fig. 1D). The top six were related to tumor metasta-

sis, which is consistent with our prior report of

RRM2-induced epithelial–mesenchymal transition

(EMT) phenotypes in both cell lines (Mazzu et al.,

2019). Unlike GO analysis, GSEA provides enrichment

scores that signify the enrichment of the specific gene

set. GSEA demonstrated that RRM2-upregulated

genes in LNCaP cells were significantly enriched in

EMT and angiogenesis gene sets (Fig. 1E,F), which is

similar to the phenotype we previously reported in PC-

3-RRM2 cells (Mazzu et al., 2019). Surprisingly, only

eight of the 38 enriched genes in the EMT gene set

and only seven of the 47 enriched genes in the angio-

genesis gene set are shared by the two cell lines, sug-

gesting that RRM2 regulates both pathways in LNCaP

and PC-3 cells through distinct gene sets.

To further understand the molecular mechanisms reg-

ulated by RRM2, we integrated transcriptomic datasets

from siRRM2-treated C4-2 cells (C4-2-siRRM2),

LNCaP-RRM2, and PC-3-RRM2. Changes in RRM2

expression levels in these cell lines were shown in our

prior study (Mazzu et al., 2019). Previously, our Topp-

Gene analysis revealed that the 58 common genes that

were upregulated in PC-3-RRM2 and downregulated in

C4-2-siRRM2 were significantly enriched in oncogenic

pathways and cancer hallmarks (Fig. 1G) (Mazzu et al.,

2019). The 54 shared genes between LNCaP-RRM2 and

C4-2-siRRM2 cells were enriched in gene sets related to

prostate development, gastric cancer progression, angio-

genesis, and H3K27me3 (Fig. 1G). Only seven genes

were shared between the 58 upregulated genes in PC-3-

RRM2 and the 54 upregulated genes in LNCaP-RRM2.

These results support the hypothesis that RRM2 may

play a similar oncogenic role in PC-3 and LNCaP cells

by regulating distinct gene sets in different biological

contexts.

3.3. Clinical relevance of the RRM2 signature

To validate RRM2-regulated genes in prostate cancer

clinical samples, we compared genes upregulated in

cells that overexpress RRM2 to those with expression

that positively correlated with RRM2 levels in the

TCGA (localized prostate cancer), Kumar [metastatic

castration-resistant prostate cancer (CRPC)], and

SU2C/PCF (metastatic CRPC) cohorts (Kumar et al.,

2016; Network, 2015; Robinson et al., 2015) (Fig. 2A).

There were approximately 2000–3000 genes with

expression that positively correlated with RRM2 levels

in each of the three cohorts. Among these genes, more

were upregulated in PC-3-RRM2 (< 250) than in

LNCaP-RRM2 (< 116, Fig. 2A). When we compared

genes from the three cohorts with the genes identified

in the cell lines that overexpress RRM2, there were

126 genes in PC-3-RRM2 and only seven genes in

LNCaP-RRM2 that were shared with the clinical

cohorts (Fig. 2B and Table S1). Using ssGSEA, we

previously reported (Mazzu et al., 2019) that the

expression of 126 genes was highly correlated with

poor DFS in the Taylor cohort (Taylor et al., 2010).

Here, we confirmed this result in the TCGA cohort

(Fig. 2C) and found that increased expression of the

126-gene signature was significantly correlated with

higher Gleason score and lethal disease in the Setlur

cohort (Fig. 2D), which has long-term outcome data

(Setlur et al., 2008).

3.4. High RRM2 expression is correlated with the

poor prognosis prostate cancer subtype PCS1

Among the three prostate cancer subtypes (PCS1–
PCS3), PCS1 is the most aggressive and lethal, and

PCS1 tumors progress more rapidly to metastatic dis-

ease than PCS2 or PCS3 tumors (You et al., 2016).

The FOXM1 pathway was recently reported as the

master regulator of the PCS1 subtype (Ketola et al.,

2017). We previously reported that RRM2 is not only

a target of FOXM1 but also regulates the FOXM1

Fig. 2. Integration of prostate cancer cell line transcriptomic data with clinical outcomes. (A) Venn diagrams (top) depicting the overlap of

genes with expression that positively correlated with RRM2 levels in TCGA (left), Kumar (middle), and SU2C/PCF (right) cohorts with

upregulated genes in LNCaP-RRM2 or PC-3-RRM2 cells. Below, plots show the genes with expression that correlates with RRM2

expression level in each prostate cancer cohort. (B) RRM2 signature: The 626 genes with expression that correlated with RRM2 levels in

the three clinical cohorts (left) were compared with genes upregulated in PC-3-RRM2 or LNCaP-RRM2 (right) to identify RRM2 signature

(126 genes). (C) Clinical significance of expression of the 126-gene RRM2 signature in the TCGA cohort. Samples were ranked based on

expression of the 126-gene RRM2 signature, and Kaplan–Meier curves were used to estimate survival differences between patients in the

top and bottom 25th percentiles of expression. The log-rank test was calculated to determine significance. Cox proportional hazard

regression was performed, adjusting for clinical and demographic factors. (D) Association between RRM2 signature (126 genes) level with

Gleason score (left) and lethality (right) in the Setlur cohort. Comparisons between groups were performed using Wilcoxon’s rank-sum test.
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pathway (Mazzu et al., 2019). Furthermore, RRM2 is

one of the most highly expressed genes in the PCS1

signature. To test our hypothesis that overexpression

of RRM2 could contribute to the development of

PCS1 tumors, ssGSEA was performed to determine

the correlation between RRM2 expression level and

PCS score in multiple prostate cancer cohorts. In each

patient sample, scores of PCS1, PCS2, and PCS3 gene

expression were calculated using ssGSEA. In these

analyses, RRM2 was removed from the PCS1 signa-

ture to avoid a false-positive correlation. There was a

significant association between high RRM2 expression

and high PCS1 score and low PCS3 score in patient

samples in the TCGA and Taylor cohorts (Fig. 3).

Intriguingly, the strong correlation between RRM2

expression level and PCS1 score was also seen in the

SU2C/PCF cohort in which all samples are of meta-

static CRPC (and RRM2 expression levels are already

high), suggesting that RRM2 is not only associated

with an aggressive PCS but may also regulate multiple

key PCS1 genes.

3.5. RRM2 may be a driver of PCS1 tumors

Because tumors with high RRM2 expression have high

PCS1 scores, we assessed whether RRM2-regulated

genes correlated with PCS signatures. GSEA demon-

strated that the 126 RRM2-regulated genes (Fig. 2B)

were highly enriched in PCS1 genes (Fig. 4A). Fifty

(40%) of the 126 genes overlapped with the 86 PCS1

genes (Fig. 4A and Table S1). Additionally, the

PAM50 classifier, which is used in determining breast

cancer prognosis, has also been reported to

consistently segregate prostate cancer into luminal and

basal subtypes that correlate with clinical outcome

(Zhao et al., 2017). Interestingly, all the overlapping

genes in the PCS1 signature and PAM50 classifier are

luminal B genes (Table S1). Fourteen genes in the 126-

gene signature overlap with the 50 genes of the

PAM50 signature. Among them, 12 genes were shared

with both PCS1 and PAM50 genes (Fig. 4A and

Table S1). The 126-gene signature did not share any

genes with the PCS2 and PCS3 signatures (Fig. 4A),

demonstrating that the signature is predictive of the

aggressive subtype of prostate cancer.

We have shown that high expression of the 126-gene

signature is associated with higher Gleason score and

shorter patient survival (Fig. 2C,D) (Mazzu et al.,

2019). Similarly, we found that high levels of the 12-

gene RRM2/PCS1 subsignature were associated with a

significant decrease in DFS in the TCGA and Taylor

cohorts (Fig. 4B). High expression of the 12 genes was

also associated with increased Gleason score and

lethality in the Setlur cohort (Fig. 4C). The oncogenic

function of RRM2 has been confirmed in breast, ovar-

ian, lung, and liver cancers, and we assessed whether

the 12-gene signature was associated with poor out-

comes in these tumors (Aird et al., 2014; Shah et al.,

2014; Xu et al., 2008). High expression of the signature

was significantly correlated with worse overall survival

in all four cancer types (Fig. 4D,E), with 1.4- to 3.3-

fold shorter median survival (Fig. 4F). Altogether,

these data suggest that the 12-gene panel is the core

set of genes downstream of RRM2 that control tumor

progression and affect clinical outcomes in prostate

cancer and tumors of other cellular origins.

Fig. 3. RRM2 levels are highly correlated with PCS1 gene expression. Correlation of RRM2 level with PCS gene expression in TCGA (left),

Taylor (middle), and SU2C/PCF (right) cohorts. Each individual patient sample is indicated by a single column (top plot) and a single dot

(bottom plot). PCS scores were calculated with GSVA using the ssGSEA method, and the values were compared to RRM2 mRNA

expression levels divided by quantiles. The differences between pairs are statistically significant except for those labeled as N.S. (not

significant). Significance was determined using Wilcoxon’s rank-sum test.
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3.6. Inhibition of RRM2 activity specifically

targets aggressive prostate cancer subtypes

To further evaluate how the regulation of RRM2 affects

PCS signatures, we integrated our RRM2-regulated

transcriptome profiling from cell lines with gene expres-

sion data from prostate cancer clinical cohorts. We vali-

dated that the distinct gene profiling patterns of PCS

genes correlated with tumor type in both the Taylor and

Grasso (Grasso et al., 2012) cohorts (Fig. 5A). PCS1

genes were highly upregulated in metastatic tumors

compared with normal prostate and primary tumors,

PCS2 genes had high expression in primary tumors, and

PCS3 genes were downregulated in prostate cancer com-

pared with normal prostate. PCS genes also showed dif-

ferent profiling patterns in the Kumar cohort, which is

mostly composed of metastatic cases (154/176). This

suggests that PCS signatures not only distinguish nor-

mal, primary, and metastatic samples, but they may also

define a subset of metastatic samples (Fig. 5A).

Prostate cancer subtype genes were compared to

genes downregulated with RRM2 inhibition and genes

Fig. 4. Clinical significance of the 12-gene RRM2 subsignature. (A) GSEA plot (left) shows high enrichment of PCS1 genes in the RRM2

signature. Venn diagrams (right) depict the overlap between genes in the RRM2 signature with PCS1 and PAM50 genes (left) and PCS2 and

PCS3 genes (right). The 12 genes shared by PCS1, PAM50, and RRM2 signature comprise the 12-gene subsignature. (B) Correlation of

expression of the 12-gene signature with DFS in the Taylor (left) and TCGA (right) cohorts. (C) Correlation of the 12-gene signature ssGSEA

score with Gleason score (left) and lethality (right) in the Setlur cohort. (D) Correlation between 12-gene signature expression and probability

of overall survival (OS) was analyzed in breast and lung cancer and (E) ovarian and liver cancer. Samples were ranked based on expression

of the 12-gene subsignature, and Kaplan–Meier curves were used to estimate survival differences between patients in the top and bottom

25th percentiles of expression. The log-rank test was calculated to determine significance. Cox proportional hazard regression was

performed, adjusting for clinical and demographic factors. Significance was determined using Wilcoxon’s rank-sum test. (F) Median survival

time was compared between cases with low (blue) or high (orange) expression of the 12-gene panel.
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Fig. 5. Inhibition of RRM2 specifically

targets genes that define poor prognostic

subtypes of prostate cancer. (A)

Supervised hierarchical clustering of

prostate cancer cases in the Taylor (top),

Grasso (middle), and Kumar (bottom)

cohorts, based on expression of PCS

genes. Genes deregulated with RRM2

overexpression (PC-3-RRM2) and

inhibition of RRM2 (by COH29) are

shown. (B) Supervised hierarchical

clustering of prostate cancer cases from

the Kumar cohort, based on expression of

PAM50 classifier genes. Genes

deregulated with RRM2 overexpression

(PC-3-RRM2) and inhibition of RRM2 (by

COH29) are shown.
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upregulated with RRM2 overexpression. Strikingly,

COH29 treatment specifically inhibited the expression

of most PCS1 genes and also targeted PCS2 genes

(Fig. 5A). In addition to the PCS signatures, we also

applied the PAM50 classifier in our analysis. In the

Kumar cohort, we observed some separation of basal

and luminal subtypes (Fig. 5B). The majority of PCS1

genes overlapped with genes upregulated in luminal B

tumors; these cases have the poorest clinical prognoses

(Zhao et al., 2017). Genes targeted by RRM2 inhibi-

tion or genes upregulated by RRM2 overexpression in

PC-3 cells were highly enriched in luminal B genes

(Fig. 5B). Together, these data suggest that RRM2 is

a driver of the aggressive PCSs and that inhibition of

RRM2 could specifically target the subtypes of pros-

tate cancer with the worst prognosis.

3.7. The RRM2 signature may predict

enzalutamide resistance in prostate cancer

circulating tumor cells

Circulating tumor cells (CTCs) detach from the pri-

mary or secondary tumor sites and invade the blood-

stream, and they have been reported to be useful

prognostic biomarkers to aid prostate cancer diagno-

sis, treatment decision making, and patient follow-up

(Chung et al., 2019; De Laere et al., 2019; Nimir et al.,

2019). The prognostic value of CTCs collected by the

epithelial marker-dependent method CellSearch has

been established in the context of metastatic PC

(Hegemann et al., 2016). Given the prognostic signifi-

cance of the RRM2 signature in prostate cancer, we

further investigated whether the RRM2 signature had

clinical significance in prostate cancer CTCs.

Based on single-cell RNA-seq data of CTCs from

patients with CRPC, a 37-gene panel was reported to

identify patients with resistance to the AR antagonist

enzalutamide (Miyamoto et al., 2015; You et al.,

2016). As previously described (Miyamoto et al.,

2015), patients who did not receive enzalutamide treat-

ment before CTC collection were denoted as enzalu-

tamide na€ıve, and patients whose cancer showed

radiographic and/or PSA progression during enzalu-

tamide therapy were denoted as enzalutamide-resistant.

We assessed whether our 126-gene RRM2 signature

could also predict enzalutamide resistance in CTCs. Of

the 126-gene signature, 21 genes were detectable in the

CTC dataset (FDR < 0.05). Unsupervised hierarchical

clustering based on expression of the 21 genes revealed

two groups of CTCs (Fig. 6A). In Group I, 21 (36%)

of the 59 CTCs were from enzalutamide-resistant

patients. In Group II, 15 (83%) of the 18 CTCs were

from enzalutamide-resistant patients. Increased

expression of 11 of the 21 genes significantly correlated

with enzalutamide resistance (Fig. 6A and Table S1);

eight of the 11 genes were upregulated in the enzalu-

tamide-resistant CTCs of Group II (Fig. 6A). Surpris-

ingly, only three genes of the 11-gene panel from the

RRM2 signature overlapped with the reported 37-gene

PCS panel (You et al., 2016). These results suggest

that the 11-gene panel derived from the RRM2 signa-

ture could be useful in predicting enzalutamide resis-

tance in the CTCs of patients with CRPC.

Furthermore, high expression of the 11-gene signature

is significantly associated with poor clinical outcomes

(e.g., Gleason score and lethality in the Setlur cohort

and DFS in the TCGA cohort; Fig. S1).

3.8. RRM2 overexpression creates an

immunosuppressive tumor-immune

microenvironment in prostate cancer

The tumor-immune microenvironment (TIME), which

can alter tumor progression and clearance, is affected by

the genomic alterations of the tumor (Thorsson et al.,

2018). We previously reported that overexpression of

RRM2 is highly correlated with copy number alteration

(Mazzu et al., 2019); we therefore analyzed the correla-

tion between RRM2 overexpression and infiltration of

immune cells in patients with prostate cancer from mul-

tiple cohorts. TIL scores were calculated in RRM2-high

and RRM2-low groups from the TCGA cohort using

deep-learning models that integrate H&E staining of tis-

sues (Saltz et al., 2018). Intriguingly, TIL enrichment

was significantly greater in the RRM2-high group than

the RRM2-low group (P = 9.2e-05, Fig. 6B). To further

examine the correlation between RRM2 level and

immune cell infiltration, we applied CIBERSORT anal-

ysis, a method of estimating the composition and abun-

dance of immune cells from tumor biopsies (Newman

et al., 2015). In the TCGA cohort, the infiltration of

antitumor immune cells was significantly lower in the

RRM2-high group than in the RRM2-low group (CD8+

T cells, P = 0.0012; plasma cells, P = 0.00015), whereas

immunosuppressive regulatory T cells (Tregs) were more

abundant in RRM2-high tumors (P = 0.00027, Fig. 6B).

Similarly, RRM2-high tumors in the Taylor cohort,

which is mostly composed of primary prostate cancer,

had significantly fewer plasma cells (P = 0.015) and

Tregs (P = 0.00041) than RRM2-low tumors (Fig. 6C).

In the SU2C/PCF cohort, which includes only meta-

static CRPC, RRM2-high tumors had significantly more

immunosuppressive M2 macrophages (P = 0.0431) and

Tregs (P = 0.0039) than RRM2-low tumors (Fig. 6D).

There was also greater infiltration of antitumor CD8+ T

cells (P = 0.031) in RRM2-high tumors. The signature
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scores of the 22 types of immune cells in the LM22 sig-

nature in the three prostate cancer cohorts are shown

(Figs S2–S4). Altogether, the high infiltration of

immunosuppressive immune cells is suggestive of dys-

functional or exhausted cytotoxic T cells in RRM2-high

tumors.

4. Discussion

Molecular subtyping based on genomic alterations or

oncogenic signatures has been successfully applied in

multiple cancers. However, the heterogeneous nature

of prostate cancer is a major impediment to

Fig. 6. RRM2 overexpression contributes to enzalutamide (ENZ) resistance and an immunosuppressive TIME. (A) Unsupervised hierarchical

clustering of single-cell RNA-seq data from 77 CTCs from 13 patients with CRPC treated with enzalutamide (from GSE67980) based on

expression of 21 genes from the RRM2 signature. Genes with expression that was significantly upregulated in the ENZ-resistant CTCs of

Group II are shown in red (11-gene panel). *P < 0.05, **P < 0.01, ***P < 0.001. (B) Profiling of immune cells by CIBERSORT in the TCGA,

(C) Taylor, and (D) SU2C/PCF cohorts. Significance was determined using Wilcoxon’s rank-sum test with Benjamini–Hochberg correction.
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developing a classification system with clinical rele-

vance. Compared to individual biomarkers or other

oncogenic signatures, the prostate cancer classification

systems PCS and PAM50 are significantly better at

identifying aggressive and resistant cases of prostate

cancer.

The PCS classification system was developed and

validated in 4600 samples from patients with prostate

cancer. TCGA genomic subtypes (e.g., ERG, ETV1/4,

SPOP, FOXA1, and others) were present across all the

PCS categories (You et al., 2016). PCS1 is highly

enriched with the SPOP subtype, whereas PCS2

tumors were overrepresented in ERG cancers (You

et al., 2016). In the Genomic Resource Information

Database (GRID) cohorts, PCS1 was enriched for

Tomlins/ETS+ and Tomlins/SPINK1+ subtypes (You

et al., 2016). Importantly, in the GRID cohorts,

patients with PCS1 tumors had significantly shorter

metastasis-free survival than patients with PCS2 and

PCS3 tumors, but no difference in metastatic progres-

sion was seen among the Tomlins categories (You

et al., 2016). The PAM50 classification, which was

developed using 3782 samples from patients with pros-

tate cancer, was also recently shown to predict associa-

tions with clinical outcomes and response to treatment

(Zhao et al., 2017).

This study expands upon our prior work on RRM2

in prostate cancer and demonstrates that RRM2 is a

master driver of poor prognosis prostate cancer identi-

fied by both the PCS1 and PAM50 classification sys-

tems. RRM2 is essential for DNA synthesis and repair

by producing dNTPs. Its level is rigorously regulated

during the cell cycle, and delayed degradation may

lead to genomic instability (D’Angiolella et al., 2012).

RRM2 is expressed at low levels in normal prostate

tissue, but increased expression of RRM2 is highly cor-

related with poor clinical outcomes in prostate cancer

(Huang et al., 2014; Mazzu et al., 2019). We have pre-

viously demonstrated that RRM2 is an oncogene in

prostate cancer cells, regulates multiple oncogenic sig-

naling pathways, and promotes EMT and angiogenesis

(Mazzu et al., 2019). Although common pathways

were activated by RRM2 overexpression in LNCaP

and PC-3 cells, the majority of the upregulated genes

were different (Fig. 2D–F), suggesting that RRM2-reg-

ulated genes may be disease-state-specific.

Genomic alterations that occur in primary prostate

cancer may not be enough to predict clinical behavior.

The additional and distinct genomic alterations that

develop over time add to the molecular heterogeneity

of the primary disease and promote metastatic CRPC

phenotypes. Therefore, it is not surprising that RRM2

regulates distinct gene sets in two cell lines that may

represent different disease states. LNCaP-RRM2 cells

share a greater number of upregulated genes with the

TCGA cohort, which only includes localized prostate

cancer, than with the Kumar and SU2C/PCF cohorts,

which mainly include metastatic CRPC (Fig. 2A). PC-

3 cells are more aggressive than LNCaP cells and may

be more representative of advanced CRPC. This is

supported by our data on the TCGA, Kumar, and

SU2C/PCF cohorts, which demonstrates that a greater

number of upregulated genes in PC-3-RRM2 cells

overlap with genes with expression that correlates with

RRM2 than LNCaP-RRM2 cells (126 genes in PC-3;

seven genes in LNCaP; Fig. 2B). These results further

support the idea that RRM2 may function by regulat-

ing distinct gene sets in different disease stages of pros-

tate cancer.

Although FOXM1 was identified as a key regulator

of the most aggressive subtype of prostate cancer

(PCS1), it is difficult to target pharmacologically.

Given that RRM2, a gene in the PCS1 and PAM50

signatures, has significant prognostic value in prostate

cancer, we evaluated whether it could be another key

regulator of aggressive subtypes. Intriguingly, expres-

sion of PCS1 genes is highly correlated with RRM2

levels in prostate cancer cohorts; genes upregulated by

RRM2 overexpression in prostate cancer cells are also

significantly enriched in the PCS1 signature. Further-

more, the 12 genes of the RRM2 signature that are

also in the PCS1 and PAM50 signatures are luminal B

genes. These results indicate that RRM2 may be a

master driver of the aggressive subtypes PCS1 and

luminal B by directly or indirectly regulating the

expression of critical genes. Ribonucleotide reductase

inhibitors have been developed for cancer treatment

(Knighton et al., 2018), and we previously reported

the potency of the novel RRM2 inhibitor COH29 in

prostate cancer (Mazzu et al., 2019). In this study, we

confirmed that inhibiting RRM2 activity by siRNA or

small molecule (COH29) specifically targets PCS1 and

luminal B genes (Fig. 5).

Interestingly, the PAM50 classifier was recently

reported as a pan-carcinoma luminal/basal subtyping

across epithelial tumors, and luminal B tumors were

more sensitive to the ribonucleotide reductase inhibitor

gemcitabine than the other subtypes (Zhao et al.,

2019). Because gemcitabine-induced amplification of

RRM2 is a mechanism of gemcitabine resistance (Dux-

bury et al., 2004; Zhou et al., 2001), we propose that

RRM2-specific inhibitors (e.g., COH29) may be more

effective than gemcitabine for multiple epithelial can-

cers with similar luminal and basal subtypes. Addition-

ally, we demonstrated that RRM2 overexpression may

contribute to AR antagonist resistance, suggesting that
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inhibition of RRM2 may delay the development of

resistance.

Because the response rates to immunotherapy in

prostate cancer are low, biomarkers are needed to

determine which patients will respond. As a driver of

aggressive prostate cancer, RRM2 may have a major

impact on the TIME. Here, we demonstrated that

tumors with high expression of RRM2 have more

TILs, but the concomitant enrichment of immunosup-

pressive immune cells suggests that these TILs may be

dysfunctional. Metastatic cases of prostate cancer with

high RRM2 levels have increased infiltration of

immunosuppressive M2 macrophages, which may con-

tribute to immune escape. It will be critical to validate

the association between RRM2 overexpression and

changes in the TIME by histologic staining in pros-

tate cancer tissue. Patients with RRM2-high tumors

may be good candidates to receive immunotherapy

because of increased TIL infiltration. Combination

treatment of RRM2 inhibitors with immunomodula-

tors to stimulate cytotoxic T cells and inhibit

immunosuppressive cells may sensitize these tumors to

immunotherapies.

5. Conclusions

In summary, we have shown that the genes shared by

the PCS1 and luminal B signatures are regulated by

RRM2. This suggests that RRM2 is a master driver of

aggressive PCSs. Targeting RRM2 may be an effective

therapeutic option to reprogram the TIME and treat

the subtypes of prostate cancer with poor prognosis.
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