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SUMMARY
In this chapter, we consider in silico modeling of diseases 
starting from some simple to some complex (and mathemati-
cal) concepts. Examples and applications of in silico modeling 
for some important categories of diseases (such as for cancers, 
infectious diseases, and neuronal diseases) are also given.
385

WHAT YOU CAN EXPECT TO KNOW
Recent advances in bioinformatics and systems biology 
have enabled modeling and simulation of sub-cellular and 
cellular processes, and disease using primarily methods 
from dynamical systems theory. In this approach, all inter-
actions among all components in a system are described 
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athematically and computed models are established. These 
n silico models encode and test hypotheses about mecha-
isms underlying the function of cells, the pathogenesis and 
athophysiology of disease, and contribute to identification 
f new drug targets and drug design. The development of 
n silico models is facilitated by rapidly advancing experi-
ental and analytical tools that generate information-rich, 

igh-throughput biological data. Bioinformatics provides 
ools for pattern recognition, machine learning, statistical 
odeling, and data extraction from databases that contrib-

te to in silico modeling. Dynamical systems theory is the 
atural language for investigating complex biological sys-
ems that demonstrate nonlinear spatio-temporal behavior. 

ost in silico models aim to complement (and not replace) 
xperimental research. Experimental data are needed for 
arameterization, calibration, and validation of in silico 
odels. Typical examples in biology are models for molec-

lar networks, where the behavior of cells is expressed in 
erms of quantitative changes in the levels of transcripts and 
ene products, as well as models of cell cycle. In medicine, 
n silico models of cancer, immunological disease, lung 
isease, and infectious diseases complement conventional 
esearch with in vitro models, animal models, and clinical 
rials. This chapter presents basic concepts of bioinformat-
cs, systems biology, their applications in in silico model-
ng, and also reviews applications in biology and disease.

ISTORY AND METHODS

IOINFORMATICS IN ANIMAL 
IOTECHNOLOGY

iotechnology will be the most promising life science fron-
ier for the next decade. Together with informatics, biotech-
ology is leading revolutionary changes in our society and 
conomy. This genomic revolution is global, and is creating 
ew prospects in all biological sciences, including medi-
ine, human health, disease, and nutrition, agronomy, and 
nimal biotechnology.

Animal biotechnology is a source of innovation in 
roduction and processing, profoundly impacting the 
nimal husbandry sector, which seeks to improve animal 
roduct quality, health, and well-being. Biotechnological 
esearch products, such as vaccines, diagnostics, in vitro 
ertilization, transgenic animals, stem cells, and a num-
er of other therapeutic recombinant products, are now 
ommercially available. In view of the immense poten-
ial of biotechnology in the livestock and poultry sectors,  
nterest in animal biotechnology has increased over the 
ears.

The fundamental requirement for modern biotechnol-
gy projects is the ability to gather, store, classify, ana-
yze, and distribute biological information derived from 
enomics projects. Bioinformatics deals with methods for 
storing, retrieving, and analyzing biological data and protein 
sequences, structures, functions, pathways, and networks, 
and recently, in silico disease modeling and simulation 
using systems biology. Bioinformatics encompasses both 
conceptual and practical tools for the propagation, genera-
tion, processing, and understanding of scientific ideas and 
biological information.

Genomics is the scientific study of structure, function, 
and interrelationships of both individual genes and the 
genome. Lately, genomics research has played an impor-
tant role in uncovering the building blocks of biology and 
complete genome mapping of various living organisms. 
This has enabled researchers to decipher fundamental cel-
lular functions at the DNA level, such as gene regulation or 
protein–protein interactions, and thus to discover molecular 
signatures (clusters of genes, proteins, metabolites, etc.), 
which are characteristic of a biological process or of a 
specific phenotype. Bioinformatics methods and databases 
can be developed to provide solutions to challenges of han-
dling massive amounts of data.

The history of animal biotechnology with bioinfor-
matics is to make a strong research community that will 
build the resources and support veterinary and agricultural 
research. There are some technologies that were used dating 
back to 5,000 B.C. Many of these techniques are still being 
used today. For example, hybridizing animals by crossing 
specific strains of animals to create greater genetic varieties 
is still in practice. The offspring of some of these crosses 
are selectively bred afterward to produce the most desirable 
traits in those specific animals.

There has been significant interest in the complete 
analysis of the genome sequence of farm animals such as 
chickens, pigs, cattle, sheep, fish, and rabbits. The genomes 
of farm animals have been altered to search for preferred 
phenotypic traits, and then selected for better-quality ani-
mals to continue into the next generation. Access to these 
sequences has given rise to genome array chips and a num-
ber of web-based mapping tools and bioinformatics tools 
required to make sense of the data. In addition, organization 
of gigabytes of sequence data requires efficient bioinfor-
matics databases. Fadiel et al. (2005) provides a nice over-
view of resources related to farm animal bioinformatics and 
genome projects.

With farm animals consuming large amounts of geneti-
cally modified crops, such as modified corn and soybean 
crops, it is good to question the effect this will have on their 
meat. Some of the benefits of this technology are that what 
once took many years of trial and error is now completed in 
just months. The meats that are being produced are coming 
from animals that are better nourished by the use of biotech-
nology. Biotechnology and conventional approaches are 
benefiting both poultry and livestock producers. This will 
give a more wholesome affordable product that will meet 
growing population demands.
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Moreover, bioinformatics methods devoted to inves-
tigating the genomes of farm animals can bring eventual 
economic benefits, such as ensuring food safety and better 
food quality in the case of beef. Recent advances in high-
throughput DNA sequencing techniques, microarray technol-
ogy, and proteomics have led to effective research in bovine 
muscle physiology to improve beef quality, either by breed-
ing or rearing factors. Bioinformatics is a key tool to ana-
lyze the huge datasets obtained from these techniques. The 
computational analysis of global gene expression profiling at 
the mRNA or protein level has shown that previously unsus-
pected genes may be associated either with muscle develop-
ment or growth, and may lead to the development of new 
molecular indicators of tenderness. Gene expression profiling 
has been used to document changes in gene expression; for 
example, following infection by pathological organisms, 
during the metabolic changes imposed by lactation in dairy 
cows, in cloned bovine embryos, and in various other models.

Bioinformatics enrichment tools are playing an impor-
tant role in facilitating the functional analysis of large 
gene lists from various high-throughput biological studies. 
Huang et al. discusses 68 bioinformatics enrichment tools, 
which helps us understand their algorithms and the details 
of a particular tool. However, in biology genes do not act 
independently, but in a highly coordinated and interdepen-
dent manner. In order to understand the biological meaning, 
one needs to map these genes into Gene-Ontology (GO) 
categories or metabolic and regulatory pathways. Differ-
ent bioinformatics approaches and tools are employed for 
this task, starting form GO-ranking methods, pathway map-
pings, and biological network analysis (Werner, 2008). The 
awareness of these resources and methods is essential to 
make the best choices for particular research interests.

Knowledge of bioinformatics tools will facilitate their 
wide application in the field of animal biotechnology. Bio-
informatics is the computational data management discipline 
that helps us gather, analyze, and represent this information in 
order to educate ourselves, understand biological processes in 
healthy and diseased states, and to facilitate discovery of bet-
ter animal products. Continued efforts are required to develop 
cost-effective and efficient computational platforms that can 
retrieve, integrate, and interpret the knowledge behind the 
genome sequences. The application of bioinformatics tools 
for biotechnology research will have significant implications 
in the life sciences and for the betterment of human lives. 
Bioinformatics is being adopted worldwide by academic 
groups, companies, and national and international research 
groups, and it should be thought of as an important pillar of 
current and future biotechnology, without which rapid prog-
ress in the field would not be possible. Systems approaches 
in combination with genomics, proteomics, metabolomics, 
and kinomics data have tremendous potential for providing 
insights into various biological mechanisms, including the 
most important human diseases.
BIOINFORMATICS AND SYSTEMS BIOLOGY

We are witnessing the birth of a new era in biology. The 
ability to uncover the genetic code of living organisms has 
dramatically changed the biological and biomedical sci-
ences approach towards research. These new approaches 
have also brought in newer challenges.

One such challenge is that recent and novel technologies 
produce biological datasets of ever-increasing size, includ-
ing genomic sequences, RNA and protein abundances, their 
interactions with each other, and the identity and abundance 
of other biological molecules. The storage and compila-
tion of such quantities of biological data is a challenge: the 
human genome, for example, contains 3 billion chemical 
units of DNA, whereas a protozoan genome has 670 billion 
units of DNA. Data management and interpretation requires 
development of newly sophisticated computational meth-
ods based on research in biology, medicine, pharmacology, 
and agricultural studies and using methods from computer 
science and mathematics – in other words, the multi-disci-
plinary subject of bioinformatics.

Bioinformatics enables researchers to store large data-
sets in a standard computer database format and provides 
tools and algorithms scientists use to extract integrated 
information from the databases and use it to create hypoth-
eses and models. Bioinformatics is a growth area because 
almost every experiment now involves multiple sources of 
data, requiring the ability to handle those data and to draw 
out inferences and knowledge. After 15 years of rapid evo-
lution, the subject is now quite ubiquitous.

Another challenge lies in deciphering the complex inter-
actions in biological systems, known as systems biology. 
Systems biology can be described as a biology-based inter-
disciplinary field of study that focuses on complex interac-
tions of biological systems. Those in the field claim that it 
represents a shift in perspective towards holism instead of 
reductionism.

Systems biology has great potential to facilitate develop-
ment of drugs to treat specific diseases. The drugs currently 
on the market can target only those proteins that are known 
to cause disease. However, with the human genome now 
completely mapped, we can target the interaction of genes 
and proteins at a systems biology level. This will enable 
the pharmaceutical industry to design drugs that will only 
target those genes that are diseased, improving healthcare 
in the United States. Like two organs in one body, systems 
analysis and bioinformatics are separate but interdependent.

COMMON COMPUTATIONAL METHODS 
IN SYSTEMS BIOLOGY

Computational methods take an interdisciplinary approach, 
involving mathematicians, chemists, biologists, biochem-
ists, and biomedical engineers. The robustness of datasets 
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related to gene interaction and co-operation at a systems 
level requires multifaceted approaches to create a hypoth-
esis that can be tested. Two approaches are used to under-
stand the network interactions in systems biology, namely 
Experimental and Theoretical and Modeling techniques 
(Choi, 2007). In the following sections is a detailed over-
view of the different computational or bioinformatics meth-
ods in modern systems biology.

EXPERIMENTAL METHODS IN SYSTEMS 
BIOLOGY

Experimental methods utilize real situations to test the 
hypothesis of mined data sets. As such, living organisms 
are used whereby various aspects of genome-wide measure-
ments and interactions are monitored. Specific examples on 
this point include:

PROTEIN–PROTEIN INTERACTIONS (PPIs)

Protein–protein interaction predictions are methods used 
to predict the outcome of pairs or groups of protein inter-
actions. These predictions are done in  vivo, and various 
methods can be used to carry out the predictions. Interac-
tion prediction is important as it helps researchers make 
inferences of the outcomes of PPI. PPI can be studied by 
phylogenetic profiling, identifying structural patterns and 
homologous pairs, intracellular localization, and post-trans-
lational modifications, among others. A survey of available 
tools and web servers for analysis of protein–protein inter-
actions is provided by Tuncbag et al., 2009.

TRANSCRIPTIONAL CONTROL NETWORKS

Within biological systems, several activities involving the 
basic units of a gene take place. Such processes as DNA 
replication, and RNA translation and transcription into pro-
teins must be controlled; otherwise, the systems could yield 
numerous destructive or useless gene products. Transcrip-
tional control networks, also called gene regulatory net-
works, are segments within the DNA that govern the rate 
and product of each gene.

Bioinformatics have devised methods to look for 
destroyed, dormant, or unresponsive control networks. The 
discovery of such networks helps in corrective therapy, 
hence the ability to control some diseases resulting from 
such control network breakdowns. There has also been rapid 
progress in the development of computational methods for 
the genome-wide “reverse engineering” of such networks. 
ARACNE is an algorithm to identify direct transcriptional 
interactions in mammalian cellular networks, and prom-
ises to enhance the ability to use microarray data to elu-
cidate cellular processes and to identify molecular targets 
of pharmacological drugs in mammalian cellular networks. 
In addition to methods like ARACNE, systems biology 
approaches are needed that incorporate heterogeneous 
data sources, such as genome sequence and protein–DNA 
interaction data. The development of such computational 
modeling techniques to include diverse types of molecular 
biological information clearly supports the gene regulatory 
network inference process and enables the modeling of the 
dynamics of gene regulatory systems. One such technique 
is the template-based method to construct networks. An 
overview of the method is shown in Flow Chart 21.1.

The template-based transcriptional control network 
reconstruction method exploits the principle that ortholo-
gous proteins regulate orthologous target genes. Given a 
genome of interest (GoI), the first step is to select the tem-
plate genome (TG) and known regulatory interactions (i.e. 
template network, TN) in this genome. In step 2, for every 
protein (P) in TN, a blast search is performed against GoI to 
obtain the best hit sequences (Px). In step three these Px are 
then used as a query to perform a blast search against TG. 
If the best hit using Px as a query happens to be P, then both 
P and Px are selected as orthologous proteins in step four. 
If orthologs were detected for an interacting P and target 
gene then the interaction is transferred in GoI in the final 
step. Note that this automated way of detecting orthologs 
can infer false positives.

SIGNAL TRANSDUCTION NETWORKS

Signal transduction is how cells communicate with each 
other. Signal transduction pathways involve interactions 
between proteins, micro- and macro-molecules, and DNA. 
A breakdown in signal transduction pathways could lead 

FLOW CHART 21.1  Template-based method for regulatory network 
reconstruction.
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to detrimental consequences within the system due to lack 
of integrated communication. Correction of broken signal 
transduction pathways is a therapeutic approach researched 
for use in many areas of medicine.

High-throughput and multiplex techniques for quan-
tifying signaling and cellular responses are becoming 
increasingly available and affordable. A high-throughput 
quantitative multiplex kinase assay, mass spectrometry-
based proteomics, and single-cell proteomics are a few of 
the experimental methods used to elucidate signal transduc-
tion mechanisms of cells. These large-scale experiments 
are generating large data sets on protein abundance and  
signaling activity. Data-driven modeling approaches such as 
clustering, principal components analysis, and partial least 
squares need to be developed to derive biological hypothe-
ses. The potential of data-driven models to study large-scale 
data sets quantitatively and comprehensively will make sure 
that these methods will emerge as standard tools for under-
standing signal-transduction networks.

MATHEMATICAL MODELING TECHNIQUES

The systems biology and mathematical biology fields focus 
on modeling biological systems. Computational systems 
biology aims to develop computational models of biologi-
cal systems. Specifically, it focuses on developing and using 
efficient algorithms, data structures, visualization tools, and 
communication tools. A mathematical model can provide 
new insights into a biological model of interest and help in 
generating testable predictions.

Modeling or simulation can be viewed as a way of creat-
ing an artificial biological system in vitro whose properties 
can be changed or made dynamic. By externally controlling 
the model, new datasets can be created and implemented at 
a systems level to create novel insights into treating gene-
related problems. In modeling and simulation, sets of dif-
ferential equations and logic clauses are used to create a 
dynamic systems environment that can be tested.

Mathematical models of biochemical networks (signal 
transduction cascades, metabolic pathways, gene regula-
tory networks) are a central component of modern systems 
biology. The development of formal methods adopted from 
theoretical computing science is essential for the modeling 
and simulation of these complex networks. The computa-
tional methods that are being employed in mathematical 
biology and bioinformatics are the following: (a) directed 
graphs, (b) Bayesian networks, (c) Boolean networks and 
their generalizations, (d) ordinary and partial differential 
equations, (e) qualitative differential equations, (f) stochas-
tic equations, and (g) rule-based formalisms. Below are a 
few specific examples of the applications of these methods.

Mathematical models can be used to investigate the 
effects of drugs under a given set of perturbations based on 
specific tumor properties. This integration can help in the 
development of tools that aid in diagnosis and prognosis, 
and thus improve treatment outcome in patients with can-
cer. For example, breast cancer, being a well-studied disease 
over the last decade, serves as a model disease. One can 
thus apply the principles of molecular biology and pathol-
ogy in designing new predictive mathematical frameworks 
that can unravel the dynamic nature of the disease. Genetic 
mutations of BRCA1, BRCA2, TP53, and PTEN signifi-
cantly affect disease prognosis and increase the likelihood 
of adverse reactions to certain therapies. These mutations 
enable normal cells to become self-sufficient in survival 
in a stepwise process. Enderling et al. (2006) modeled this 
mutation and expansion process by assuming that mutations 
in two tumor-suppressor genes are sufficient to give rise to 
a cancer. They modified Enderling’s earlier model, which 
was based on an established partial differential equation 
model of solid tumor growth and invasion. The stepwise 
mutations from a normal breast stem cell to a tumor cell 
have been described using a model consisting of four dif-
ferential equations.

Recently, Woolf et al. (2005) applied a novel graphical 
modeling methodology known as Bayesian network analy-
sis to model discovery and model selection for signaling 
events that direct mouse embryonic stem cells (an important 
preliminary step in hypothesis testing) in protein signaling 
networks. The model predicts bidirectional dependence 
between the two molecules ERK and FAK. It is interest-
ing to appreciate that the apparent complexity of these 
dynamic ERK–FAK interactions is quite likely responsible 
for the difficulty in determining clear “upstream” versus 
“downstream” influence relationships by means of stan-
dard molecular cell biology methods. Bayesian networks 
determine the relative probability of statistical dependence 
models of arbitrary complexity for a given set of data. This 
method offers further clues to apply Bayesian approaches to 
cancer biology problems.

Cell cycle is a process in which cells proliferate while 
collectively performing a series of coordinated actions. 
Cell-cycle models also have an impact on drug discovery. 
Chassagnole et  al. (2006) used a mathematical model to 
simulate and unravel the effect of multi-target kinase inhib-
itors of cyclin-dependent kinases (CDKs). They quantita-
tively predict the cytotoxicity of a set of kinase inhibitors 
based on the in vitro IC50 measurement values. Finally, they 
assess the pharmaceutical value of these inhibitors as anti-
cancer therapeutics.

In cancer, avascular tumor growth is characterized by 
localized, benign tumor growth where the nearby tissues 
consume most of the nutrients. Mathematical modeling of 
avascular tumor growth is important to understanding the 
advanced stages of cancer. Kiran et al. (2009) have devel-
oped a spatial–temporal mathematical model classified as 
a different zone model (DZM) for avascular tumor growth 
based on diffusion of nutrients and their consumption, and 
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it includes key mechanisms in the tumor. The diffusion and 
nutrient consumption are represented using partial differ-
ential equations. This model predicts that onset of necrosis 
occurs when the concentrations of vital nutrients are below 
critical values, and also the overall tumor growth based on 
the size effects of the proliferation zone, quiescent zone, 
and necrotic zone.

The mathematical approaches towards modeling the 
three natural scales of interest (subcellular, cellular, and 
tissue) are discussed above. Developing models that can 
predict the effects across biological scales is a challenge. 
The long-term goal is to build a “virtual human made up 
of mathematical models with connections at the different 
biological scales (from genes to tissue to organ).”

THE CONCEPT OF MODELING

A model is an optimal mix of hypotheses, evidence, and 
abstraction to explain a phenomenon. Hypothesis is a ten-
tative explanation for an observation, phenomenon, or sci-
entific problem that can be tested by further investigation. 
Evidence describes information (i.e. experimental data) that 
helps in forming a conclusion or judgment. Abstraction is 
an act of filtering out the required information to focus on a 
specific property only. For example, archiving books based 
on the year of publication, irrespective of the author name, 
would be an example of abstraction. In this process, some 
detail is lost and some gained. Predictions are made through 
modeling that can be tested by experiment. A model may be 
simple (e.g. the logistic equation describing how a popu-
lation of bacteria grows) or complicated. Models may be 
mathematical or statistical.

Mathematical models make predictions, whereas statisti-
cal models enable us to draw statistical inferences about the 
probable properties of a system. In other words, models can 
be deductive or inductive. If the prediction is necessarily true 
given that the model is also true, then the model is a deduc-
tive model. On the other hand, if the prediction is statistically 
inferred from observations, then the model is inductive.  
Deductive models contain a mathematical description; for 
example, the reaction–diffusion equation that makes predic-
tions about reality. If these predictions do not agree with 
experiment, then the validity of the entire model may be 
questioned. Mathematical models are commonly applied in 
physical sciences. On the other hand, inductive models are 
mostly applied in the biological sciences. In biology, mod-
els are used to describe, simulate, analyze, and predict the 
behavior of biological systems. Modeling in biology pro-
vides a framework that enables description and understand-
ing of biological systems through building equations that 
express biological knowledge. Modeling enables the simu-
lation of the behavior of a biological system by performing 
in silico experiments (i.e. numerically solving the equa-
tions or rules that describe the model). The results of these  
in silico experiments become the input for further analysis; 
for example, identification of key parameters or mecha-
nisms, interpretation of data, or comparison of the ability of 
different mechanisms to generate observed data.

In particular, systems biology employs an integrative 
approach to characterizing biological systems in which 
interactions among all components in a system are described 
mathematically to establish a computable model. These in 
silico models complement traditional in vivo animal models 
and can be applied to quantitatively study the behavior of a 
system of interacting components. The term “in silico” is 
poorly defined, with several researchers claiming their role 
in its origination (Ekins et  al., 2007). Sieburg (1990) and  
(Danchin et  al. 1991) were two of the earliest published 
works that used this term. Specifically, in silico models 
gained much interest in the early stages by various imaging 
studies (Chakroborty et al., 2003). As an example, micro-
array analysis that enabled measurement of genome-scale 
expression levels of genes provided a method to investigate 
regulatory networks. Years of regulatory network studies 
(that included microarray-based investigations) led to the 
development of some well-characterized regulatory net-
works such as E. coli and yeast regulatory networks. These 
networks are available in the GeneNetWeaver (GNW) tool. 
GNW is an open-source tool for in silico benchmark gen-
eration and performance profiling of network inference 
methods. Thus, the advent of high-throughput experimen-
tal tools has allowed for the simultaneous measurement of 
thousands of biomolecules, opening the way for in silico 
model construction of increasingly large and diverse bio-
logical systems. Integrating heterogeneous dynamic data 
into quantitative predictive models holds great promise for 
significantly increasing our ability to understand and ratio-
nally intervene in disease-perturbed biological systems. 
This promise – particularly with regards to personalized 
medicine and medical intervention – has motivated the 
development of new methods for systems analysis of human 
biology and disease. Such approaches offer the possibility 
of gaining new insights into the behavior of biological sys-
tems, of providing new frameworks for organizing and stor-
ing data and performing statistical analyses, suggesting new 
hypotheses and new experiments, and even of offering a 
“virtual laboratory” to supplement in vivo and in vitro work.

However, in silico modeling in the life sciences is far 
from straightforward, and suffers from a number of potential 
pitfalls. Thus, mathematically sophisticated but biologically 
useless models often arise because of a lack of biological 
input, leading to models that are biologically unrealistic, 
or that address a question of little biological importance. 
On the other hand, models may be biologically realistic 
but mathematically intractable. This problem usually arises 
because biologists unfamiliar with the limitations of math-
ematical analysis want to include every known biological 
effect in the model. Even if it were possible to produce 
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such models, they would be of little use since their behav-
ior would be as complex to investigate as the experimental 
situation. These problems can be avoided by formulating 
clear explicit biological goals before attempting to con-
struct a model. This will ensure that the resulting model is 
biologically sound, can be experimentally verified, and will 
generate biological insight or new biological hypotheses. 
The aim of a model should not simply be to reproduce bio-
logical data. Indeed, often the most useful models are those 
that exhibit discrepancies from experiment. Such deviations 
will typically stimulate new experiments or hypotheses. An 
iterative approach has been proposed, starting with a bio-
logical problem, developing a mathematical model, and 
then feeding back into the biology. Once established, this 
collaborative loop can be traversed many times, leading to 
ever increasing understanding.

The ultimate goal of in silico modeling in biology is 
the detailed understanding of the function of molecular 
networks as they appear in metabolism, gene regulation, 
or signal transduction. This is achieved by using a level of 
mathematical abstraction that needs a minimum of biologi-
cal information to capture all physiologically relevant fea-
tures of a cellular network. For example, ideally, for in silico 
modeling of a molecular network, knowledge of the net-
work structure, all reaction rates, concentrations, and spa-
tial distributions of molecules at any time point is needed. 
Unfortunately, such information is unavailable even for the 
best-studied systems. In silico simulations thus always have 
to use a level of mathematical abstraction, which is dictated 
by the extent of our biological knowledge, by molecular 
details of the network, and by the specific questions that 
are addressed. Understanding the complexity of the disease 
and its biological significance in health can be achieved 
by integrating data from the different functional genomics 
experiments with medical, physiological, and environmen-
tal factor information, and computing mathematically. The 
advantage of mathematical modeling of disease lies in the 
fact that such models not only shed light on how a complex 
process works, which could be very difficult for inferring an 
understanding of each component of this process, but also 
predict what may follow as time evolves or as the character-
istics of particular system components are modified. Math-
ematical models have generally been utilized in association 
with an increased understanding of what models can offer 
in terms of prediction and insight.

The two distinct roles of models are prediction and 
understanding the accuracy, transparency, and flexibility of 
model properties. Prediction of the models should be accu-
rate, including all the complexities and population-level 
heterogeneity that have an additional use as a statistical 
tool. It also provides the understanding of how the disease 
spreads in the real world and how the complexity affects 
the dynamics. Model understanding aids in developing 
sophisticated predictive models, along with gathering more 
relevant epidemiological data. A model should be as simple 
as possible and should have balance in accuracy, transpar-
ency, and flexibility; in other words, a model should be 
well suited for its purpose. The model should be helpful in 
understanding the behavior of the disease and able to sim-
plify the other disease condition.

IN SILICO MODELS OF CELLS

Several projects are proceeding along these lines, such as 
E-CELL (Tomita, 2001) and simulations of biochemical 
pathways. Whole cell modeling integrates information from 
metabolic pathways, gene regulation, and gene expression. 
Three elements are needed for constructing of a good cell 
model: precise knowledge of the phenomenon, an accurate 
mathematical representation, and a good simulation tool.

A cell represents a dynamic environment of interaction 
among nucleic acids, proteins, carbohydrates, ions, pH, tem-
perature, pressure, and electrical signals. Many cells with 
similar functionality form tissue. In addition, each type of tis-
sue uses a subset of this cellular inventory to accomplish a 
particular function. For example, in neurons, electro-chemical 
phenomena take precedence over cell division, whereas, cell 
division is a fundamental function of skin, lymphocytes, and 
bone marrow cells. Thus, an ideal virtual cell not only rep-
resents all the information, but also exhibits the potential to 
differentiate into neuronal or epithelial cells. The first step in 
creating a whole cell model is to divide the entire network into 
pathways, and pathways into individual reactions. Any two 
reactions belong to a pathway if they share a common inter-
mediate. In silico modeling consists not only of decompos-
ing events into manageable units, but also of assembling these 
units into a unified framework. In other words, mathematical 
modeling is the art of converting biology into numbers.

For whole cell modeling, a checklist of biological phe-
nomena that call for mathematical representation is needed. 
Biological phenomena taken into account for in silico mod-
eling of whole cells are the following:

	 1.	� DNA replication and repair
	 2.	� Translation
	 3.	� Transcription and regulation of transcription
	 4.	� Energy metabolism
	 5.	� Cell division
	 6.	� Chromatin modeling
	 7.	� Signaling pathways
	 8.	� Membrane transport (ion channels, pump, nutrients)
	 9.	� Intracellular molecular trafficking
	10.	� Cell membrane dynamics
	11.	� Metabolic pathways

The whole cell metabolism includes enzymatic and non-
enzymatic processes. Enzymatic processes cover most of the 
metabolic events, while non-enzymatic processes include gene 
expression and regulation, signal transduction, and diffusion.
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In silico modeling of whole cells not only requires pre-
cise qualitative and quantitative data, but also an appropriate 
mathematical representation of each event. For metabolic 
modeling, the data input consists of kinetics of individual 
reactions and also effects of cofactors, pH, and ions on the 
model. The key step in modeling is to choose an appropriate 
assumption. For example, a metabolic pathway may be a 
mix of forward and reverse reactions. Furthermore, inhibi-
tors that are part of the pathway may influence some reac-
tions. At every step, enzymatic equations are needed that 
best describe the process. In silico models are built because 
they are easy to understand, controllable, and can store and 
analyze large amounts of information. A well-built model 
has diagnostic and predictive abilities. A cell by itself is a 
complete biochemical reactor that contains all the infor-
mation one needs to understand life. Whole cell modeling 
enables investigation of the cell cycle, physiology, spatial 
organization, and cell–cell communication. Sequential 
actions in whole cell modeling are the following:

	 1.	� Catalog all the substances that make up a cell.
	 2.	� Make a list of all the reactions, enzymes, and effectors.
	 3.	� Map the entire cellular pathway: gene regulation, 

expression, metabolism, etc.
	 4.	� Build a stoichiometric matrix of all the reactions vs. 

substances (for qualitative modeling).
	 5.	� Add rate constants, concentration of substances, and 

strength of inhibition.
	 6.	� Assume appropriate mathematical representations for 

individual reactions.
	 7.	� Simulate reactions with suitable simulation software.
	 8.	� Diagnose the system with system analysis software.
	 9.	� Perturb the system and correlate its behavior to an 

underlying genetic and/or biochemical factor.
	10.	� Predict phenomenon using a hypothesis generator.

Advantages and Disadvantages of In Silico 
Modeling

In silico modeling of disease combines the advantages of both 
in vivo and in vitro experimentation. Unlike in vitro experi-
ments, which exist in isolation, in silico models provide the 
ability to include a virtually unlimited array of parameters, 
which render the results more applicable to the organism as a 
whole. In silico modeling allows us to examine the workings 
of biological processes such as homeostasis, reproduction, 
evolution, etc. For example, one can explore the processes of 
Darwinian evolution through in silico modeling, which are 
not practical to study in real time.

In silico modeling of disease is quite challenging. 
Attempting to incorporate every single known interaction 
rapidly leads to an unmanageable model. Furthermore, 
parameter determination in such models can be a frighten-
ing experience. Estimates come from diverse experiments, 
which may be elegantly designed and well executed but can 
still give rise to widely differing values for parameters. Data 
can come from both in vivo and in vitro experiments, and 
results that hold in one medium may not always hold in the 
other. Furthermore, despite the many similarities between 
mammalian systems, significant differences do exist, and 
so results obtained from experiments using animal and 
human tissue may not always be consistent. Also there are 
many considerations that cannot be applied. For example, 
one cannot investigate the role of stochastic fluctuations 
by removing them from the system, or one cannot directly 
explore the process that gave rise to current organisms.

APPLICATIONS OF IN SILICO DISEASE 
MODELING IN PRACTICE

In silico modeling has been applied in cancer, systemic 
inflammatory response syndrome, immune diseases, neu-
ronal diseases, and infectious diseases (among others). In 
silico models of disease can contribute to a better under-
standing of the pathophysiology of the disease, suggest new 
treatment strategies, and provide insight into the design of 
experimental and clinical trials for the investigation of new 
treatment modalities.

In Silico Models of Cancer

In silico modeling of cancer has become an interesting 
alternative approach to traditional cancer research. In silico 
models of cancer are expected to predict the complexity of 
cancer at multiple temporal and spatial resolutions, with 
the aim of supplementing diagnosis and treatment by help-
ing plan more focused and effective therapy via surgical 
resection, standard and targeted chemotherapy, and novel 
treatments. In silico models of cancer include: (a) statistical 
models of cancer, such as molecular signatures of perturbed 
genes and molecular pathways, and statistically-inferred 
reaction networks; (b) models that represent biochemi-
cal, metabolic, and signaling reaction networks important 
in oncogenesis, including constraint-based and dynamic 
approaches for the reconstruction of such networks; and 
(c) models of the tumor microenvironment and tissue-level 
interactions (Edelman et al., 2010).

Statistical models of cancer can be broadly divided into 
those that employ unbiased statistical inference, and those 
that also incorporate a priori constraints of specific biological 
interactions from data. Statistical models of cancer biology at 
the genetic, chromosomal, transcriptomic, and pathway levels 
provide insight about molecular etiology and consequences 
of malignant transformation despite incomplete knowledge 
of underlying biological interactions. These models are able 
to identify molecular signatures that can inform diagnosis 
and treatment selection, for example with molecular targeted 
therapies such as Imatinib (Gleevec) (Edelman et al., 2010).
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However, in order to characterize specific biomolecular 
mechanisms that drive oncogenesis, genetic and transcrip-
tional activity must be considered in the context of cellular 
networks that ultimately drive cellular behavior. In micro-
bial cells, network inference tools have been developed and 
applied for the modeling of diverse biochemical, signaling, 
and gene expression networks. However, due to the much 
larger size of the human genome compared to microbes, and 
the substantially increased complexity of eukaryotic genetic 
regulation, inference of transcriptional regulatory networks 
in cancer presents increased practical and theoretical  
challenges.

Biochemical reaction networks are constructed to repre-
sent explicitly the mechanistic relationships between genes, 
proteins, and the chemical inter-conversion of metabolites 
within a biological system. In these models, network links 
are based on pre-established biomolecular interactions 
rather than statistical associations; significant experimental 
characterization is thus needed to reconstruct biochemi-
cal reaction networks in human cells. These biochemical 
reaction networks require, at a minimum, knowledge of 
the stoichiometry of the participating reactions. Additional 
information such as thermodynamics, enzyme capacity con-
straints, time-series concentration profiles, and kinetic rate 
constants can be incorporated to compose more detailed 
dynamic models (Edelman et al., 2010).

Microenvironment-tissue level models of cancer apply 
an “engineering” approach that views tumor lesions as com-
plex micro-structured materials, where three-dimensional 
tissue architecture (“morphology”) and dynamics are 
coupled in complex ways to cell phenotype, which in turn 
is influenced by factors in the microenvironment. Com-
putational approaches of in silico cancer research include 
continuum models, discrete models, and hybrid models.

Types of Cancer Models

In continuum models, extracellular parameters can be 
represented as continuously distributed variables to math-
ematically model cell–cell or cell–environment interactions 
in the context of cancers and the tumor microenvironment. 
Systems of partial differential equations have been used to 
simulate the magnitude of interaction between these factors. 
Continuum models are suitable for describing the individual 
cell migration, change of cancer cell density, diffusion of 
chemo-attractants, heat transfer in hyperthermia treatment 
for skin cancer, cell adhesion, and the molecular network of 
a cancer cell as an entire entity. However, these types of in 
silico models have limited ability for investigating single-
cell behavior and cell–cell interaction.

On the other hand, “discrete” models (i.e. cellular 
automata models) represent cancer cells as discrete entities 
of defined location and scale, interacting with one another 
and external factors in discrete time intervals according to 
predefined rules. Agent-based models expand the cellular 
automata paradigm to include entities of divergent function-
alities interacting together in a single spatial representation, 
including different cell types, genetic elements, and envi-
ronmental factors. Agent-based models have been used for 
modeling three-dimensional tumor cell patterning, immune 
system surveillance, angiogenesis, and the kinetics of cell 
motility.

Hybrid models have been created which incorporate 
both continuum and agent-based variables in a modular 
approach. Hybrid models are ideal for examining direct 
interactions between individual cells and between the cells 
and their microenvironment, but they also allow us to ana-
lyze the emergent properties of complex multi-cellular sys-
tems (such as cancer). Hybrid models are often multi-scale 
by definition, integrating processes on different temporal 
and spatial scales, such as gene expression, intracellular 
pathways, intercellular signaling, and cell growth or migra-
tion. There are two general classes of hybrid models, those 
that are defined upon a lattice and those that are off-lattice.

The classification of hybrid models on these two classes 
depends on the number of cells these models can handle 
and the included details of each individual cell structure, i.e. 
models dealing with large cell populations but with simpli-
fied cell geometry, and those that model small colonies of 
fully deformable cells.

For example, a hybrid model investigated the invasion of 
healthy tissue by a solid tumor. The model focused on four 
key parameters implicated in the invasion process; tumor 
cells, host tissue (extracellular matrix), matrix-degrada-
tive enzymes, and oxygen. The model is actually hybrid, 
wherein the tumor cells were considered to be discrete  
(in terms of concentrations), and the remaining variables 
were in the continuous domain in terms of concentrations. 
This hybrid model can make predictions on the effects of 
individual-based cell interactions (both between individu-
als and the matrix) on tumor shape. The model of Zhang 
et al. (2007) incorporated a continuous model of a receptor 
signaling pathway, an intracellular transcriptional regula-
tory network, cell-cycle kinetics, and three-dimensional cell 
migration in an integrated, agent-based simulation of solid 
brain tumor development. The interactions between cel-
lular and microenvironment states have also been consid-
ered in a multi-scale model that predicts tumor morphology 
and phenotypic evolution in response to such extracellular  
pressures.

The biological context in which cancers develop is taken 
into consideration in in silico models of the tumor micro-
environment. Such complex tumor microenvironments may 
integrate multiple factors including extracellular biomole-
cules, vasculature, and the immune system. However, rarely 
have these methods been integrated with a large cell–cell 
communication network in a complex tumor microenviron-
ment. Recently, an interesting effort of in silico modeling 
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was described in which the investigators integrated all the 
intercellular signaling pathways known to date for human 
glioma and generated a dynamic cell–cell communication 
network associated with the glioma microenvironment. 
Then they applied evolutionary population dynamics and 
the Hill functions to interrogate this intercellular signaling 
network and execute an in silico tumor microenvironment 
development. The observed results revealed a profound 
influence of the micro-environmental factors on tumor ini-
tiation and growth, and suggested new options for glioma 
treatment by targeting cells or soluble mediators in the 
tumor microenvironment (Wu et al., 2012).

In Silico Models and Inflammatory Response 
Syndrome in Trauma and Infection

Trauma and infection can cause acute inflammatory 
responses, the degree of which may have several patho-
logical manifestations like systemic inflammatory response 
syndrome (SIRS), sepsis, and multiple organ failure (MOF). 
However, an appropriate management of these states 
requires further investigation. Translating the results of 
basic science research to effective therapeutic regimes has 
been a longstanding issue due in part to the failure to account 
for the complex nonlinear nature of the inflammatory pro-
cess wherein SIRS/MOF represent a disordered state. 
Hence, the in silico modeling approach can be a promising 
research direction in this area. Indeed, in silico modeling 
of inflammation has been applied in an effort to bridge the 
gap between basic science and clinical trials. Specifically, 
both agent-based modeling and equation-based modeling 
have been utilized (Vodovotz et al., 2008). Equation-based 
modeling encompasses primarily ordinary differential 
equations (ODE) and partial differential equations (PDE). 
Initial modeling studies were focused on the pathophysi-
ology of the acute inflammatory response to stress, and 
these studies suggested common underlying processes gen-
erated in response to infection, injury, and shock. Later, 
mathematical models included the recovery phase of injury 
and gave insight into the link between the initial inflam-
matory response and subsequent healing process. The first 
mathematical models of wound healing dates back to the 
1980s and early 1990s. These models and others developed 
in the 1990s investigated epidermal healing, repair of the 
dermal extracellular matrix, wound contraction, and wound 
angiogenesis. Most of these models were deterministic and 
formulated using differential equations. In addition, recent 
models have been formulated using differential equations to 
analyze different strategies for improved healing, including 
wound VACs, commercially engineered skin substitutes, 
and hyperbaric oxygen. In addition, agent-based models 
have been used in wound healing research. For example, 
Mi et  al. (2007) developed an agent-based model to ana-
lyze different treatment strategies with wound debridement 
and topical administration of growth factors. Their model 
produced the expected results of healing when analyzing 
for different treatment strategies including debridement, 
release of PDGF, reduction in tumor necrosis factor-α, and 
increase of TGF-β1. The investigators suggested that a drug 
company should use a mathematical model to test a new 
drug before going through the expensive process of basic 
science testing, toxicology and clinical trials. Indeed, clini-
cal trial design can be improved by prior in silico modeling. 
For example, in silico modeling has led to the knowledge 
that patients who suffered from the immune-suppressed 
phenotype of late-stage multiple organ failure, and were 
susceptible to usually trivial nosocomial infections, dem-
onstrated sustained elevated markers of tissue damage and 
inflammation through two weeks of simulated time. How-
ever, anti-cytokine drug trials with treatment protocols of 
only one dose or one day had not incorporated this knowl-
edge into their design, with subsequent failure of candidate 
treatments.

Infectious Diseases

By now the reader is expected to be familiar with the 
meaning and the basics of in silico modeling. In this sec-
tion we discuss the application of in silico modeling in the 
understanding of infectious diseases and in the proposition/
development of better treatments for infectious diseases. 
In fact, the applications of in silico modeling can help far 
beyond just the understanding of the dynamics (and some-
times, statistics) of infectious diseases, and far beyond the 
proposition/development of better treatments for infectious 
diseases. The modeling can be helpful even in the under-
standing of better prevention of infectious diseases.

The level of pathogen within the host defines the pro-
cess of infection; such pathogen levels are determined by 
the growth rate of the pathogen and its interaction with the 
host’s immune response system. Initially, no pathogen is 
present, but just a low-level, nonspecific immunity within 
the host. On infection, the parasite grows abundantly over 
time with the potential to transmit the infection to other sus-
ceptible individuals.

Triad of Infectious Diseases as the Source of 
Parameters for In Silico Modeling of Infectious 
Diseases

To comprehensively understand in silico modeling in the 
domains of infectious diseases, one should first understand 
the “triad of infectious diseases,” and the characteristics of 
“infectious agent,” “host,” and “environment” on which 
the models are always based. In fact, modeling of infec-
tious diseases is just impossible without this triad; after all, 
the model would be built on some parameters (also called 
variables in more general language), and those parameters 
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always have their origin from the so-called “triad of infec-
tious diseases.” At this point, a good question would be: 
What is a “triad of infectious diseases?”

“Triad of infectious diseases” means the interactions 
between (1) agent, which is the disease causing organ-
ism (the pathogen); (2) host, which is the infected organ-
ism, or in the case of pre-infection, the organism to be 
infected is the host (thus in this case the host is the animal 
the agent infects); and (3) environment, which is a kind of 
link between the agent and the host, and is essentially an 
umbrella word for the entirety of the possible media through 
which the agent reaches the host.

Now that we have an idea on what in silico model-
ing of infectious diseases are generally based on, we will 
outline a better understanding of the parameters that are 
considered in most in silico disease models. To discuss 
the parameters in an orderly manner, we just categorize 
them under each of the three components of the “triad of 
infectious diseases,” and summarize them in the next sub-
section. It must be emphasized at this point that (1) even 
though all the possible parameters for in silico modeling 
of infectious diseases can be successfully categorized 
under the characteristics of one of any of the three com-
ponents of the “triad of infectious diseases” (agent, host, 
and environment), (2) the parameters discussed in the next 
sub-section are by no means the entirety of all the possible 
parameters that can be included in in silico modeling of 
infectious diseases. In fact, several parameters exist, and 
this section cannot possibly enumerate them all. That is 
why we have discussed the parameters using a categorical 
approach.

Parameters for In Silico Modeling of Infectious 
Diseases

Parameters Derived from Characteristics of the 
Agent

Some of the parameters for in silico modeling of infectious 
diseases are essentially a measure of infectivity (ability to 
enter the host), pathogenicity (ability to cause divergence 
from homeostasis/disease), virulence (degree of divergence 
from homeostasis caused/ability to cause death), antige-
nicity (ability to bind to mediators of the host’s adaptive 
immune system), and immunogenicity (ability to trigger 
adaptive immune response) of the concerned infectious 
agent. The exact measure (and thus the units) used can vary 
markedly depending on the intentions for which the in silico 
infectious diseases model is built, as well as the assump-
tions on which the in silico disease model is based. From 
the knowledge of the agent’s characteristics, one should 
know that unlike parameters related to the other character-
istics of the agent, the parameters related to infectivity find 
their most important use only in the modeling of the pre-
infection stage in infectious disease modeling.
Finally, some of the agent-related parameters of great 
importance in in silico modeling of infectious diseases 
are concentration of the agent’s antigen–host antibody 
complex, case fatality rate, strain of the agent, other genetic 
information of the agent, etc.

Parameters Derived from Characteristics of the Host

The parameters originating from characteristics of the 
host can also be diversified and based on the intentions for 
which the in silico infectious diseases model are built and 
the assumptions on which the in silico disease model are 
based; however, the parameters could then be grouped and 
explained under the host’s genotype (the allele at the host’s 
specified genetic locus), immunity/health status (biological 
defenses to avoid infection), nutritional status (feeding hab-
its/food intake characteristics), gender (often categorized 
as male or female), age, and behavior (the host’s behaviors 
that affect its resistance to homeostasis disruptors).

Typical examples of host-related parameters are the 
alleles at some specifically targeted genetic loci; the total 
white blood cell counts; differential white blood cell counts, 
and/or much more sophisticated counts of specific blood 
cell types; blood levels of some specific cytokines, hor-
mones, and/or neurotransmitters; daily calories, protein, 
and/or fat intake; daily amount of energy expended and/or 
duration of exercise; etc.

Parameters Derived from Characteristics  
of Environment

At first parameters originating from the environment might 
seem irrelevant to the in silico modeling of infectious dis-
eases, but they are relevant. Even after the pre-infection stage, 
the environment still modulates the host–agent intersections. 
For example, the ability (and thus the related parameters) of 
the agent to multiply and/or harm the host are continually 
influenced by the host’s environmental conditions, and in 
a similar way the hosts defense against the adverse effects 
of the agents are modulated by the host’s environmental 
conditions. But somehow, not so many of these parameters 
have been included in in silico infectious disease models in 
the recent past. A few examples of these parameters are the 
host’s ambient temperature, the host’s ambient atmospheric 
humidity, altitude, the host’s light–dark cycle, etc.

Infectious Diseases In Silico Model Proper, a 
Typical Approach/Scenario

Now that we know the parameters for in silico infectious 
disease modeling, the next reasonable question would be 
“What form does a typical in silico infectious disease model 
take?” So, this sub-section attempts to answer this very 
important question.

Let us view the in silico model as a system of well-
integrated functional equations or formulae. Such 
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well-integrated functional equations can be viewed or 
approximated as a single, albeit more complex, functional 
equation/formula. It is hence possible to vary any (or a com-
bination) of the variables contained in this equation by run-
ning numerical simulations on a computer depending on the 
kind of prediction one wants to make. Such in silico mod-
els can hence investigate several (maybe close to infinite) 
possible data points within reasonable limits that one sets 
depending on the nature of the variables considered.

So the equations behind a typical infectious disease in 
silico model could take the form (Equation 21.1):

	

H = β (link function) f (A)
(link function) g (E) + ε ⋯	

(21.1)

where H is the output from a smaller equation that is based 
on host parameters; β is a constant; f and g are link func-
tions which may be the same as or different from each 
other and other link functions in this system of equations; 
A is the output from a smaller equation that is based on 
agent parameters; g is a link function which may be the 
same or different from other link functions in this system 
of equations; E is the output from a smaller equation that is 
based on environment parameters; and Ɛ is a random error  
parameter.

Readers should know that we use the term “link function” 
to refer to any of the various possible forms of mathematical 
operations or functions. This means that based on the com-
plexity of the model, a particular “link function” might be as 
simple as a mere addition or as complex as several combina-
tions of operators with high degree polynomials.

H in Equation 21.1 could have resulted from a smaller 
model/function of the form (Equation 21.2):

	

H = βh (link function) fh1 (h1) (link function)
fh2 (h2) (link function) ... fhx (hx)
(link function) + ε ⋯ 	

(21.2)

where βh is a constant; fh1, fh2, … fhx are link functions that 
may be the same or different (individually) from (every) 
other link function in this system of equations; h1, h2, … 
hx are a set of the host’s parameters (e.g. age, gender, white 
blood cell count, cytokine level, etc); and Ɛ is a random 
error parameter.

A in Equation 21.1 could have resulted from a smaller 
model/function of the form (Equation 21.3):

	

A = βa (link function) fa1 (a1) (link function)
fa2 (a2) (link function) ...
fax (ax) (link function) + ε ⋯ 	

(21.3)

where βa is a constant; fa1, fa2, … fax are link functions that 
may be same or different (individually) from (every) other 
link function in this system of equations; a1, a2, … ax are a 
set of the agent’s parameters (e.g. case fatality rate, agent’s 
genotype, etc); and Ɛ is a random error parameter.
In a similar way, E in Equation 21.1 could have resulted 
from a smaller model/function of the form (Equation 21.4):

	
E = βe (link function) fe1 (e1) (link function)

fe2 (e2) (link function) ... fex (ex)
(link function) + ε ⋯

	 (21.4)

where βe is a constant; fe1, fe2, …fex are link functions which 
may be the same or different (individually) from (every) 
other link function in this system of equations; e1, e2, … ex 
are a set of environmental parameters (e.g. host’s ambient 
temperature, host’s ambient atmospheric humidity, etc.); 
and Ɛ is a random error parameter.

Specific Examples of Infectious Diseases in the 
In Silico Model

Muñoz-Elías et  al. (2005) documented (through their 
paper “Replication Dynamics of Mycobacterium Tubercu-
losis in Chronically Infected Mice”) a successful in silico 
modeling of infectious diseases (specifically, tuberculo-
sis). In their in silico modeling of tuberculosis in mice, 
the researchers investigated both the static and dynamic 
host–pathogen/agent equilibrium (i.e. mice–mycobacte-
rium tuberculosis static and dynamic equilibrium). The 
rationale behind their study was that a better understand-
ing of host–pathogen/agent interactions would make pos-
sible the development of better anti-microbial drugs for 
the treatment of tuberculosis (as well as provide similar 
understanding for the cases of other chronic infectious 
diseases). They modeled different types of host–pathogen/
agent equilibriums (ranging from completely static equi-
librium, all the way through semi-dynamic, down to 
completely dynamic scenarios) by varying the rate of mul-
tiplication/growth and the rate of death of the pathogen/
agent (Mycobacterium tuberculosis) during the infection’s 
chronic phase. Through their in silico study (which was 
also verified experimentally), they documented a number 
of remarkable findings. For example, they established that 
“viable bacterial counts and total bacterial counts in the 
lungs of chronically infected mice do not diverge over 
time,” and they explained that “rapid degradation of dead 
bacteria is unlikely to account for the stability of total 
counts in the lungs over time because treatment of mice 
with isoniazid for 8 weeks led to a marked reduction in 
viable counts without reducing the total count.

Readers who are interested in further details on the gen-
eration of this in silico model for the dynamics of Myco-
bacterium tuberculosis infection, as well as the complete 
details of the parameters/variables considered, and the com-
prehensive findings of the study, should refer to the article 
of Ernesto et al. published in infection and immunity.

Another one of the many notable works in the domain 
of infectious disease in silico modeling is the study by  
Navratil et  al. (2011). Using protein–protein interaction 
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data that the authors obtained from available literature 
and public databases, they (after first curating and validat-
ing the data) computationally (in silico) re-examined the 
virus–human protein interactome. Interestingly, the authors 
were able to show that the onset and pathogenesis of some 
disease conditions (especially chronic disease conditions) 
often believed to be of genetic, lifestyle, or environmental 
origin, are, in fact, modulated by infectious agents.

Model of Bacterial and Viral Dynamics

Models have been constructed to simulate bacterial dynam-
ics, such as growth under various nutritional and chemical 
conditions, chemotactic response, and interaction with host 
immunity. Clinically important models of bacterial dynam-
ics relating to peritoneal dialysis, pulmonary infections, and 
particularly of antibiotic treatment and bacterial resisitance, 
have also been developed.

Baccam et  al. (2006) utilized a series of mathemati-
cal models of increasing complexity that incorporated 
target cell limitation and the innate interferon response. 
The models were applied to examine influenza A virus 
kinetics in the upper respiratory tracts of experimentally 
infected adults. They showed the models to be applicable 
for improving the understanding of influenza In a virus 
infection, and estimated that during an upper respiratory 
tract infection, the influenza virus initially spreads rapidly 
with one cell, infecting (on average) about 20 others  
(Daun and Clermont, 2007).

Model parameter and spread of disease: Model 
parameters are one of the main challenges in mathemati-
cal modeling since all models do not have a physiological 
meaning. Sensitivity analysis and bifurcation analysis give 
us the opportunity to understand how model outcome and 
model parameters are correlated, how the sensitivity of the 
system is with respect to certain parameters, and the uncer-
tainty in the model outcome yielded by the uncertainties in 
the parameter values. Uncertainty and sensitivity analysis 
was used to evaluate the input parameters play in the basic 
productive rate (Ro) of severe acute respiratory syndrome 
(SARS) and tuberculosis. Control of the outbreak depends 
on identifying the disease parameters that are likely to lead 
to a reduction in R.

Challenges in In Silico Modeling of Infectious 
Diseases

Difficulty in finding the most appropriate set of param-
eters for in silico modeling of infectious diseases is often 
a challenge. It is hoped this challenge will subside with the 
advancement in infectonomics and high-throughput tech-
nology. However, another important challenge lies in the 
understanding (and the provision of reasonable interpreta-
tions for) the results from all the complex interactions of 
parameters considered.
Neuronal Diseases

In this sub-section we focus on the application of in silico 
modeling to improve knowledge of neuronal diseases, and 
thus improve the applications of neurological knowledge 
for solving neuronal health problems. It is not an overstate-
ment to say that one of the many aspects of life sciences 
where in silico disease modeling would have the biggest 
applications is in the better understanding of the patho-
physiology of nervous system (neuronal) diseases. This 
is basically because of the inherent delicate nature of the 
nervous system and the usual extra need to be sure of how to 
proceed prior to attempting to treat neuronal disease condi-
tions. By this we mean that the need to first model neuronal 
disease conditions in silico prior to deciding on or suggest-
ing (for example) a treatment plan is, in fact, rising. This 
is not unexpected; after all, it is better to be sure of what 
would work (say, through in silico modeling) than to try 
what would not work.

Pathophysiology of Neuronal Diseases as the 
Source of Parameters for In Silico Modeling of 
Neuronal Diseases

Obtaining appropriate parameters for the in silico modeling 
of a nervous system (neuronal) disease is rooted in a good 
understanding of the pathophysiology of such neuronal dis-
ease. Since comprehensive details of pathophysiology of 
neuronal diseases is beyond the scope of this book, we only 
present the basic idea that would allow the reader to under-
stand how in silico modeling of a nervous system (neuronal) 
disease can be done.

To give a generalized explanation and still concisely 
present the basic ideas underlying the pathophysiology of 
neuronal diseases, we proceed by systematically categoriz-
ing the mediators of neuronal disease pathophysiology: (1) 
nerve cell characteristics, (2) signaling chemicals and body 
electrolytes, (3) host/organism factors, and (4) environmen-
tal factors. Readers need to see all these categories as being 
highly integrated pathophysiologically rather than as sepa-
rate entities, and also that we have only grouped them this 
way to make simpler the explanation of how the parameters 
for in silico modeling of neuronal diseases are generated.

When something goes wrong with (or there is a marked 
deviation from equilibrium in) a component of any of the 
four categories above, the other components (within and/
or outside the same category) try hard to make adjustments 
so as to annul/compensate for the undesired change. For 
example, if the secretion of a chemical signal suddenly 
becomes abnormally low, the target cells for the chemical 
signal may develop mechanisms to use the signaling chemi-
cal more efficiently, and the degradation rate of the signal-
ing chemical may be reduced considerably. Through these, 
the potentially detrimental effects of reduced secretion of 
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the chemical signal are annulled via compensation from 
the other components. This is just a simple example; much 
more complex regulatory and homeostatic mechanisms 
exist in the neuronal system. Despite the robustness of those 
mechanisms, things still get out of hand sometimes, and dis-
ease conditions result. The exploration of what happens in 
(and to) each and all of the components of this giant system 
of disease conditions is called the pathophysiology of neu-
ronal disease, and it this pathophysiology that “provides” 
parameters for the in silico modeling of neuronal diseases.

Parameters for In Silico Modeling of Neuronal 
Diseases

Parameters Derived from Characteristics of  
Nerve Cells

Some of the important parameters (that are of nerve cell 
origin) for a typical in silico modeling of a neuronal disease 
(say, Alzheimer’s disease) are the population (or relative 
population) of specific neuronal cells (such as glial cells: 
microglia, astrocytes, etc.), motion of specific neuronal 
cells (e.g. microglia), amyloid production, aggregation and 
removal of amyloid, morphology of specific neuronal cells, 
status of neuronal cell receptors, generation/regeneration/
degeneration rate of neuronal cells, status of ion neuronal 
cell channels, etc. Based on their relevance to the patho-
physiology of the neuronal disease being studied, many of 
these parameters are often considered in the in silico model-
ing of the neuronal disease. More importantly, their spatio-
temporal dynamics are often seriously considered.

Parameters Derived from Characteristics of Signaling 
Chemicals and Body Electrolytes

The importance of signaling chemicals and electrolytes in 
the nervous system makes parameters related to them very 
important. The secretion, uptake, degradation, and diffusion 
rates of various neurotransmitters and cytokines are often 
important parameters in the in silico modeling of neuro-
diseases. Other important parameters are the concentration 
gradients of the various neurotransmitters and cytokines, 
the availability and concentration of second messengers, 
and the electrolyte status/balance of the cells/systems. The 
spatiotemporal dynamics of all of these are also often seri-
ously considered.

Parameters Derived from Host/Organism Factors

The parameters under host/organism factors can be highly 
varied depending on the intentions and the assumptions gov-
erning the in silico disease modeling. Nonetheless, one could 
basically group and list the parameters collectively under 
genotype (based on the allele at a specified genetic locus), 
nutritional status (feeding habits/food intake characteris-
tics; e.g. daily calories, protein intake, etc.), gender (male 
or female), age, and behavior (host’s behaviors/lifestyle that 
influences homeostasis and/or responses to stimuli).
Parameters Derived from Environmental Factors

A few examples of these parameters are ambient temper-
ature, altitude, light–dark cycle, social network, type of 
influences from people in the network, etc.

Neuronal Disease In Silico Model Proper  
(a Typical Approach/Scenario)

Just like other in silico models, a neuronal disease in silico 
model is also based on what could be viewed as a single 
giant functional equation, which is composed of highly 
integrated simpler functional equations.

So the equations behind a typical neuronal disease in 
silico model could take the form (Equation 21.5):

	

N = β (link function) f (C) (link function)
g (S) (link function) j (H)
(link function) k (E) + ε ⋯ 	

(21.5)

where N could be a parameter that is a direct measure of the 
disease manifestation; β is a constant; f, g, j, and k are link 
functions which may be the same or different from other 
link functions in this system of equations; C, S, H, and E 
are the outputs from smaller equations that are based on 
parameters from neuronal cell characteristics, signaling 
molecule and electrolyte parameters, host parameters, and 
environment parameters, respectively; and Ɛ is a random 
error parameter.

The reader should know that each of N, C, S, H and E 
could have resulted from smaller equations that could take 
forms similar to those (Equations 21.2 to 21.4) described 
under in silico modeling of infectious diseases (previous 
sub-section).

Specific Examples of Neuronal Disease  
In Silico Models

Edelstein-Keshet and Spiros (2002) used in silico model-
ing to study the mechanism and/formation of Alzheimer’s 
disease. The target of their in silico modeling was to explore 
and demystify how various parts implicated in the etiology 
and pathophysiology of Alzheimer’s disease work together 
as a whole. Employing the strength of in silico modeling, the 
researchers were able to transcend the difficulty of identify-
ing detailed disease progression scenarios, and they were 
able to test a wide variety of hypothetical mechanisms at 
various levels of detail. Readers interested in the complete 
details of the assumptions that govern in silico modeling of 
Alzheimer’s disease, the various other aspects of the model, 
and more detailed accounts of the findings should look at 
the article by Edelstein-Keshet and Spiros.

Several other interesting studies have applied in silico 
modeling techniques to investigate various neuronal dis-
eases. A few examples include the work of Altmann and 
Boyton (2004), who investigated multiple sclerosis (a very 
common disease resulting from demyelination in the central 
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nervous system) using in silico modeling techniques; Lewis 
et al. (2010), who used in silico modeling to study the meta-
bolic interactions between multiple cell types in Alzheimer’s 
disease; and Raichura et  al. (2006), who applied in silico 
modeling techniques to dynamically model alpha-synuclein 
processing in normal and Parkinson’s disease states.

Alzheimer’s Disease Model

A more specific example of a molecular level in silico 
Alzheimer’s disease model can be found in Ghosh et  al. 
(2010). Among the amyloid proteins, Amyloid-β (Aβ) 
peptides (Aβ42 and Aβ40) are known to form aggregates 
that deposit as senile plaques in the brains of Alzheimer’s 
disease patients. The process of Aβ-aggregation is strongly 
nucleation-dependent, and is inferred by the occurrence of 
a “lag-phase” prior to fibril growth that shows a sigmoidal 
pattern. Ghosh et al. (2010) dissected the growth curve into 
three biophysically distinct sections to simplify modeling 
and to allow the data to be experimentally verifiable. Stage I 
is where the pre-nucleation events occur whose mechanism 
is largely unknown. The pre-nucleation stage is extremely 
important in dictating the overall aggregation process where 
critical events such as conformation change and concomi-
tant aggregation take place, and it is also the most experi-
mentally challenging to decipher. In addition to mechanistic 
reasons, this stage is also physiologically important as low-
molecular-weight (LMW) species are implicated in AD 
pathology. The rate-limiting step of nucleation is followed 
by growth. The overall growth kinetics and structure and 
shape of the fibrils are mainly determined by the struc-
ture of the nucleating species. An important intermediate 
along the aggregation pathway, called “protofibrils,” have 
been isolated and characterized that have propensities to 
both elongate (by monomer addition) as well as to laterally 
associate (protofibril–protofibril association) to grow into 
mature fibrils (Stage III in the growth curve).

Simulation of the Fibril Growth Process in Aβ42 
Aggregation  Ghosh et al. (2010) generated an ODE-based 
molecular simulation (using mass–kinetics methodology) 
of this fibril growth process to estimate the rate constants 
involved in the entire pathway. The dynamics involved in 
the protofibril elongation stage of the aggregation (Stage 
III of the process) were estimated and validated by in vitro 
biophysical analysis.

Preliminary Identification of Nucleation Mass  Ghosh 
et al. (2010) next used the rate constants identified from Stage 
III to create a complete aggregation pathway simulation 
(combining Stages I, II, and III) to approximately identify the 
nucleation mass involved in Aβ-aggregation.

In order to model the Aβ-system, one needs to esti-
mate the rate constants involved in the complete pathway 
and the nucleation mass itself. It is difficult to iterate 
through different values for each of these variables to 
get close to the experimental plots (fibril growth curves 
measured via fluorescence measurements with time) due 
to the large solution space; also, finding the nucleation 
phase cannot be done independently without estimating 
the rate constants alongside. However, having separately 
estimated the post-nucleation stage rate constants (as 
mentioned above) reduces the overall parameter estima-
tion complexity.

The complete pathway simulation was used to study 
the lag times associated with the aggregation pathway, and 
hence predict possible estimates of the nucleation mass. The 
following strategy was used: estimate the pre-nucleation 
rate constants that give the maximum lag times for each 
possible estimate of the nucleation mass. This led to four 
distinctly different regimes of possible nucleation masses 
corresponding to four different pairs of rate constants for the 
pre-nucleation phase (Regime 1, where n = 7, 8, 9, 10, 11;  
Regime 2, where n = 12, 13, 14; Regime 3, where n = 15, 
16, 17; and Regime 4, where n = 18, 19, 20, 21). How-
ever, it was experimentally observed that the semi-log plot 
of the lag times against initial concentration of Aβ is linear, 
and this characteristic was used to figure out what values of 
nucleation mass are most feasible for the Aβ42-aggregation 
pathway. The simulated plots show a more stable relation-
ship between the lag times and the initial concentrations, 
and the best predictions for the nucleation mass were 
reported to be in the range 10–16.

Such molecular pathway level studies are extremely use-
ful in understanding the pathogenesis of AD in general, and 
can motivate drug development exercises in the future. For 
example, characterization of the nucleation mass is impor-
tant as it has been observed that various fatty acid inter-
faces can arrest the fibril growth process (by stopping the 
reactions beyond the pre-nucleation stage). Such in depth 
modeling of the aggregation pathway can suggest what con-
centrations of fatty acid interfaces should be used (under 
a given Aβ concentration in the brain) to arrest the fibril 
formation process leading to direct drug dosage and interval 
prediction for AD patients.

Possible Limitations of In Silico Modeling of 
Neuronal Diseases

Despite the fact that we have mentioned several possible 
parameters for in silico modeling of neuro-diseases, it is 
noteworthy that finding a set of the most reasonable param-
eters for the modeling is in fact a big challenge. On the other 
hand, understanding (and thus finding reasonable biological 
interpretations for) the results from the complex interaction 
of all parameters considered is also a big challenge. In addi-
tion, a number of assumptions that models are sometimes 
based on still have controversial issues. Accurately model-
ing spatio-temporal dynamics of neurons and neurotrans-
mitters (and other chemicals/ligands) also constitutes a 
huge challenge.
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CONCLUSION

Understanding the complex systems involved in a disease will 
make it possible to develop smarter therapeutic strategies. 
Treatments for existing tumors will use multiple drugs to tar-
get the pathways or perturbed networks that show an altered 
state of activity. In addition, models can effectively form the 
basis for translational research and personalized medicine.

Biological function arises as the result of processes inter-
acting across a range of spatiotemporal scales. The ultimate 
goal of the applications of bioinformatics in systems biology 
is to aid in the development of individualized therapy proto-
cols to minimize patient suffering while maximizing treat-
ment effectiveness. It is now being increasingly recognized 
that multi-scale mathematical and computational tools are 
necessary if we are going to be able to fully understand these 
complex interactions (e.g. in cancer and heart diseases).

With the bioinformatics tools, computational theories, 
and mathematical models introduced in this article, readers 
should be able to dive into the exhilarating area of formal 
computational systems biology. Investigating these models 
and confirming their findings by experimental and clinical 
observations is a way to bring together molecular reduction-
ism with quantitative holistic approaches to create an inte-
grated mathematical view of disease progression. We hope 
to have shown that there are many interesting challenges yet 
to be solved, and that a structured and principled approach 
is essential for tackling them.

Systems biology is an emerging field that aims to under-
stand biological systems at the systems level with a high 
degree of mathematical and statistical modeling. In silico 
modeling of infectious diseases is a rich and growing field 
focused on modeling the spread and containment of infec-
tions with model designs being flexible and enabling adap-
tation to new data types.

ETHICAL ISSUES
The advantages of avoiding animal testing have often been 
seen as one of the advantages offered by in silico modeling; 
the biggest advantage is that there are no ethical issues in per-
forming in silico experiments as they don’t require any animals 
or live cells. Furthermore, as the entire modeling and analysis 
are based on computational approaches, we can obtain the 
results of such analysis even within an hour. This saves huge 
amounts of time and reduces costs, two major factors associ-
ated with in vitro studies. However, a key issue that needs to be 
considered is whether in silico testing will ever be as accurate 
as in vitro or in vivo testing, or whether in silico results will 
always require non-simulated experimental confirmation.

TRANSLATIONAL SIGNIFICANCE
Tracqui et al. (1995) successfully developed a glioma model 
to show how chemo-resistant tumor sub-populations cause 
treatment failure. Similarly, a computational model of tumor 
invasion by Frieboes et al. (2006) is able to demonstrate that the 
growth of a tumor depends on the microenvironmental nutri-
ent status, the pressure of the tissue, and the applied chemo-
therapeutic drugs. The 3D spatio-temporal simulation model 
of a tumor by Dionysiou et al. (2004) was able to repopulate, 
expand, and shrink tumor cells, thus providing a computational 
approach for assessment of radiotherapy outcomes. The glio-
blastoma model of Kirby et al. (2007) is able to predict survival 
outcome post-radiotherapy. Wu et  al. (2012) has also devel-
oped an in silico glioma microenvironment that demonstrates 
that targeting the microenvironmental components could be a 
potential anti-tumor therapeutic approach.

The in silico model-based systems biology approach to 
skin sensitization (TNF-alpha production in the epidermis) 
and risk of skin allergy assessment has been successfully car-
ried out; it can replace well known in vitro assays, such as the 
mouse local lymph node assay (LLNA) used for the same pur-
pose (by Maxwell and Mackay (2008) at the Unilever Safety 
and Environmental Assurance Centre). Similarly, Davies 
et al. (2011) effectively demonstrated an in silico skin perme-
ation assay based on time course data for application in skin 
sensitization risk assessment. Kovatchev et al. (2012) showed 
how the in silico model of alcohol dependence can provide 
virtual clues for classifying the physiology and behavior of 
patients so that personalized therapy can be developed.

Pharmacokinetics and pharmacodynamics are used to 
study absorption, distribution, metabolism, and excretion 
(ADME) of administered drugs. In silico models have tre-
mendous efficacy in early estimation of various ADME 
properties. Quantitative structure–activity relationship 
(QSAR) and quantitative structure–property relationship 
(QSPR) models have been commonly used for several 
decades to predict ADME properties of a drug at early 
phases of development. There are several in silico models 
applied in ADME analysis, and readers are encouraged to 
read the review by van de Waterbeemd and Gifford (2003). 
GastroPlus™, developed at Simulations Plus (www.simula-
tions-plus.com), is highly advanced, physiologically based 
rapid pharmacokinetic (PBPK) simulation software that can 
generate results within 5 seconds, thus saving huge amounts 
of time and cost in clinical studies. The software is an essen-
tial tool to formulation scientists for in vitro dose disinte-
gration and dissolution studies. Towards next-generation 
treatment of spinal cord injuries, Novartis (www.novartis.
com) is working to model the human spinal cord and its 
surrounding tissues in silico to check the feasibility of 
monoclonal antibody-based drug administration and their 
pharmacokinetics and pharmacodynamics study results.

The in silico “drug re-purposing” approach by Bisson 
et  al. (2007) demonstrated how phenothiazine derivative 
antipsychotic drugs such as acetophenazine can cause endo-
crine side effects. Recently Aguda et al. (2011) reported a 
computational model for sarcoidosis dynamics that is useful 
for pre-clinical therapeutic studies for assessment of dose 
optimization of targeted drugs used to treat sarcoidosis. 

http://www.simulations-plus.com/
http://www.simulations-plus.com/
http://www.novartis.com/
http://www.novartis.com/
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Towards designing personalized therapy of larynx injury 
leading to acute vocal fold damage, Li et al. (2008) devel-
oped agent-based computational models.

In a further advancement, Entelos® (www.entelos.com) 
has developed “virtual patients,” in silico mechanistic 
models of type-2 diabetes, rheumatoid arthritis, hyperten-
sion, and atherosclerosis for identification of biomarkers, 
drug targets, development of therapeutics, and clinical 
trial design, and patient stratification. Entelos’ virtual Idd9 
mouse (NOD mouse) can replace diabetes resistance type-1 
diabetes live mice for various in vivo experiments.

Apart from diseases, systems level modeling of basic 
biological phenomena and their applications in disease have 
also been reported. An in silico model to mimic the in vitro 
rolling, activation, and adhesion of individual leukocytes 
has been developed by Tang et al. (2007). Developing vir-
tual mitochondria, Cree et al. (2008) have demonstrated how 
the in silico modeling can assist in predicting the severity 
of mitochondrial diseases. Sobie and Wehrens, 2010 have 
developed in silico cardiac models and demonstrated how 
calcium mediated arrhythmias can develop. Interested read-
ers in computational cardiology can consult with review of 
Trayanova, 2012.

WORLD WIDE WEB RESOURCES
Virus Pathogen Database and Analysis Resource (ViPR)

ViPR (h t tp : / /www.v ip rb rc .o rg /b rc /home .do? 
decorator=vipr) is one of the five Bioinformatics Resource 
Centers (BRCs) funded by the National Institute of Allergy 
and Infectious Diseases (NIAID). This website provides a 
publicly available database and a number of computational 
analysis tools to search and analyze data for virus pathogens. 
Some of the tools available at ViPR are the following:

	1.	� GATU (Genome Annotation Transfer Utility), a tool to 
transfer annotations from a previously annotated refer-
ence to a new, closely related target genome.

	2.	� PCR Premier Design, a tool for designing PCR primers.
	3.	� A sequence format conversion tool.
	4.	� A tool to identify short peptides in proteins.
	5.	� A meta-driven comparative analysis tool.

As there are many different kinds of tools available the 
tools on the website are organized by the virus family.

The Rat Genome Database (RGD)
The Rat Genome Database (http://rgd.mcw.edu/wg/

home) is funded by the National Heart, Lung, and Blood 
Institute (NHLBI) of the National Institutes of Health (NIH). 
The goal of this project is to consolidate research work from 
various institutes to generate and maintain a rat genomic 
database (and make it available to the scientific community). 
The website provides a variety of tools to analyze data.

Influenza Research Database (IRD)
I R D  ( h t t p : / / w w w. f l u d b . o r g / b r c / h o m e . d o ? 

decorator=influenza) is one of the five Bioinformatics 
Resource Centers (BRCs) funded by the National Institute 
of Allergy and Infectious Diseases (NIAID). This website 
provides a publicly available database and a number of 
computational analysis tools to search and analyze data for 
influenza virus. This website provides many of the same 
tools that are provided at ViBR. There are numerous other 
tools such as Models of Infectious Disease Agent Study 
(MIDAS), which is an in silico model for assessing infec-
tious disease dynamics. MIDAS assists in preparing, detect-
ing, and responding to infectious disease threats.

The Wellcome Trust Sanger Institute
The Sanger Institute (http://www.sanger.ac.uk/) investi-

gates genomes in the study of diseases that have an impact 
on global health. The Sanger Institute has made a signifi-
cant contribution to genomic research and developing a 
new understanding of genomes and their role in biology. 
The website provides sequence genomes for various bacte-
rial, viral, and model organisms such as zebrafish, mouse, 
gorilla, etc. A number of open source software tools for 
visualizing and analyzing data sets are available at the 
Sanger Institute website.
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GLOSSARY
Algorithm  Any well-defined computational procedure that takes 

some values, or set of values, as input, and produces some value, 
or set of values, as output.

Bioinformatics  Bioinformatics is the application of statistics and 
computer science to the field of molecular biology.

Biotechnology  The exploitation of biological processes for industrial 
and other purposes.

Data Structures  A way to store and organize data on a computer in 
order to facilitate access and modifications.

Genome  The complete set of genetic material of an organism.
Genomics  The branch of molecular biology concerned with the struc-

ture, function, evolution, and mapping of genomes.
Gene Ontology  A major bioinformatics initiative to unify the 

representation of gene and gene product attributes across all 
species.

Informatics  The science of processing data for storage and retrieval; 
information science.

In Silico  In silico is an expression used to mean “performed on a 
computer or via computer simulation.”

In Vivo  In microbiology in  vivo is often used to refer to exper-
imentation done in live isolated cells rather than in a whole 
organism.

In Vitro  In  vitro studies in experimental biology are those that are 
conducted using components of an organism that have been iso-
lated from their usual biological surroundings in order to permit a 
more detailed or more convenient analysis than can be done with 
whole organisms.

Kinomics  Kinomics is the study of kinase signaling within cellular 
or tissue lysates.

Oncogenesis  The progression of cytological, genetic, and cellular 
changes that culminate in a malignant tumor.

Pathophysiology  The disordered physiological processes associated 
with disease or injury.

Proteomics  The branch of genetics that studies the full set of proteins 
encoded by a genome.

Sequencing  The process of determining the precise order of nucleo-
tides within a DNA molecule.

Systems Biology  An inter-disciplinary field of study that focuses on 
complex interactions within biological systems by using a more 
holistic perspective.

ABBREVIATIONS
AD  Alzheimer Disease
ARACNE  Algorithm for the Reconstruction of Accurate Cellular 

Networks
BRC  Bioinformatics Resource Center
CDKs  Cyclin-Dependent Kinases
DNA  Deoxyribonucleic acid
DZM  Different Zone Model
GNW  GeneNetWeaver
GO  Gene Ontology
GoI  Genome of Interest
IRD  Influenza Research Database
LMW  Low Molecular Weight
MOF  Multi Organ Failure
NIAID  National Institute of Allergy and Infectious Diseases
MIDAS  Models of Infectious Disease Agent Study
mRNA  Messenger Ribonucleic Acid
ODE  Ordinary Differential Equations
P  Protein
PCR  Polymerase Chain Reaction
PDE  Partial Differential Equations
PDGF  Platelet-Derived Growth Factor
PPI  Protein–Protein Interaction
RGD  Rat Genome Database
RNA  Ribonucleic Acid
SARS  Severe Acute Respiratory Syndrome.
SIRS  Systematic Inflammatory Response System
TG  Template Genome
TN  Template Network
ViPR  Virus Pathogen Database and Analysis Resource

LONG ANSWER QUESTIONS
	1.	� Explain the role of bioinformatics in animal biotechnol-

ogy.
	2.	� Explain the common computational methods in systems 

biology.
	3.	� Explain the concept of in silico modeling.
	4.	� Discuss the advantages, disadvantages, and ethical 

issues of in silico modeling.
	5.	� What are the different application areas of in silico 

modeling? Discuss in detail how in silico modeling is 
applied in one application area.

SHORT ANSWER QUESTIONS
	1.	� Describe the template-based methods to reconstruct 

Transcriptional Regulatory Networks.
	2.	� What is the goal of in silico modeling?
	3.	� What are the challenges in in silico modeling of infec-

tious diseases?
	4.	� What are the three types of cancer models discussed in 

the chapter?
	5.	� Discuss the parameters considered for in silico model-

ing of infectious diseases.

ANSWERS TO SHORT ANSWER 
QUESTIONS
	1.	� The template-based transcriptional control network 

reconstruction method exploits the principle that 
orthologous proteins regulate orthologous target 
genes. In this approach, regulatory interactions are 
transferred from a genome (such as a genome of a 
model organism or well studied organism) to the new 
genome.

	2.	� The ultimate goal of in silico modeling in biology is the 
detailed understanding of the function of molecular net-
works as they appear in metabolism, gene regulation, or 
signal transduction.
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	3.	� There are two major challenges in modeling infectious 
diseases:

	 a.	� Difficulty in finding the most appropriate set of 
parameters for the in silico modeling of infectious 
diseases is often a challenge.

	 b.	� Understanding the results from all the complex inter-
actions of parameters considered.

	4.	� There are three types of cancer models. Continuum 
models: In these models extracellular parameters can 
be represented as continuously distributed variables to 
mathematically model cell–cell or cell–environment 
interactions in the context of cancers and the tumor 
microenvironment. Discrete models: These models rep-
resent cancer cells as discrete entities of defined loca-
tion and scale, interacting with one another and external 
factors in discrete time intervals according to predefined 
rules. Hybrid models: These models incorporate both 
continuum and discrete variables in a modular approach.
	5.	� There are three types of parameters considered for in 
silico modeling of infectious diseases:

	 a.	� Parameters derived from characteristics of agent: 
Examples: concentration of the agent’s antigen–host 
antibody complex; case fatality rate; strain of the 
agent; other genetic information of the agent; etc.

	 b.	� Parameters derived from characteristics of host: 
Examples: the total white blood cell counts; differ-
ential white blood cell counts, and/or much more 
sophisticated counts of specific blood cell types; 
blood levels of some specific cytokines, hormones, 
and/or neurotransmitters; daily calories, protein, 
and/or fat intake; daily amount of energy expended 
and/or duration of exercise; etc.

	 c.	� Parameters derived from characteristics of environ-
ment: Examples: host’s ambient temperature; host’s 
ambient atmospheric humidity; altitude; host’s light-
dark cycle; etc.


