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Resting state fast brain dynamics 
predict interindividual variability 
in motor performance
Liliia Roshchupkina1,2,3*, Vincent Wens3,4, Nicolas Coquelet3,4, Xavier de Tiege1,3,4 & 
Philippe Peigneux1,2

Motor learning features rapid enhancement during practice then offline post-practice gains with the 
reorganization of related brain networks. We hypothesised that fast transient, sub-second variations 
in magnetoencephalographic (MEG) network activity during the resting-state (RS) reflect early 
learning-related plasticity mechanisms and/or interindividual motor variability in performance. MEG 
RS activity was recorded before and 20 min after motor learning. Hidden Markov modelling (HMM) 
of MEG power envelope signals highlighted 8 recurrent topographical states. For two states, motor 
performance levels were associated with HMM temporal parameters both in pre- and post-learning 
resting-state sessions. However, no association emerged with offline changes in performance. These 
results suggest a trait-like relationship between spontaneous transient neural dynamics at rest and 
interindividual variations in motor abilities. On the other hand, transient RS dynamics seem not to be 
state-dependent, i.e., modulated by learning experience and reflect neural plasticity, at least on the 
short timescale.

Motor learning (ML) is a dynamic process subtending efficient daily life functioning. Typically, ML requires 
many repetitions to become effective in facilitating swift and accurate movement execution. Rapid changes in 
performance are observed during motor task practice (i.e., online improvement), whereas slower gains take place 
outside of practice (i.e., offline) during post-training  periods1,2. Dynamic performance changes over time sug-
gest that ML undergoes critical periods within this fast-slow framework. Indeed, the offline evolution of motor 
performance is characterised by a spontaneous improvement 30 min after practice (i.e., boost period), which is 
no longer observed when tested a few hours later (i.e., silent period)3,4, at which point performance remains at 
end-of-learning levels. A further performance increment takes place overnight. Performance levels achieved at 
the early, short-lived boost phase were found predictive of offline performance improvement 48 h  later4, sug-
gesting functional relevance of immediate post-training periods for the rapid reorganization of neural networks 
supporting ML and its consolidation in the long  term1–4.

Neuroimaging studies provided insights into the neuroanatomical underpinnings of ML, and their functional 
interactions in relevant brain networks. Nowadays, functional connectivity measures allow investigating the 
functional brain network architecture both during actual ML practice (i.e., task-based connectivity) and “inac-
tive” periods before and after learning (i.e., resting-state [RS] connectivity). Brain network features during task 
practice such as  flexibility5, local path length, connectivity strength, and nodal  efficiency6 not only change as a 
result of ML but are also predictive of future learning  levels5. As well, functional network connectivity derived 
from RS measurements before a motor task predicts individual ML  abilities7, whereas post-learning RS features 
were proposed to reflect task-induced  plasticity6,8. Many studies investigated in detail the brain’s spatial com-
ponents and their interplay in ML, but its underlying temporal neural dynamics are still poorly understood.

Temporal dynamics are preferentially investigated using electrophysiological techniques such as magnetoen-
cephalography (MEG) and electroencephalography (EEG) that enable direct measurement of neural activity at a 
high temporal resolution up to the millisecond, as compared to functional magnetic resonance imaging (fMRI) 
that indirectly measure neural activity via blood oxygenation level dependant (BOLD) brain responses at the 
second scale. Rapid fluctuations of neural activity captured using electrophysiological  measures9–12 evidenced 
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rich spatiotemporal  dynamics13–15 in resting-state networks (RSNs). For instance, Baker and  colleagues16 showed 
using hidden Markov modelling (HMM) of band-limited power envelopes of source reconstructed MEG data 
that activity patterns within RSNs change much more rapidly than previously thought. Indeed, this HMM 
analysis as well as later  studies17–22 disclosed discrete transient (100–200 ms) brain states that repeatedly recur 
over time in RS-related neural activity and correspond to the activation/deactivation of well-known  RSNs14,23,24. 
Altogether, HMM studies support the hypothesis that neurocognitive networks adapt to the rapidly changing 
computational demands of cognitive  processing25 through rapid reorganization and coordination mechanisms 
operating at the sub-second time  scale26. Consequently, the ability of HMM to leverage the excellent temporal 
resolution of EEG/MEG signals opens interesting prospects to investigate the neural plasticity dynamics under-
lying ML and its consolidation.

To the best of our knowledge, a single MEG HMM study reported specific changes in movement-related 
sensorimotor beta-activity during the actual practice of a self-paced sequential visuomotor  task27. Other MEG 
studies specifically focusing on the functional connectivity of brain networks over long-time scales (i.e., 5 min) 
relatedly found sensorimotor-related connectivity predictive of learning levels in a subsequent ML  task28,29 and 
offline post-ML changes in mu-beta modulation in the sensorimotor  cortex30. This indicates that inter- and 
intraindividual differences in offline minute-long functional network connectivity may reflect learning abilities 
and brain plasticity mechanisms. Still, these studies do not inform us about the fast (100–300 ms) activation 
dynamics of RSNs that accompany ML-related plasticity and consolidation. In this context, the present HMM 
MEG study aimed to test whether intra-individual fast neural dynamics changes from a pre- to a post-learning RS 
session reflect state-like ML consolidation-related brain plasticity mechanisms. Second, we investigated whether 
fast transient network dynamics in spontaneous human brain activity during pre-learning RS are predictive of 
individual performance levels reached in a subsequent learning session and, thus, can be seen as a trait-like 
marker of individual ML capacity.

Results
Twenty-seven young healthy participants were trained on a motor sequence learning finger tapping task  (FTT1,4) 
(Fig. 1A,B). Brain activity was recorded during pre- and post-learning RS sessions (5-min, eyes open) as well 
as during learning (data not reported) using a 306 channel MEG Triux neuromagnetometer. Post-learning RS 
recording was followed by a second FTT test conducted 20 min after the end of ML, i.e., during the boost period.

Sleepiness and fatigue measures. Prior motor task performance, participants’ drowsiness and fatigue 
levels were controlled using visual analogue scales of fatigue and sleepiness. There was no significant differ-
ence between Learning and Test sessions in sleepiness (t (26) = − 1.16, p = 0.26) as well as in fatigue scores (t 
(26) = -1.58, p = 0.13, paired-sampled t-test, Supplementary information, Table 1).

Motor learning performance. FTT performance was estimated based on the Global Performance Index 
(GPI) that accounts for speed-accuracy trade-off in the reproduction of motor  sequence31 (for analyses con-
ducted separately on speed and accuracy measures, see Supplementary Information). During the learning ses-
sion (LS), performance rapidly improved to reach asymptotic levels at the end of practice (Fig. 1C). For each 
individual, the best motor performance (BMP) at learning was computed averaging two blocks with the highest 
GPI scores. The Learning Index (LI; performance improvement from the 2 first learning blocks to BMP level) 
was significant (LI = 23.1 ± 3.3%; one-sample t-test t(26) = 7.0; p < 0.001). The offline evolution of performance 
from BMP at learning to the best score achieved at the retest 20 min later was also significant (Boost effect 
[BE] = 2.9 ± 0.8%; t(26) = 3.7; p < 0.001; Fig. 1D).

Network states of MEG power activation and deactivation. Eight HMM states were inferred from 
the power envelope of wide-band source-reconstructed MEG RS recordings (MEG signals band-pass filtered in 
4–30 Hz, envelopes low-pass filtered at 40 Hz), as  in16 except that Minimum Norm Estimation (MNE) was used 
for source projection to better capture the neural activity from posterior midline  cortices20. The HMM was run 
on the temporal concatenation of both pre- and post-learning RS sessions across participants. Each HMM state 
represents a distinct type of bursting with a specific power envelope covariance that recurrently occurs over 
 time16,32. Binary time series of state activation/inactivation were estimated using the Viterbi algorithm, which 
enforces the constraint that two states cannot be active  simultaneously33. The network topography associated 
with each state was visualized by mapping the partial correlation of the corresponding activation/inactivation 
time series with brain envelope signals. These correlation maps allow locating regional power envelope changes 
(increase/decrease for positive/negative correlation) during state visits. A noteworthy difference between the 
HMM state and the functional networks, as defined by functional connectivity analysis, is that two states may 
feature the same networks or split a network into distinct subcomponents due to differences in their fast activa-
tion dynamics.

The HMM state power maps obtained from our dataset disclosed distinctive topographic states related to 
RSNs (Fig. 2). Frontal/Sensorimotor State 1 featured a network configuration with both increased power over 
the prefrontal cortex and decreased power bilaterally in sensorimotor cortices. Such anti-correlation between 
two networks is commonly observed within HMM  states16,20 and is reminiscent of metastability and dynamical 
competition in the short-time functional connectivity of  RSNs34. Cuneus/Sensorimotor State 2 was character-
ized by increased power peaking at the cuneus and decreased power within the right precentral/postcentral 
gyri. Somatosensory State 3 was characterized by a bilateral power increase in somatosensory cortices, here 
without anti-correlation. Sensorimotor/Cuneus State 4 featured the same networks as State 2 but with opposite 
activation/deactivation patterns, i.e., increased power bilaterally in sensorimotor areas and decreased power in 
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Figure 1.  Experimental design and behavioural performance. (A) Schematic illustration of the FTT sequence 
to be reproduced during 30-s experimental blocks designed using Mind The Graph platform, https:// mindt 
hegra ph. com. (B) Experimental procedure: MEG recorded pre-learning session (LS) resting state (RS; 5 min 
eyes open), immediately followed by 20 FTT training blocks. After a 20-min break, MEG recorded post-learning 
RS followed by 2 FTT blocks (Test). (C) Global Performance Index (GPI) evolution across the 20 FTT blocks 
during LS. (D) Offline changes from the best motor performance (BMP) at learning to the best performance at 
testing. Error bars are standard errors. Figures  (C) and (D) were created using GraphPad Prism version 9.1.2, 
GraphPad Software, San Diego, California USA, www. graph pad. com.

Figure 2.  Spatial topographies of HMM transient states computed over pre- and post-learning RS sessions. 
Red/blue scales indicate positive/negative correlation values between the envelope and the state activation/
inactivation time course (i.e., increased/decreased power during one state visit). For visualization purpose, 
the maps are thresholded between 60 and 100% of the maximum absolute of the partial correlation values. 
The maps were obtained using MATLAB R2016a, The MathWorks, Inc, https:// www. mathw orks. com/ and 
MRIcrone version 1.0.20190902, 2019, Chris Rorden, https:// www. nitrc. org.

https://mindthegraph.com
https://mindthegraph.com
http://www.graphpad.com
https://www.mathworks.com/
https://www.nitrc.org
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the cuneus. Angular State 5 and Precuneus State 7 were both characterized by decreased power peaking in the 
right angular gyrus and left precuneus, respectively. Cuneus/Sensorimotor-Frontal State 6 featured increased 
power in the right cuneus and decreased power in the left sensorimotor cortices and bilateral prefrontal cortex. 
Finally, Temporal/Parietal State 8 featured increased power in the left auditory cortex and decreased power in 
the right parietal cortex.

Effect of motor learning on state temporal characteristics. Four state temporal parameters were 
computed based on the activation/inactivation time course of the 8 states: mean life time (MLT, i.e., the mean 
time spent in a given state on a single visit), fractional occupancy (FO, i.e., the total fraction of recording time 
spent in the active state), mean interval length (MIL, i.e., the time elapsed between two visits in the same state) 
and the number of occurrences (NO, i.e., the entire number of visits in a state)16,35. To enable statistical testing, 
these indices were estimated for each subject and each session (pre- and post-learning) separately by splitting 
the corresponding state activation/inactivation time series accordingly. Comparisons between pre- and post-
learning resting session temporal parameters (Fig. 3) in Frontal-Parietal State 1 revealed significantly decreased 
MLT (paired sample t-test [Wilcoxon signed-rank test] W = 296; p < 0.002, multiple comparisons corrected for 
7 independent states), FO (W = 342; p < 0.001) and NO (W = 297; p < 0.009 uncorrected), as well as significantly 
increased MIL (W = 54; p < 0.001) in the post-learning RS session. Likewise, decreased MLT (W = 269; p < 0.055 
uncorrected), FO (W = 302; p < 0.005) and NO (W = 291; p < 0.003) and increased MIL (W = 75; p < 0.005) was 
found post-learning in Visual-Motor State 2. These two states were therefore visited less frequently, for a shorter 
duration and at longer intervals after the motor task, suggesting that motor practice may have modulated the 
associated fast networks. Additionally, a reverse trend was observed (uncorrected) for increased MLT (W = 82; 
p < 0.031) and FO (W = 91; p < 0.017) after motor learning in Cuneus-Postcentral State 6. An additional analysis 
conducted after removing potential outliers gave essentially similar results (see Supplementary Information, 
Fig. 3). Comparisons between pre- and post-RS sessions in other states did not reach significance (see Supple-
mentary Information, Table 2).

Associations between state characteristics and behavioural performance/learning. The find-
ings above suggest that the temporal stability of some fast networks is modulated by motor learning during FTT. 
However, they do not tell us whether this effect is related to intra-individual learning processes per se, or if they 
reflect different performance abilities between subjects. To address this question, we searched for associations 
between the temporal parameters of States 1, 2, and 6 (in pre- and post-learning RS sessions separately) on the 
one hand, and behavioural indices of motor performance and learning, on the other hand.

We first considered correlations with the BMP (i.e., the highest motor performance level achieved by an 
individual during the learning session) (Fig. 4). In State 1, robust associations were identified both in pre- and 

Figure 3.  Temporal parameters for HMM states before (Pre, in white) and after (Post, in grey) motor learning 
[*p < 0.05 (uncorrected); **p < 0.01 and ***p < 0.001 (corrected for 7 independent states)]. Violin plots are shown 
with the median as a solid line and quartiles as dotted lines. The figure was created in GraphPad Prism version 
9.1.2 for Windows, GraphPad Software, San Diego, California USA, www. graph pad. com.

http://www.graphpad.com
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post-learning sessions. Specifically, in the pre-learning session BMP negatively correlated with MLT (Spear-
man correlation rs = − 0.59; p < 0.001 corrected for the number of HMM parameters) and FO (rs = − 0.48; 
p < 0.011) and positively correlated with MIL (rs = 0.47; p < 0.013). A trend for a negative correlation between 
BMP and NO was also observed (rs = − 0.45; p < 0.019 uncorrected) but did not survive correction for multiple 

Figure 4.  Correlations between best motor performance (BMP) achieved in the Learning session and HMM 
temporal parameters for States 1 and 6 before (Pre) and after (Post) learning (*p < 0.01 (corrected for 4 HMM 
temporal parameters); **p < 0.002 (corrected for 4 HMM temporal parameters and 7 states). The figure was 
created using JASP version 0.14.1, JASP Team (2021), https:// jasp- stats. org.

https://jasp-stats.org
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comparisons (corrected significance level p < 0.013). In the post-learning session, correlation patterns with BMP 
were similar (MLT: rs = − 0.60; p < 0.001; MIL: rs = − 0.51; p < 0.006; MIL: rs = 0.58; p < 0.001 and NO: rs = − 0.48; 
p < 0.010). In State 6, opposite correlation patterns were observed, with a trend in the pre-learning session (MLT 
rs = 0.42, p < 0.035; FO rs = 0.39, p < 0.046, NO rs = 0.36; p < 0.07) but significant associations in the post-learning 
session (MLT rs = 0.60, p < 0.001; FO rs = 0.51, p < 0.007; NO rs = 0.58, p < 0.001; MIL rs = − 0.52, p < 0.007). Impor-
tantly, in all cases, correlation coefficients did not significantly differ between pre- and post-learning sessions 
(all ps > 0.32), suggesting that the above associations for States 1 and 6 are independent of the offline learning-
related reorganization mechanisms. As for State 2, no association was evidenced between BMP and any temporal 
parameter (see Supplementary Information, Fig. 4; all rss < 0.12, ps > 0.54).

Additionally, we performed this same analysis for all HMM states, regardless of the significant changes from 
pre- to post-learning session. Our results additionally revealed a correlation between BMP and State 7 MLT in 
the post-learning session rs = 0.62, p < 0.001 (Bonferroni corrected by states by parameters factor = 28) (Fig. 5). 
Full correlational analysis results can be found in Supplementary Information, Table 2.

A caveat in the analyses above is that best motor performance (BMP) being obtained at the end of learning 
potentially reflects both motor and sequence learning components and is thus not a mere reflection of individual 
motor ability. To try dissociating as much as possible motor sequential learning from mere motor execution, 
we reasoned that the first blocks in the learning session mostly reflect mere individual motor abilities since the 
sequence to be learned is not yet integrated at the procedural level, whereas with continued practice both motor 
and sequential components are at play to contribute to performance at the end of learning. Thus, we estimated a 
baseline (BL) performance as the average of FTT blocks 2 and 3 of the learning session (block 1 was not taken into 
account in this analysis as due to habituation to the task, variability was high with frequent stops and disruptions 
in the execution of the sequence), assuming that at that stage participants did not learn yet the sequence, which 
makes it a potential motor control situation. In a first step, we computed the potential correlation between BL 
(as a “motor control” condition) and best motor performance (BMP; obtained at the end of learning and reflect-
ing both motor and sequence learning components). Results indicate a strong positive correlation between the 
two behavioural measures (r = 0.81; p ≤ 0.001, Pearson’s r) which suggests that performance measured at the end 
of learning (BMP) is strongly conditioned by the participant’s initial motor ability (BL). In a second step, we 
computed correlations between motor BL condition and state parameters measures, which essentially resulted 
in similar patterns than correlations with BMP as can be seen in Supplementary Table 6. This indicates that 
correlation between performance and state parameters are at least to a large extent likely conditioned by the 
individual’s motor ability more than sequential learning.

In the next step, we investigated potential associations between HMM temporal parameters and behavioural 
indices specific to the evolution of motor learning rather than mere motor ability. Correlations with LI (which 
reflects the intra-individual evolution of performance within the learning session) did not highlight any robust 
associations (all ps > 0.02 uncorrected) and correlation coefficients were not significantly different between pre- 
and post-learning sessions. Likewise, associations between LI and pre- to post-practice changes in state temporal 
characteristics were nonsignificant (all ps > 0.03 uncorrected, Supplementary Information, Table 4). Finally, 
we searched for associations between offline performance changes (i.e., BE; from the best performance during 
learning to the test session 20 min later, see Supplementary Information Table 5). State 3 mean life time (MLT) 
in the post-learning session positively correlated with the boost effect (BE), rs = 0.48, p < 0.012 (Supplementary 
Information, Fig. 6). However, after applying a more stringent correction for multiple comparisons by factor 
28 [number of temporal parameters and number of states (4 × 7)], this correlation did not survive the statisti-
cal threshold. Finally, we examined whether motor learning is reflected in changes to the pattern of transitions 
between the states, i.e., we computed a transition probability  matrix16 and compared the transitions before and 
after learning (Supplementary Information, Fig. 8). However, no result passed the statistical threshold (corrected 
for 8 states × 7 probabilities).

Figure 5.  Correlations between best motor performance (BMP) achieved in the Learning session and mean life 
time (MLT) for State 7 (*p < 0.01, corrected for 4 HMM temporal parameters only; **p < 0.002, corrected for 4 
HMM temporal parameters and 7 states). The figure was created using JASP version 0.14.1, JASP Team (2021), 
https:// jasp- stats. org.

https://jasp-stats.org
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Discussion
This study investigated using HMM of MEG power envelope signals whether fast transient networks in spontane-
ous human brain activity are predictive of individual motor capabilities, and whether post-learning changes in 
fast neural dynamics reflect learning-related brain plasticity mechanisms. Results show an association between 
motor performance levels achieved at learning and the temporal stability of Frontal/Sensorimotor State 1 and 
of Cuneus/Sensorimotor-Frontal State 6, both during pre- and post-motor learning RS sessions, suggesting a 
trait-like relationship between the spontaneous organisation of fast recurrent brain networks involved in motor 
learning and motor ability. Lack of correlations with behavioural indices of learning-related brain plasticity 
suggests that such transient dynamics may not reflect state-like neural changes underlying motor learning and 
consolidation, at least within the short time scale of early consolidation mechanisms.

We hypothesised that post-learning changes in neural dynamics would reflect offline brain plasticity memory 
consolidation mechanisms initiated during a short time window after the end of  learning2,4. Although behavioural 
data evidenced, as expected, performance improvement during learning (LI) and an offline boost (BE) 20 min 
after the end of learning, none of these behavioural indices of learning-related brain plasticity was associated 
with any state dynamics. This lack of association might be due to the fact that plastic changes supporting motor 
learning simultaneously recruit local and distant brain areas in a hierarchy of temporal scales ranging from 
sub-second to hours. Functional  MRI8 and  MEG28,30 studies highlighted motor learning- and memory consol-
idation-related neural networks using resting-state functional connectivity (rsFC) measures. The fundamental 
assumption behind these methods is that the temporal correlation of spontaneous brain signals among spatially 
distributed brain regions creates temporally stable (at least for several seconds) functional networks. The HMM 
probes the fast activation dynamics of these networks, and particularly their temporal stability, at much shorter 
time scales, which may prevent capturing robust plastic changes occurring at slower time scales. It has been 
suggested that the proportion of time spent by a subject in each brain network and metastates (hierarchically 
organized brain states) is a consistent subject-specific  measure36, genetically determined and exhibiting significant 
relationships with cognitive traits. Thus, neuroplastic changes may occur within certain adaptation boundaries 
in each specific brain. Additionally, neuroplasticity might boost the development of neural connections that 
facilitate performance speed and accuracy, without a considerable influence on the temporal stability of the net-
work as a  whole37, thus making consolidation changes concealed from the HMM states of MEG power activity.

These results raise the question of whether observed HMM configurations are ingrained, stable patterns of 
neural activity for a given individual, i.e., a neuronal trait, or may be modulated by experience and environmental 
demands, i.e., neuronal states reflecting brain plasticity mechanisms potentially linked to offline learning and 
consolidation processes. Noticeably, previous HMM studies mostly used between-group designs to evidence 
differences between  populations20,38,39. To the best of our knowledge, the present study is the first to investigate 
the evolution of HMM parameters in a within-subject design during pre- and post-motor learning resting-state 
sessions, considering motor performance levels and learning-related changes. In our study, HMM inferred 
8 transient recurring states from MEG resting-state power envelope data, featuring quite similar spatial and 
temporal parameters than in previous  reports17,20,40. Quantitative temporal parameters measuring HMM state 
stability and recurrence were modified from pre- to post-learning sessions in States 1, 2, and 6, which might 
be due to the task in between the two RS sessions, alternatively to the time elapsed between the two RS acqui-
sitions. Considering the former explanation, the destabilization of Frontal/Sensorimotor State 1 after motor 
learning could be explained by the automatization of the practiced motor act, eventually requiring at the same 
time lower levels of cognitive control (i.e., less activation of the frontal control-executive network) and higher 
involvement of motor-related areas (i.e., less deactivation of the sensorimotor network) contributing to motor 
memory consolidation. Such argument would find support in prior research showing that learning a motor skill 
relies in the early stage on the activity of executive prefrontal cortices, which in turn informs lower motor levels 
(i.e., premotor and primary motor  cortices41). With the progress of learning, cortical activity in the frontal lobe 
diminishes following an anterior to posterior  axis42–46, which enables a transition from executive to motor levels of 
control and consequently, a reduction in central resource demands. However, our correlational analyses showed 
that the best motor performance (BMP) achieved during the learning session was strongly correlated with State 
1 temporal parameters both in the pre- and post-RS sessions, without differences between the two sessions. 
This rather suggests the existence of a stable, trait-like neural activity pattern associated with individual motor 
performance ability, a conclusion additionally supported by the fact that we found similar correlation patterns 
when running correlations with performance in the two first blocks (baseline, BL) of the learning session during 
which the sequence to be learned is not yet integrated at the procedural level. In other words, one may surmise 
that increased power in frontal executive networks together with decreased power in sensorimotor areas might 
be an important pre-setting for successful execution of a motor task and/or indicate good individual motor abili-
ties. On the other hand, this could be a result of previous experience and prolonged training over the individual’s 
development in motor tasks such as sport, playing video games, fine motor skills hobbies, etc.

On another note, no correlation was found between State 2 and BMP, although HMM parameters differed 
between sessions, suggesting that pre- to post-learning changes in State 2 dynamics were independent of motor-
related effects. At variance, there was a trend for a positive association between BMP and State 6 parameters in 
pre-learning RS session. In both States 2 and 6, power increased in cuneus areas and decreased in sensorimotor 
cortices upon state activation. Functional relationships between cuneus and somatosensory areas have been pre-
viously  suggested47, with the proposal that correlation between these brain areas in the resting-state contributes 
to the anti-correlated activity reported between the default-mode network (metabolically activated at  rest48) and 
other brain networks activated in the context of tasks that require visual/sensory processing. Although one study 
found increased functional connectivity within sensorimotor and visual RSNs shortly after sequence  learning8, no 
correlations with performance were reported. State 6 also disclosed deactivation pattern in the frontal executive 
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network opposite to that in State 1, which might be key to explain the directionality of associations between 
motor performance levels and their temporal parameters. Indeed, better performance levels were negatively 
correlated with temporal parameters in State 1, and positively in State 6, in line with a potential disengagement 
of the executive network after motor learning. The trend for stabilization of State 6 post-learning, and thus the 
fact that its motor-related areas spend more time being deactivated, is also consistent with decreased activity 
in M1 at late skill  learning49 and  automatized45 stages. Although modified power within sensorimotor cortices 
in States may be viewed as indicative of learning-related plastic changes, our correlation results do not support 
this interpretation, as associations between brain activity patterns and motor performance are similar before 
and after the learning episode. Hence, our current results are in favour of the hypothesis that fast brain dynam-
ics reflect a possibly intrinsic (i.e., task independent), trait-like brain architecture associated with the ability to 
perform a motor task.

A potential limitation in the interpretation of our results is the difficulty to warrant a clear-cut dissocia-
tion between motor learning and motor execution with a task like the FTT in which participants repeatedly 
reproduce as fast as possible for 30 s per block pre-defined, explicitly known sequences of finger movement. 
Indeed, if participants are asked as a control condition to perform a “simpler” basic sequential tapping task (e.g. 
1–2–3–4–1–2–3–4–…), there is still a sequential component to be optimized. If on the other hand, they are asked 
to perform single finger tapping (or all fingers simultaneously), the co-articulation motor movement components 
are completely lost and the two tasks then differ by much more than the motor (sequential) learning component. 
Theoretically, it might be possible to estimate the impact of sequence learning besides the motor component by 
asking participants to learn a second, different sequence and compute proactive interference effects of the first 
sequence on the acquisition of the second one, like was done for motor adaptation  tasks50, but this was not imple-
mented in the current protocol. To address at least in part this issue, we calculated a baseline (BL) performance 
index as the average of the first FTT blocks of the learning session, assuming that at that stage participants did 
not learn the sequence yet, which makes it a potential motor control situation. As reported above, our results 
not only disclosed high correlation coefficients between BL and BMP behavioural value, but also that correla-
tion analyses between HMM parameters and BL scores essentially result in similar patterns than with BMP (see 
Supplementary Information, Table 6), supporting our assumption that correlations between performance and 
state parameters are at least to a large extent conditioned by the individual’s motor ability more than sequential 
learning, even if we acknowledge that we cannot completely rule out a contribution of the latter.

On another note, it has been shown that changing the number of states in HMM analyses can alter the burst 
characteristics of each  state51. Therefore, the choice of the number of states (which has to be predefined in HMM) 
may impact the observed results. We opted here for an a priori number of eight states, both based on existing 
literature and our own lab’s experience. The determination of an optimal number of states is important in order 
to both avoid surplus information and not to miss the activity of interest. Indeed, a too low number of states (e.g., 
3) might lead to miss a potential dissociation between motor learning and memory consolidation-related activ-
ity. On the other hand, a too high number of states may split the motor-related activity into several, more or less 
redundant states with low temporal characteristics. For instance, the mean life time parameter would be shorter 
in those states since distributed over a few states, as shown by Seedat et al.51. In the seminal Baker et al.16 HMM-
envelope paper, the authors suggested that the optimal number of states can be estimated via the model with the 
lowest free energy value, and ended up choosing 8 states as a good trade-off between richness and redundancy. 
Additionally, in a recent paper from our  group52, the number of states was reduced to 6 and the state topographies 
were quite similar to those obtained with 8  states20,39, suggesting that the amount of information obtained for 
6 and 8 states is relatively similar. Although we cannot exclude potential limitations due to our a priori choice 
of using 8 states, we opted to use a standard a priori number rather conducting parallel analyses manipulating 
the number of states, which would have led us to the problem of selecting the best analysis parameters based on 
their output in terms of results, which is circular.

To sum up, our results suggest a robust trait-like relationship between interindividual variations in motor 
performance capability and fast transient neural dynamics during the resting state. Missing associations with 
brain plasticity-related learning and memory consolidation behavioural parameters suggest that fast transient 
RS dynamics may not be modulated by learning experience and reflect state-like neural plasticity mechanisms, 
at least on the short consolidation timescale of the present experiment.

Methods
Participants and procedure. Thirty-four participants were recruited for this experiment, according to 
estimated sample size (a medium size effect in a within-subjects design study using a two-tailed t-test, with 
effect size 0.5, significance level 0.05, and power of 0.8). All subjects were young and healthy right-handed 
individuals, non-musician or professional typist who gave written informed consent to participate in this study 
which was approved by the CUB Hôpital Erasme Ethics Committee (Ref: P2016/553; CCB: B406201630539). 
However, 7 participants had to be removed after the preliminary analysis: 3 datasets were discarded due to poor 
motor performance; 1 dataset had a corrupted MEG signal and 3 participants were identified as outliers in Hid-
den Markov model analysis due to aberrant, extreme values. All in all, the data of 27 participants (11 females; 
mean age = 23.4 ± 2.7 years, range 18–29) are reported. All methods were performed in accordance with relevant 
guidelines and regulations. Female participants were tested during the second week of their menstrual cycle 
to avoid hormonal influence on motor learning  abilities53. Caffeine-containing drinks and food, soda, and any 
other stimulants were prohibited 12 h before testing.

Upon arrival at the laboratory, participants were prepared for the MEG recording. They then underwent in 
the MEG scanner a first 5-min resting-state (RS) session (pre-learning) in a seated posture with the eyes open 
focused on a fixation cross on the wall. Then, participants filled the visual analogue scales (VAS) of fatigue and 
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sleepiness in order to identify potential effects of drowsiness and fatigue. Immediately after, they were trained on 
a 5-elements Finger Tapping Task  (FTT4; adapted  from54). In this task (Fig. 1A), each finger corresponded to one 
digit (from 1 = little finger to 4 = index) and participants were instructed to continuously reproduce a 5-element 
sequence of finger movements (4–1–3–2–4) as fast and accurately as possible with their non-dominant hand 
for 30 s (1 block). The sequence to reproduce was permanently displayed on the computer screen during execu-
tion. Participants were familiarized with the task during 2 FTT demo blocks then underwent the experimental 
learning session (LS) with twenty 30-s FTT blocks with 20-s breaks in between blocks while being in the MEG 
scanner. Right after the task, participants were allowed to leave the scanner chair and move within the room. At 
the end of the 20-min break, they filled in VAS and performed a second MEG RS session (post-learning). Finally, 
performance gains from the end of learning were evaluated by performing two FTT blocks (Test session; Fig. 1B).

Behavioural indices for motor performance and learning. Motor performance during the FTT was 
estimated for each block by computing a Global Performance Index (GPI) that takes into account both speed 
and  accuracy31. Based on the GPI scores, we identified best motor performance (BMP) reached by each subject 
as the average of the two LS blocks with the highest GPI scores, which reflects a contribution of both motor and 
sequential. We also estimated a baseline (BL) performance as the average of FTT blocks 2 and 3 of the learning 
session (block 1 was not taken into account in this analysis as due to initial habituation to the task, variability 
was high with frequent stops and disruptions in the execution of the sequence), assuming that at that stage 
participants did not learn yet the sequence, which makes it a potential motor control situation. To measure the 
evolution of performance during the learning session, we computed the Learning Index (LI) as the percentage 
change in GPI scores from BL to BMP. Finally, we estimated offline changes in performance from the end of 
learning to the test session (i.e., boost effect) as the percentage change from BMP to the best GPI score achieved 
after the post-learning testing.

Neuroimaging data acquisition. MEG data acquisition was performed using a 306 channel whole-
scalp MEG system (Triux, MEGIN, Helsinki, Finland) located inside a light-weight magnetically shielded room 
(Maxshield, MEGIN, Helsinki, Finland) at the CUB Hôpital Erasme (Brussels, Belgium). Participants’ head 
position was tracked continuously within the MEG helmet by four head tracking coils. Coils’ position and about 
300 head points were determined following the anatomical fiducials with an electromagnetic tracker (Fastrak, 
Polhemus, Colchester, Vermont, USA). We applied an online analog band-pass filter in the range of 0.1–330 Hz 
for all recordings and digitized the signal at 1 kHz sampling rate. Participant’s high-resolution 3D T1-weighted 
cerebral magnetic resonance images (MRIs) were acquired after the MEG recordings on a 1.5 T MRI scanner 
(Intera, Philips, The Netherlands).

Data pre-processing. The temporal signal space separation  method55 was applied offline to the continu-
ous MEG data to minimize external magnetic interference and head movements corrections (Maxfilter v2.1, 
MEGIN, Finland). Then, data were filtered (offline band-pass filter: 0.1–45 Hz) and an independent compo-
nent analysis (FastICA algorithm with dimension reduction to 30 components, hyperbolic tangent nonlinearity 
function)56 was applied for visual inspection. Independent components corresponding to cardiac, ocular and 
system artifacts were rejected by regressing their time course out of the full-rank data. To proceed with source 
reconstruction, the MEG forward models were estimated based on the participants’ 3D T1-weighted cerebral 
MRI, anatomically segmented using FreeSurfer software (version 6.0; Martinos Center for Biomedical Imaging, 
Massachusetts, USA). The MEG and MRI coordinate systems were co-registered via three anatomical fiducials 
points (nasion and auricular) for primary head position estimation and the head-surface points for manual 
refinement (MRIlab, MEGIN Data Analysis Package 3.4.4, MEGIN, Helsinki, Finland). A volumetric and regu-
lar 5-mm source grid was constructed in the Montreal Neurological Institute (MNI) template MRI and non-line-
arly deformed onto each participants’ MRI with the Statistical Parametric Mapping Software (SPM12, Wellcome 
Centre for Neuroimaging, London, UK). Finally, the three-dimensional MEG forward model associated with 
this source space was estimated using a one-layer Boundary Element Method as executed in the MNE-C suite.

Source projection of MEG data was then based on Minimum Norm Estimation (MNE)57. The noise covariance 
matrix was estimated form 5-min empty room MEG recordings spatially filtered using signal space separation 
 method55 and temporally filtered between 0.1 and 45 Hz. The MNE regularization parameter was fixed using the 
consistency condition derived  in58. Three-dimensional dipole time courses were projected on their direction of 
maximum variance and their Hilbert envelope signal was extracted using the Hilbert transform.

Hidden Markov model dynamic analysis. The analysis followed the pipeline described  by16,35 imple-
mented in GLEAN (https:// github. com/ OHBA- analy sis/ GLEAN). The main difference in our implementation 
is that MNE is used as an inverse model rather than the Beamformer, as MNE allows the investigation of RSNs 
states related to the DMN, and in particular, states involving posterior midline cortices (i.e., precuneus and 
posterior cingulate cortex)20,39. The number of transient states was set to 8 for consistency with previous MEG 
power envelope HMM  studies16,20,35,39. The 8-state HMM was inferred from the wide-band filtered (4–30 Hz) 
source envelope signals. Envelope data were downsampled at 10 Hz using a moving-window average with 75% 
overlap (100 ms wide windows, sliding every 25 ms), resulting in effective downsampling at 40 Hz, demeaned, 
normalized by the global variance, and temporally concatenated across participants to design a group-level 
HMM analysis and across the two RS sessions in order to identify network states common to both the pre- and 
post-learning sessions (for further discussion on this strategy, see, e.g.20). The concatenated envelopes were then 
pre-whitened and reduced to 40 principal components. Finally, the HMM  algorithm33,59 was repeatedly run on 
this dataset 10 times (to account for different initial parameters and retain the model with the lowest free energy) 

https://github.com/OHBA-analysis/GLEAN
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to determine states classifying different power envelope covariance patterns. The Viterbi algorithm was used to 
decode the binary signals of temporally exclusive state activation/inactivation. Based on these signals, four state 
temporal parameters were estimated: MLT (mean duration of time intervals of active state), FO (entire fraction 
of time of the active state), MIL (mean duration of time intervals of inactive state) and NO (total number of 
state visits). These indices were estimated separately for each subject and session by "de-concatenating" the state 
activation time series. State power maps were obtained as a result of the partial correlation between HMM state 
activation/deactivation time series and the concatenated source envelope signals, which assesses state-specific 
power changes upon state activation.

Statistical contrasts and correlation analyses with HMM state temporal parameters. The 
comparison between pre- and post-learning HMM states’ temporal parameters was assessed using paired-sam-
pled Wilcoxon signed-rank. P-values were Bonferroni corrected for multiple comparisons using a factor 7, i.e., 
the number of independent HMM states (knowledge of the activation of 7 out of 8 HMM states fully deter-
mines the activation of the last HMM state due to the temporal exclusion constraint implemented in the Viterbi 
algorithm)20. For HMM states disclosing a significant pre-to-post learning effect, Spearman’s rank correlation 
analyses investigated the relationship between their temporal parameters in pre- and post-learning sessions 
and behavioural indices. Non-parametric tests were favoured due to higher robustness against outliers, which 
sometimes arise among HMM state temporal parameters when, e.g., one or a few subjects scarcely visit one state. 
Results were considered significant at p < 0.05 corrected for multiple comparisons by factor 4, i.e., the number of 
HMM temporal parameters considered. Finally, we used Bayesian statistics to provide an estimate of the likeli-
hood of the null hypothesis (null hypothesis significance testing; NHST) in the case of non-significant results 
(results reported as Supplementary Information material).
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