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Abstract: Stability of a vertically aligned microparticle pair in a stratified glow DC discharge is
experimentally investigated. Using laser perturbations, it is shown that, for the same discharge
parameters, a pair of microparticles can be suspended in two stable configurations: vertical and
horizontal. The interparticle interaction and the electric field of the stratum in the region of particle
levitation are quantitatively investigated for the first time. The decharging effect of the lower
(downstream) particle by the ion flow wake is also observed for the first time in a glow discharge.
The obtained experimental data made it possible to check the analytical criteria for the configurational
stability of the system.
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1. Introduction

A colloidal plasma is a nontrivial instance of soft condensed matter [1]. Under certain
conditions, the colloidal plasma becomes a thermodynamically open, non-Hamiltonian sys-
tem that can exist in liquid-like or crystal-like states [2,3] and exhibit the properties of active
matter [4–6]. When micron-sized particles are immersed in a gas discharge with ion flow,
they acquire significant negative charges (typically, 103–104 elementary charges) and can
create ion wakes by the flow of ions past particles [7–9]. The resulting “particle–particle”
interaction is complex and effectively nonreciprocal: a microparticle experiences an elec-
trostatic repulsion from the like-charged adjacent particles and an effective attraction to
their ion wakes. Due to such wake-mediated interparticle interaction, the like-charged
microparticles suspended in a capacitively coupled radio-frequency (RF) discharge can
form vertical pairs, despite significant vertical compression by the electric field of the
sheath [10–12]. The stability of the vertical configuration increases with a decharging of
the lower (downstream) particle by the ion wake [13–16] and in the presence of strong
horizontal interaction with neighboring particles forming extended bilayered and multi-
layered crystals [10,11,17,18]. In some experiments, particles of different masses were used
to assemble their vertical configuration [19–22]. Single vertical particle pairs and chain-like
structures were also created by applying an additional horizontal confinement [21,23–28].
Single vertical chains consisting of several dozen microparticles were also observed in an
induction RF discharge and a glow DC discharge [29–31].

The possible coupling of two identical particles and the stability of their alignment in
the electric field of a gas discharge were theoretically investigated in Refs. [12,16,32–34].
The problem of breaking the chain-like configuration of a finite number of particles due to
the lateral instability onset was considered in Refs. [35–37]. Nevertheless, the obtained ana-
lytical criteria for the configuration stability of various systems have never been compared
with experimental data.

Here, the stability of a vertically aligned microparticle pair in a stratified glow DC
discharge is experimentally investigated. The interparticle interaction and the electric
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field of the stratum in the region of particle levitation are quantitatively investigated for
the first time. For this purpose, we use a recently developed method [27] based on the
analysis of the spectral density of random processes. Unlike most studies, this method
does not require any external disturbances and a special design of the experimental setup,
preliminary measurements of external fields and assumptions about the type of interaction.
A brief history of previous experimental studies of nonreciprocal interaction forces between
particles in a colloidal plasma and a description of the methods used for this are given in
Ref. [27]. The obtained experimental data made it possible to check the analytical criteria
for the configurational stability of the system.

2. Criteria for Particle Stability

Consider a system of two interacting particles in a glow discharge stratum. The
gas-discharge tube is installed vertically in a gravity field directed opposite to the Z axis.
For definiteness, we assign the index “1” to the lower particle, i.e., located lower along the
Z axis, and “2” to the upper one. The gravity and electrostatic repulsion of two particles
are compensated by the confining electric field of the stratum. The particles are considered
to be strongly coupled thus they are in thermal motion near their equilibrium positions.

Consider the lateral stability of the system, i.e., resistance to small displacements of
particles perpendicular to the line connecting the equilibrium positions of the particles.
The stability of the vertical configuration is determined by the response of the system to
displacements in the horizontal plane (for example, along the X axis), and to determine
the stability of the horizontal configuration, displacements of particles only in the vertical
direction (along the Z axis) are considered. If the condition [16,38]

f (ξ)21∣∣∣ f (ξ)1

∣∣∣ + f (ξ)12∣∣∣ f (ξ)2

∣∣∣ < 1 (1)

is met, then the configuration is stable. Here f (ξ)ij is the stiffness of the ξ-component of

the specific force Fij/M acting on the j-th particle with mass Mj from the i-th one, f (ξ)j is
the stiffness of the ξ-component of the specific confining force Fj/Mj acting on the j-th
particle from the stratum. The selection of the force component and the derivative direction
indicates by the superscript: ξ ≡ x or z.

We further assume that the particles have equal mass, Mj ≡ M, carry different
negative charges (Q1 < 0 and Q2 < 0), and the electric field strength E(r, z) is linear with a
radial component Er = αr and a vertical component Ez = E0 + βz, where r ≡

(
x2 + y2)1/2

is the radial coordinate, z. is the vertical coordinate, α > 0 and β > 0 are the gradients
of the electric field strength, and E0 is determined by the balance of forces acting in the
system. Earlier experiments [14,15,27] showed that with a vertical arrangement of particles
(parallel to the ion flow), the charge of the lower (downstream) particle becomes less than
the charge of the upper particle due to the decharging effect caused by the ion wake, i.e.,
|Q1|<|Q2|. For a horizontally aligned particle pair (perpendicular to the ion flow), the
charges of the particles are equal (Q1 = Q2 ≡ Q), since in this case the levitation height of
the particle depends on the ratio of charge to mass.

If the vector of the interparticle interaction force Fij and the vector of the interpar-
ticle distance rij = ri − rj are collinear, then, taking into account the force balance equa-
tion [16,33,35], the condition (1) is reduced to:

α∗

β
> 1. (2)

for the vertical configuration of particles, where

α∗ = α +

(
1
|Q1|

− 1
|Q2|

)
Mg
L

, (3)
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g is the acceleration of gravity, and L = rij is the separation of the particles in equilib-
rium; and

α

β
< 1 (4)

for the horizontal configuration. Note that the collinearity of Fij and rij holds for the
entire family of potentials with a spherical symmetry, the simplest example of which is
the Coulomb potential. Obviously, for particles with equal charges, the condition (2) is
reduced to α/β >1 [35].

3. Experiment

An experimental study was carried out in a stratified glow DC discharge. A gas-
discharge glass tube with a length of 1250 mm and an inner diameter of 40 mm was
evacuated to an operating pressure of 2 Pa. After that, a direct current discharge was
ignited between the anode and cathode, the distance between which was 1050 mm. During
the experiment, the discharge current increased from 0.75 mA to 1.95 mA. In the upper part
of the tube, there was a microparticle injector in the form of a container with a piezoelectric
emitter. The container was filled with monodisperse polystyrene particles with a diameter
of 4.6 µm, which were thrown into the discharge one by one when a signal from a pulse
generator was applied to the piezoelectric emitter. The particles fell into the region of the
positive column of the discharge, where they acquired an electric charge and were captured
by strata. The experiments were carried out with both two and three microparticles in
different spatial configurations in the lower stratum. Microparticles were visualized using
a homogeneously expanded beam (with a diameter of 3 cm) of a 200 mW solid-state laser,
passed through the glass bottom of the tube. The movement of particles was recorded
in the vertical plane using a high-speed video camera with a recording frequency of
200 frames per second and a spatial resolution of 215 pixels per mm. Using a computer
video processing, the particle trajectories were determined. Further spectral analysis of
the trajectories of two interacting particles made it possible to determine the directional
derivatives of the interparticle interaction forces and the external confining forces with
which the stratum acts on the particles. In order to determine the ratio of the gradients of
the stratum field components in the region of particle levitation, an additional analysis of
the dynamics of a solitary particle in the stratum was carried out at the same discharge
parameters that had been set in experiments with two particles.

A second solid-state laser with a power of up to 1.5 watts was used to manipulate the
particles by the radiation pressure of the focused laser beam (1 mm in diameter). Note that
similar manipulations with a particle pair levitating in a RF discharge were carried out
earlier [14,19,24,26].

When two microparticles were injected into the stratum of the gas discharge tube, they
were always located one above the other along the vertical axis of the tube (see Figure 1a).
Due to the action of the laser pulse, the lower particle was kicked aside, and the vertical pair
changed its alignment to horizontal. When the laser exposure was stopped, the horizontal
configuration was retained (see Figure 1b). Interestingly, when the laser pulse hit the upper
particle, the configuration did not change. Thus, laser manipulations have shown that for
the same discharge parameters, a pair of microparticles can be suspended in two stable
configurations: vertical and horizontal. The observed response of the vertically aligned
particle pair to laser impact gives reason to suggest that with an increase in the oscillation
amplitude of the lower particle, an amplitude instability may occur with a subsequent
transition to a horizontal configuration. One can assume that such a situation is possible, for
example, when using light-absorbing particles [39,40] or Janus particles [5,41,42], i.e., active
particles, the kinetic energy of which increases with an increase in the laser illumination
intensity. Note that when an additional third particle was injected, the coexistence of
vertical and horizontal configurations was observed, see Figure 1c.
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Figure 1. Video frames of different particle configurations in the lower stratum of a glow DC dis-
charge at a buffer gas pressure of 2 Pa and a current of 0.75 mA. (a) Vertical alignment of two parti-
cles before the laser perturbation (we assign the index “1” to the lower particle and “2” to the upper 
one); (b) particles in the horizontal plane after the laser action on the lower particle; (c) stable con-
figuration of three particles. 
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vertically aligned particles ( ଶ݂ଵ(୶) and ଵ݂ଶ(୶)) are presented in Figure 3 in dependence on the 
discharge current strength. The ratio of ଵ݂(୶) ଶ݂(୶)ൗ  for the vertical particle pair is shown in 
Figure 4. The statistical error in measuring the forces, caused by fitting the experimental 
spectral density with some noise, can be estimated by “bootstrapping” [43]. The confi-
dence intervals, which contain 95% of the bootstrapped values, are within ±8% for the 
confining forces and ±11% for the interparticle interaction forces. 

The stratum thickness was about 3 cm at all currents. The particles levitated approx-
imately three millimeters below the stratum center. With increasing discharge current, the 
average separation of the vertically aligned particles decreases from 0.7 to 0.4 mm. A 
rough estimate of the ion Debye length, based on the available numerical data [44,45], 
gives the same order of magnitude as the particle separation. Since the particles were lo-
cated far from the stratum edge and the particle separation was much smaller than the 
stratum thickness, then, for further analysis of the experimental results, we assume that 
the plasma conditions in the vicinity of the particles are relatively constant. By analogy 
with Ref. [27], for monodisperse particles we have 

ଵ݂(୶) ଶ݂(୶)ൗ ൎ ܳଵ ܳଶ⁄ .	 (5) 

Figure 4 shows with an increase in the discharge current, the ܳଵ ܳଶ⁄  ratio changed 
from 0.75 to 0.7. As the voltage increases, the speed of the drifted ions increases, and the 
upstream particle amplifies the ion flows to the downstream negatively charged particle. 
This result is in agreement with previous experiments carried out in capacitive RF dis-
charges [14,15,27,46], as well as with numerical simulations [13,47], exhibiting what has 
been called the decharging effect. Interestingly, ݂(୶) and ଶ݂(୶) values, obtained for a sin-
gle particle and the upper particle of a vertical pair, respectively, are practically the same, 

Figure 1. Video frames of different particle configurations in the lower stratum of a glow DC discharge
at a buffer gas pressure of 2 Pa and a current of 0.75 mA. (a) Vertical alignment of two particles
before the laser perturbation (we assign the index “1” to the lower particle and “2” to the upper one);
(b) particles in the horizontal plane after the laser action on the lower particle; (c) stable configuration
of three particles.

4. Results and Discussion
4.1. Forces Acting on the Particles

Using the method proposed in [27], a spectral analysis of the particle trajectories was
carried out. Figure 2 shows examples of the oscillation spectra of a solitary particle and a
vertically aligned particle pair. The approximation of the obtained spectral densities for
a solitary particle provides information on the forces acting on the charged microparticle
from the stratum, namely: f (x) = αQ/M and f (z) = βQ/M. The approximation of the
spectral densities for the vertically aligned particle pair made it possible to determine the
stiffness of specific interaction forces ( f (x)21 and f (x)12 ) and confining forces ( f (x)1 and f (x)2 ).
Figure 2 shows how analytical functions fit the experimentally measured spectral densities
of the oscillations of a solitary particle and a vertically aligned particle pair. Experimental
data on the forces acting on the solitary particle ( f (x) and f (z)) and between the vertically
aligned particles ( f (x)21 and f (x)12 ) are presented in Figure 3 in dependence on the discharge

current strength. The ratio of f (x)1 / f (x)2 for the vertical particle pair is shown in Figure 4. The
statistical error in measuring the forces, caused by fitting the experimental spectral density
with some noise, can be estimated by “bootstrapping” [43]. The confidence intervals, which
contain 95% of the bootstrapped values, are within ±8% for the confining forces and ±11%
for the interparticle interaction forces.

The stratum thickness was about 3 cm at all currents. The particles levitated approxi-
mately three millimeters below the stratum center. With increasing discharge current, the
average separation of the vertically aligned particles decreases from 0.7 to 0.4 mm. A rough
estimate of the ion Debye length, based on the available numerical data [44,45], gives the
same order of magnitude as the particle separation. Since the particles were located far
from the stratum edge and the particle separation was much smaller than the stratum
thickness, then, for further analysis of the experimental results, we assume that the plasma
conditions in the vicinity of the particles are relatively constant. By analogy with Ref. [27],
for monodisperse particles we have

f (x)1 / f (x)2 ≈ Q1/Q2. (5)

Figure 4 shows with an increase in the discharge current, the Q1/Q2 ratio changed
from 0.75 to 0.7. As the voltage increases, the speed of the drifted ions increases, and the
upstream particle amplifies the ion flows to the downstream negatively charged parti-
cle. This result is in agreement with previous experiments carried out in capacitive RF
discharges [14,15,27,46], as well as with numerical simulations [13,47], exhibiting what
has been called the decharging effect. Interestingly, f (x) and f (x)2 values, obtained for a
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single particle and the upper particle of a vertical pair, respectively, are practically the same,
taking into account measurement errors. The same result was previously observed in a RF
discharge [15].
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Figure 2. Spectral density of horizontal oscillations of (a) the solitary particle and (b) the lower particle in the system of two
vertically aligned particles. The thin line shows the experimental data obtained for 1.05 mA, and the bold line plots the fit
by the analytical function [27].
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4.2. Experimental Verification of the Criteria for Particle Stability

The obtained experimental data make it possible to check the analytical criteria for
the configurational stability of the system. The experiment with a solitary microparticle
shows that over the entire range of discharge current (from 0.75 mA to 1.95 mA) at a
pressure of 2 Pa, the electric field gradient along the gas discharge tube axis (vertical
axis) is several times higher than the radial (horizontal) gradient at the area of particle
levitation, see the blue curve in Figure 5. Under these conditions, when the particles have
equal masses, charges and symmetrical interaction, then according to the condition (4),
horizontal alignment is preferable for them. In our experiments, with the horizontal
alignment of two particles, their charges can be considered equal, and an effective violation
of the interparticle interaction symmetry can be neglected.
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When α/β < 1, as follows from the conditions (1) and (2), for the lateral stability of the
vertical configuration of two identical particles, in addition to the external confinement,
the following conditions are required: unequal charges of particles (Q1/Q2 < 1) and an
effective breaking of the interparticle interaction symmetry ( f (x)21 6= f (x)12 ). Such inequalities
can arise in the presence of ion drift caused by an axial electric field.

Taking into account Equation (3) for α∗ and Equation (5) for Q1/Q2 ratio, the left part
of inequality (2) can be rewritten as α∗/β =

{∣∣∣ f (x)2

∣∣∣+ ( f (x)2 / f (x)1 − 1
)

g/L
}

/
∣∣∣ f (z)∣∣∣. Since

the condition (2) is not satisfied at a current strength of less than 1.4 mA (see the red curve
in Figure 5), the stability of the vertical pair must be additionally ensured by the inequality
of the derivatives of the interparticle interaction forces. Figure 6 shows the left part of
the inequality (1) depending on the discharge current strength. It is easy to see that the
condition (1) for a vertically aligned particle pair holds for all discharge currents.
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5. Conclusions

The stability of a vertically aligned microparticle pair in a stratified glow DC discharge
has been experimentally investigated. Using laser perturbations, we have shown that, for
the same discharge parameters, a pair of microparticles can be suspended in two stable
configurations: vertical and horizontal. The interparticle interaction and the electric field
of the stratum in the region of particle levitation have been quantitatively investigated for
the first time. The decharging effect of the lower (downstream) particle by the ion flow
wake was also observed for the first time in a glow discharge. Using the experimental data,
the analytical criteria for the configuration stability of the system were verified. Note that
these criteria can be used to describe the configuration stability of two particles with very
different nonreciprocal interactions. Examples include flowing colloidal suspensions where
the nonreciprocity may occur due to depletion forces [48–52] acting on closely spaced
macroparticles moving through a colloidal dispersion.
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