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Abstract 

Background:  Algorithms used to identify disease cases in administrative health data may be sensitive to changes 
in the data over time. Control charts can be used to assess how variations in administrative health data impact the sta-
bility of estimated trends in incidence and prevalence for administrative data algorithms. We compared the stability of 
incidence and prevalence trends for multiple juvenile diabetes algorithms using observed-expected control charts.

Methods:  Eighteen validated algorithms for juvenile diabetes were applied to administrative health data from Mani-
toba, Canada between 1975 and 2018. Trends in disease incidence and prevalence for each algorithm were modelled 
using negative binomial regression and generalized estimating equations; model-predicted case counts were plotted 
against observed counts. Control limits were set as predicted case count ±0.8*standard deviation. Differences in the 
frequency of out-of-control observations for each algorithm were assessed using McNemar’s test with Holm-Bonfer-
roni adjustment.

Results:  The proportion of out-of-control observations for incidence and prevalence ranged from 0.57 to 0.76 and 
0.45 to 0.83, respectively. McNemar’s test revealed no difference in the frequency of out-of-control observations 
across algorithms. A sensitivity analysis with relaxed control limits (2*standard deviation) detected fewer out-of-
control years (incidence 0.19 to 0.33; prevalence 0.07 to 0.52), but differences in stability across some algorithms for 
prevalence.

Conclusions:  Our study using control charts to compare stability of trends in incidence and prevalence for juvenile 
diabetes algorithms found no differences for disease incidence. Differences were observed between select algorithms 
for disease prevalence when using wider control limits.

Keywords:  Control charts, Chronic disease surveillance, International classification of diseases codes, Administrative 
health data
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Background
Administrative health data are widely used for monitor-
ing trends in chronic disease incidence and prevalence for 
entire populations. Algorithms (i.e., case definitions) to 

ascertain disease cases may be applied to administrative 
health data without considering potential changes in the 
data over time. Specifically, changes in clinical guidelines, 
diagnosis coding practices, and healthcare processes 
may impact how administrative health data are coded 
[1, 2]. Therefore, changes in observed disease trends may 
reflect changes in data coding rather than true changes 
in population health status [3–7]. Methods that attempt 
to disentangle true change from coding-related effects 
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will benefit users of administrative health data for disease 
surveillance.

Originally developed to monitor industrial processes, 
control charts are used to graph observed data in sequen-
tial order, with a centre line representing the average or 
expected value [8]. Control limits set around the cen-
tre line are used to denote the range where sources of 
process variation can be attributed to random error. 
Observations outside the control limits are deemed 
‘out-of-control’, suggesting a non-random source of vari-
ation influenced the process of interest [8]. Different 
kinds of control charts can be applied to process data, 
including Shewhart charts, U′ charts, cumulative sum 
charts (CUMSU), and observed-expected charts. Chart 
selection depends on the data characteristics and chart 
purpose.

There has been a steady uptake of control charts 
in population health and healthcare research since 
the 1990s, with a marked increase in recent years [9]. 
Applications include monitoring: mortality rates using 
observed-expected [10], CUMSU [11], and p charts [10]; 
hospital length-of-stay using exponentially weighted 
moving average [12], CUMSU [12], and Shewhart charts 
[13]; surgical infection rates using Q [14] and p charts 
[15]; and delivery outcomes for maternity wards using 
observed-expected charts [16]. In health surveillance set-
tings, U′ charts have been used to monitor injury rates 
of military personnel [17] and Shewhart and CUMSU 
charts have been used to detect changes in child blood 
lead levels [18]. In addition, open source software has 
already been developed to apply control charts to infec-
tious disease surveillance using REDCap, R, and the R 
Shiny package [19].

Risk-adjusted control charts are of particular interest 
for health surveillance as they can adjust for different risk 
strata in the population [20, 21]. Risk-adjusted CUMSU 
and observed-expected control charts, which are closely 
related and sometimes used interchangeably [11, 21, 
22], are risk-adjusted charts commonly used in health 
research due to their ease of interpretability and versa-
tility with different data types (e.g., binary, count, con-
tinuous data) [9, 11, 22]. Risk-adjusted CUMSU charts 
incorporate observed values from previous time points 
into control limit calculations [22], whereas observed-
expected charts may not.

Control charts could also be used to monitor chronic 
disease surveillance estimates obtained from administra-
tive health data, similar to their applications to mortal-
ity data. Out-of-control diseases estimates may indicate 
where changes in trends are due to changes in coding 
practices or other factors affecting the data, rather than 
true changes in population health. Moreover, compar-
ing control charts across multiple algorithms that use 

different sources of data (i.e., hospital versus physician 
records) may help to reveal potential sources of non-
random process variation and indicate whether some 
algorithms are more affected by data variations (i.e., less 
stable) than other algorithms.

Given this background, the purpose of this study was 
to apply observed-expected control charts to incidence 
and prevalence trends in a case study of one disease. 
The objectives were to a) visualize the stability of disease 
trends over time; and b) compare the stability of inci-
dence and prevalence trends produced using different 
algorithms applied to administrative data.

Methods
Selection of algorithms
PubMed, Google Scholar, and Embase were searched 
up to October 2020 for juvenile diabetes algorithms for 
administrative health data. Juvenile diabetes was selected 
as the focus of this study because administrative health 
data have frequently been used for surveillance of this 
disease and multiple validated algorithms have been 
developed [23, 24]. Search terms included diabetes, chil-
dren, juvenile, administrative health data, case definition, 
claims data, incidence, and prevalence. Only articles pub-
lished in the English language were reviewed.

Algorithms were selected for this study if they used 
hospital and/or physician records, if the number of 
records and observation window (i.e., number of years 
for a diagnosis to occur within the records) for the algo-
rithm was clearly stated, and if validation measures (e.g., 
sensitivity, specificity) were reported. Algorithms were 
excluded if they included gestational diabetes or used 
data other than hospital or physician records, such as 
prescription medications. We adopted the latter exclu-
sion, because our primary interest was in data coded 
using International Classification of Disease (ICD) codes. 
Table 1 summarizes the 18 algorithms we identified from 
the literature to include in this study [23–29]. Six algo-
rithms were validated in Manitoba, Canada; three were 
validated in British Columbia, Canada; 13 were vali-
dated in Ontario, Canada; 16 were validated in Quebec, 
Canada; and one was validated in Nova Scotia, Canada. 
Figure  1 provides a flowchart that describes algorithm 
selection.

Data source
Algorithms were applied to data from the Manitoba 
Population Data Repository housed at the Manitoba 
Centre for Health Policy (MCHP). The study period 
was Jan 1, 1972 to Dec 31, 2018. Manitoba has a uni-
versal healthcare system and a population of 1.3 million 
residents. The Manitoba Health Insurance Registry, 
Hospital Discharge Abstracts, and Medical Claims/
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Medical Services databases were used. The Manitoba 
Health Insurance Registry contains health insurance 
coverage dates, birth date, and sex. The Hospital Dis-
charge Abstracts and Medical Claims/Medical Services 
databases contain ICD codes and dates for hospital 
and physician visits, respectively. Three ICD versions 
are used to code diagnoses within these two databases: 
ICD Adapted (A)-8, ICD-9-Clinical Modifications 
(CM), and ICD-10-Canadian version (CA). For hospital 
visits captured in Hospital Discharge Abstracts, records 
between January 1, 1972 and March 31, 1979 are coded 
using 4-digit ICDA-8 codes; records between April 1, 
1979 and March 31, 2004 are coded using 5-digit ICD-
9-CM codes; and records from April 1, 2004 onwards 
are coded using 5-digit ICD-10-CA codes. For physi-
cian visits captured in Medical Claims/Medical Ser-
vices, records between January 1, 1972 and March 31, 
1979 are coded using ICDA-8 and records from April 
1, 1979 onwards are coded using ICD-9-CM. Diag-
nosis codes for physician visits are recorded at the 
3-digit level until March 31, 2015 (both ICDA-8 and 
ICD-9-CM); 5-digit codes are used from April 1, 2015 
onward (ICD-9-CM). For both databases, data from 
1972 to 1974 were originally collected using using 
the 7th revision of ICD codes and later converted to 
ICDA-8 by the data provider. These years were not 
included in the study analysis because we had no infor-
mation about the conversion method used by the data 

provider. However, data from these years were used 
to establish the lookback period for defining incident 
cases (see Study cohort and study periods).

Incident and prevalent disease counts per year 
were aggregated by sex and age group (0-9 years; 
10-17 years). Cell sizes less than six were suppressed, as 
per provincial health privacy regulations.

Study cohort and study periods
Separate cohorts were created for each algorithm. To 
be included in a study cohort, individuals required con-
tinuous health insurance coverage during the observa-
tion window (1 to 3 years, depending on the algorithm). 
Individuals in each cohort were classified as cases if 
they met the criteria of the respective algorithm. A 3 
year look back period was used for incidence [23], 
meaning only individuals with no diabetes claims in the 
prior 3 years were identified as incident cases.

Study ICD periods were defined based on the ICD 
version that was used at the beginning of each year. 
There were three ICD periods: ICDA-8 (1975 to 1979), 
ICD-9 (1980 to 2004), and ICD-9/10 (2005 to 2018). 
ICD implementation periods were defined as the 2 
years before, after, and including the year a new ICD 
version was implemented. There were two ICD imple-
mentation periods: ICDA-8 to -9 (1977 to 1981) and 
ICD-9 to -9/10 (2002 to 2006).

Table 1  Validated algorithms used to identify juvenile diabetes cases in administrative health data

a Visits must be at least 30 days apart, b includes all codes beginning with specified digits

Algorithm Name Algorithm Description References ICD Codes

1: 1 + H or 1 + P 1 or more hospital separation or 1 or more physician visit in 1 year 23, 25, 28 ICDA-8: 249, 250
ICD-9-CM: 250.b

ICD-CA: E10.b - E14.b
1: 1 + H or 2 + P 1 or more hospital separation or 2 or more physician visits in 1 year 23, 25, 28, 29

1: 1 + H or 3 + P 1 or more hospital separation or 3 or more physician visits in 1 year 23, 28

1: 1 + H or 4 + P 1 or more hospital separation or 4 or more physician visits in 1 year 28

2: 1 + H or 1 + P 1 or more hospital separation or 1 or more physician visit in 2 years 23, 25

2: 1 + H or 2 + P 1 or more hospital separation or 2 or more physician visits in 2 years 23, 24, 25, 26, 27, 28

3: 1 + H or 1 + P 1 or more hospital separation or 1 or more physician visit in 3 years 25

3: 1 + H or 2 + P 1 or more hospital separation or 2 or more physician visits in 3 years 25, 28

1: 1 + P 1 or more physician visits in 1 year 23, 28

1: 2 + P 2 or more physician visits in 1 yeara 23, 28

1: 3 + P 3 or more physician visits in 1 yeara 23, 28

1: 4 + P 4 or more physician visits in 1 yeara 23, 28

1: 5 + P 5 or more physician visits in 1 yeara 23, 28

2: 1 + P 1 or more physician visits in 2 years 23, 28

2: 2 + P 2 or more physician visits in 2 yearsa 23, 28

2: 3 + P 3 or more physician visits in 2 yearsa 23, 28

2: 4 + P 4 or more physician visits in 2 yearsa 23, 24, 28

2: 5 + P 5 or more physician visits in 2 yearsa 23, 28
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Statistical analysis
The estimated annual crude rate per 100,000 popula-
tion was calculated; this was the number of cases per 
year divided by the number of individuals with continu-
ous healthcare coverage per year, multiplied by 100,000. 
An average rate was calculated for each ICD period; 
this was the average value of the annual crude rates in 
that time period. The average annual rate of change in 
each ICD period was calculated as the total change in 
crude rate (annual crude rate in the last year of the ICD 
period minus the annual crude rate in the first year of 
the ICD period) divided by the number of years in the 
ICD period.

For each algorithm, incident case counts, where obser-
vations for successive years are independent (i.e., not 
correlated), were modelled using negative binomial 
regression models. Prevalent case counts, where observa-
tions for successive years are correlated, were modelled 
using generalized estimating equation (GEE) models that 
assume a Poisson distribution; this GEE produces cor-
rect estimates of the population average model param-
eters (i.e., prevalence) and their standard errors in the 
presence of dependence between repeated observations. 
The GEE model adopted a first order autoregressive cor-
relation structure because the data modelled were time 
series data. For all models, age group, sex, and year were 

Fig. 1  Flowchart of juvenile diabetes algorithm selection from published literature
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included as covariates. The natural logarithm of the 
cohort size was defined as the model offset. To account 
for potential non-linear effects of year, the shape of the 
year effect was tested using a restricted cubic spline [30]. 
Four models were applied to the data: one with year as 
a linear effect, and three with year as a restricted cubic 
spline with three, four, and five knots, respectively. Knots 
were placed at quintiles as recommended by Harrell [30]. 
The model with year as a restricted cubic spline with the 
lowest Akaike Information Criterion (AIC) [31] or Quasi 
Information Criterion (QIC) value [32] was selected as 
the best fitting model and compared to the model with 
year as a linear term using a likelihood ratio test (inci-
dence) or Wald test (prevalence). If the test indicated the 
model with the restricted cubic spline did not fit the data 
significantly better than the model with year as a linear 
term (i.e., p < .05), the linear model was adopted.

Model fit for the best fitting model was assessed by 
calculating the residual deviance to degrees of freedom 
ratio (negative binomial models) or the marginal R2 val-
ues based on Zheng [33] (GEE models). If the number of 
suppressed cells for an algorithm was greater than 10%, 
the data were not modelled. If no more than 10% of the 
cells were suppressed, suppressed cells were randomly 
imputed to have a value between one and five. Three 
algorithms had more than 10% of cells suppressed for 
incidence and one algorithm had more than 10% of cells 
suppressed for prevalence. Therefore, incidence counts 
were modelled for 15 of the identified algorithms and 
prevalence counts were modelled for 17 of the identified 
algorithms.

Observed-expected control charts were applied by 
graphing model-predicted counts from the best fitting 
model against the observed case counts [21, 34]. Pre-
dicted values for each year, age group, and sex combina-
tion were calculated, along with their respective standard 
deviations. To obtain a single estimate and standard 
deviation (SD) for each year during the study period, pre-
dicted values were summed across groups and SDs were 
pooled. Control limits were calculated based on Cohen’s 
effect size [35] as the model-predicted value ±0.8*pooled 
SD. This cut-off was chosen as it provided a meaning-
ful understanding of results (i.e., detect large differences 
between model predicted and observed counts) and did 
not incorporate a grand mean into the calculation. More 
information on the calculation of control limits, expected 
values, and SDs can be found in Additional file 1.

To compare trend stability across algorithms, annual 
case counts were classified as ‘in-control’ or ‘out-of-con-
trol’ for the years 1975 to 2016 based on the calculated 
control limits. Data after 2016 were truncated, because 
algorithms with three-year observation windows did not 
have case counts beyond 2016. Data before 1975 were 

used to establish the lookback period for defining inci-
dent cases. The proportion of out-of-control years was 
calculated as the total number of out-of-control years for 
an algorithm divided by the number of study years (i.e., 
1975-2016; 42 years).

McNemar’s test [36] was used to test for differences 
in the frequency of out-of-control observations between 
algorithms. McNemar’s test was chosen because all 
algorithms were applied to the same population (i.e., 
repeated measurements). The algorithm of one or more 
hospital or physician visits in a two-year period (2: 1 + H 
or 1 + P) was selected as the reference algorithm, as the 
literature review identified it as having the highest vali-
dation measures (validated using chart abstraction) and 
was the most common algorithm identified through the 
literature search. Out-of-control observations for the 
remaining algorithms were then compared to the refer-
ence algorithm to determine differences in trend stabil-
ity. Trend stability was compared across the entire study 
period, the three ICD periods, and the two ICD imple-
mentation periods. To control the overall probability of 
a Type I error for each family of tests (i.e., entire study 
period, each ICD period, and each ICD implementa-
tion period), a Holm-Bonferroni adjustment [37] was 
used. This adjustment controls the Type I error rate, but 
is more powerful than the traditional Bonferroni adjust-
ment to detect a difference [37, 38].

To identify years that were frequently flagged as out-
of-control, an agreement-by-year measure was calcu-
lated for each year of the study observation period. This 
was the total number of algorithms that classified a par-
ticular year as out-of-control, divided by the total num-
ber of algorithms modelled (i.e., 15 for incidence; 17 for 
prevalence).

In a sensitivity analysis the control limits were set as 
the model-predicted value ±2*pooled SD. All data anal-
yses were performed using R version 4.1.0. The MASS 
package [39] was used to fit the negative binomial mod-
els and the geepack package [40] was used to fit the GEE 
models. All research was performed in accordance with 
the relevant guidelines and regulations.

Results
Average crude incidence and prevalence rates and 
average annual rates of change for each ICD period 
are reported in Table  2. For both incidence and prev-
alence, the average crude rate increased from the 
ICDA-8 period to the ICD-9/10 period, with the 
exception of the 1: 4 + P algorithm, where prevalence 
decreased from 39.86 cases per 100,000 population in 
the ICDA-8 period to 38.30 per 100,000 population in 
the ICD-9 period. As expected, the average crude rate 
was lower for algorithms that required more diagnosis 
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codes to identify cases and was higher for algorithms 
with longer observation windows. All algorithms had a 
positive average annual crude rate of change for both 
incidence and prevalence during the ICD-9 and ICD-
9/10 periods, except for the algorithm 3: 1 + H or 1 + P, 
which had a negative average annual crude rate of 
change for incidence during the ICD-9/10 period. The 
direction of the average annual crude rate of change 
was variable across algorithms for the ICDA-8 period.

Models
Goodness-of-fit measures for the best fitting nega-
tive binomial and GEE models for each algorithm are 
reported in Table 3. Residual deviance to residual degrees 
of freedom ratio ranged from 1.04 to 1.23 for the nega-
tive binomial regression models; marginal R2 ranged 
from 0.83 to 0.98 for the GEE models. All algorithms for 
juvenile diabetes indicated a non-linear effect of year for 
incidence and prevalence (i.e., the model with year as 

Table 2  Average crude incidence and prevalence rates and average annual rate of change per 100,000 population across ICD periods

a Until 2016 for algorithms with a three-year observation window; 2017 for algorithms with a two-year observation window; 2018 for algorithms with a one-year 
observation window

Algorithm ICDA-8 Period (1975-1979) ICD-9 Period (1980-2004) ICD-9/10 Period (2005 onwards)a

Average Rate Average Annual 
Rate Change

Average Rate Average Annual 
Rate Change

Average Rate Average 
Annual Rate 

Change

Incidence

  1: 1 + H or 1 + P 87.38 −0.32 98.31 2.36 134.80 0.67

  1: 1 + H or 2 + P 26.76 −0.79 29.22 0.99 51.69 1.93

  1: 1 + H or 3 + P 18.22 0.32 23.01 0.67 40.47 1.57

  1: 1 + H or 4 + P 16.70 0.23 20.07 0.75 35.74 1.39

  2: 1 + H or 1 + P 175.38 −9.46 200.75 4.63 276.18 1.30

  2: 1 + H or 2 + P 54.72 −3.87 62.85 1.72 114.45 3.85

  3: 1 + H or 1 + P 261.95 −12.38 309.36 6.74 424.79 −0.58

  3: 1 + H or 2 + P 82.45 −5.05 100.45 2.68 182.26 5.03

  1: 1 + P 86.50 −0.01 97.59 2.32 133.88 0.61

  1: 2 + P 12.80 0.67 16.69 0.82 35.40 1.56

  2: 1 + P 173.77 −8.84 199.43 4.57 274.02 1.21

  2: 2 + P 31.97 −1.29 43.25 1.40 89.44 3.52

  2: 3 + P 22.44 0.20 31.46 1.12 64.31 2.40

  2: 4 + P 16.69 0.05 24.11 0.92 47.83 2.10

  2: 5 + P 12.77 0.39 17.07 0.70 34.10 1.88

Prevalence

  1: 1 + H or 1 + P 180.09 0.47 213.67 5.49 349.73 5.58

  1: 1 + H or 2 + P 104.60 −0.55 127.97 3.77 244.72 6.51

  1: 1 + H or 3 + P 85.42 −0.63 99.48 2.40 202.88 6.56

  1: 1 + H or 4 + P 73.62 0.09 74.61 1.38 142.33 5.81

  2: 1 + H or 1 + P 276.62 −9.59 323.62 7.92 499.01 5.63

  2: 1 + H or 2 + P 146.55 −4.22 177.70 4.82 322.96 7.96

  3: 1 + H or 1 + P 366.82 −13.33 435.26 10.00 651.70 4.65

  3: 1 + H or 2 + P 178.73 −5.12 219.52 5.85 394.79 9.48

  1: 1 + P 178.64 1.09 212.60 5.43 348.53 5.47

  1: 2 + P 84.18 1.37 111.15 3.46 223.79 6.12

  1: 3 + P 61.25 1.53 74.05 2.27 168.32 5.44

  1: 4 + P 39.86 1.05 38.30 0.56 79.70 3.61

  2: 1 + P 274.52 −8.66 322.03 7.86 496.59 5.54

  2: 2 + P 120.45 −1.41 155.94 4.47 295.29 7.61

  2: 3 + P 101.23 0.27 134.93 4.10 260.28 6.53

  2: 4 + P 85.69 2.64 114.84 3.62 231.71 6.32

  2: 5 + P 73.78 2.56 90.84 3.02 198.22 6.56
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a restricted cubic spline was selected as the best fitting 
model).

Control charts
Figure 2 shows the observed-expected control charts for 
incidence and prevalence trends obtained for the refer-
ence algorithm (2: 1 + H or 1 + P). Both incidence and 
prevalence increased over time; the rate of increase was 

variable over time. The variance (i.e., range) of observed 
values around expected values was greater for incidence 
than for prevalence; the control limits for incidence were 
wider than the control limits for prevalence. Control 
charts for all algorithms are found in Additional  file  2: 
Figs. S1 and S2.

Table  4 contains information about the proportion 
of out-of-control years for each algorithm, for both 

Table 3  Goodness of fit statistics for negative binomial regression and generalized estimating equation models applied to cases 
ascertained by juvenile diabetes algorithms

DOF Degrees of freedom

Algorithm Model Fit Measures Number of 
RCS knots

Incidence

Residual Deviance Residual DOF Residual Deviance/ Residual 
DOF

  1: 1 + H or 1 + P 175 169 1.04 5

  1: 1 + H or 2 + P 178 170 1.05 4

  1: 1 + H or 3 + P 182 171 1.06 3

  1: 1 + H or 4 + P 192 170 1.13 4

  2: 1 + H or 1 + P 172 165 1.04 5

  2: 1 + H or 2 + P 173 166 1.04 4

  3: 1 + H or 1 + P 167 161 1.04 5

  3: 1 + H or 2 + P 168 162 1.04 4

  1: 1 + P 175 169 1.04 5

  1: 2 + P 192 170 1.13 4

  2: 1 + P 171 165 1.04 5

  2: 2 + P 182 166 1.10 4

  2: 3 + P 186 167 1.11 3

  2: 4 + P 192 167 1.15 3

  2: 5 + P 205 167 1.23 3

Prevalence

Marginal R2

  1: 1 + H or 1 + P 0.94 5

  1: 1 + H or 2 + P 0.97 5

  1: 1 + H or 3 + P 0.96 5

  1: 1 + H or 4 + P 0.90 5

  2: 1 + H or 1 + P 0.92 5

  2: 1 + H or 2 + P 0.97 5

  3: 1 + H or 1 + P 0.91 5

  3: 1 + H or 2 + P 0.97 5

  1: 1 + P 0.94 5

  1: 2 + P 0.97 5

  1: 3 + P 0.96 5

  1: 4 + P 0.83 5

  2: 1 + P 0.92 5

  2: 2 + P 0.98 5

  2: 3 + P 0.97 5

  2: 4 + P 0.97 5

  2: 5 + P 0.96 5
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incidence and prevalence. The proportion of out-of-con-
trol years ranged from 0.57 to 0.76 for incidence and 0.45 
to 0.83 for prevalence. For incidence, the algorithm  2: 
5 + P had the greatest proportion of out-of-control 
years; 2: 3 + P had the lowest proportion of out-of-con-
trol years. For prevalence, the algorithm 1: 3 + P had the 
greatest proportion of out-of-control years and 2: 3 + P 
had the lowest proportion of out-of-control years.

McNemar’s test with the Holm-Bonferroni correc-
tion found no significant differences in the stability of 
trends for the reference algorithm compared to other 
algorithms. The same finding was observed for analyses 
stratified by ICD period and ICD implementation period.

Figure 3 reports agreement-by-year. For incidence, the 
years 1980, 2000, and 2004 were flagged as out-of-con-
trol for all algorithms. In contrast, 1986 and 2006 were 
flagged as out-of-control for only four of 15 algorithms. 
For prevalence, the year 1997 was flagged as out-of-con-
trol for all algorithms. The years 1981, 1988, 1990, 1993, 
and 2001 were flagged as out-of-control for 15 of 17 algo-
rithms. In contrast, 1987 was flagged as out-of-control 
for only five algorithms.

Sensitivity analysis
Sensitivity analysis with control limits set at model-pre-
dicted value ±2*pooled SD flagged fewer years as out-
of-control (Table  5). Control charts for all algorithms 

can be found in Additional file 2: Figs. S3 and S4. The 
proportion of out-of-control years ranged from 0.19 to 
0.33 for incidence and 0.07 to 0.52 for prevalence. For 
incidence, the algorithm  2: 3 + P had the lowest pro-
portion of out-of-control years. Two algorithms had 
the highest proportion of out-of-control years for inci-
dence: 2: 2 + P and 1: 1 + H or 3 + P. For prevalence, the 
algorithm  2: 2 + P had the lowest proportion and the 
algorithm 1: 1 + H or 4 + P had the highest proportion 
of out-of-control years.

For incidence, McNemar’s test revealed no significant 
differences in trend stability across algorithms (Table 5). 
For prevalence, differences in trend stability were 
revealed between the reference algorithm and 2: 1 + H or 
2 + P (p = 0.010), 1: 2 + P (p = 0.049), 2: 2 + P (p = 0.008), 
2: 3 + P (p = 0.049), and 2: 4 + P (p = 0.049), where these 
algorithms had a lower frequency of out-of-control 
observations. When stratified by ICD period, there was 
a difference between the reference algorithm and 2: 2 + P 
(p = 0.041) for the ICD-9 period, with 2: 2 + P having a 
lower frequency of out-of-control observations.

Algorithm agreement-by-year for the sensitivity anal-
ysis are reported in Additional file  2: Fig. S5. Incidence 
counts for the year 1980 was flagged as out-of-control 
for 14 out of 15 algorithms; prevalence counts for the 
year 2001 were flagged as out-of-control for 13 out of 17 
algorithms.

Fig. 2  Observed-expected control charts for juvenile diabetes algorithm ‘one or more hospital or physician visits in two years’. Panel a shows results 
for incidence; panel b shows results for prevalence. Vertical lines indicate years where a change in ICD version was implemented
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Discussion
Observed-expected control charts applied to juvenile 
diabetes algorithms for administrative health data were 
used to investigate the stability of trends in incidence 
and prevalence over a 42-year period in which three ICD 
versions were used for diagnosis codes. The proportion 
of out-of-control years detected using control limits of 
0.8*SD ranged from 0.57 to 0.76 for incidence and 0.45 to 

0.83 for prevalence. As expected, these proportions were 
reduced to 0.19 to 0.33 for incidence and 0.07 to 0.52 
for prevalence when control limits of 2*SD were used 
in a sensitivity analysis. No differences in trend stability 
across algorithms were observed in the main analysis. 
Sensitivity analyses identified five algorithms that pro-
duced a more stable prevalence trend compared to the 
reference algorithm.

Fig. 3  Algorithm agreement-by-year for out-of-control juvenile diabetes estimates. Panel a shows results for incidence; panel b shows results for 
prevalence
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Control limits in this analysis were set to have practi-
cal meaning and detect a large difference between the 
observed and expected values, relative to the distribution 
of the observed data. Applying control limits based on 
meaningful cut offs has been done before [11, 34]. Wider 
control limits used in the sensitivity analysis found few 
changes to the overall study outcome. Previous research 
that used a similar observed-expected control chart on 
hospital mortality data indicated poor specificity for con-
trol limits larger than 2*SD [34]. Our sensitivity analysis 
allows users to compare study control limits, while main-
taining reasonable specificity for defining an out-of-con-
trol observations. Control limits of 2*SD have been used 
previously when applying control charts to health data 
[10, 34, 41]. Other potential approaches to set control lim-
its include using a clinical database as the in-control refer-
ence or applying a validated algorithm and correcting for 
potential misclassification rates [42]. The former method 
requires a population-based clinical database to use as the 
reference, which may not always be available or accessible.

Our tests of statistical significance did not detect any 
differences between algorithm agreement of out-of-con-
trol years for the main analysis, indicating there was no 
difference in stability of trends ascertained by different 
algorithms when compared to a reference algorithm. In 
contrast, the sensitivity analysis indicated there were five 
algorithms with a more stable prevalence trend, com-
pared to the reference algorithm. Observation window 
and data source (i.e., hospital versus physician visits) did 
not appear to influence differences in observed trend sta-
bility. Results from the sensitivity analysis suggest some 
algorithms are more stable to changes in the coding pro-
cess when estimating prevalence trends, but only when 
the specificity for detecting out-of-control years is lower.

Agreement-by-year indicated several years (e.g., 1980, 
1981, and 2001) where all, or the majority of algorithms 
produced an out-of-control estimate in both the main 
and sensitivity analysis. Previous research examining 
incidence disease trends over time has called for more 
studies to examine factors that influence disease trends 
[43]. The years identified here could provide a starting 
point to identify those factors. For example, 1980 and 
1981 being out-of-control for the majority of algorithms 
is likely indicative of changes in coding patterns due to 
the switch from ICDA-8 to ICD-9-CM in 1979, rather 
than true changes in population health.

This analysis applied control charts to assess the stabil-
ity of trends over time. While data quality was not directly 
assessed, trend stability has been used to assess data qual-
ity [44]. This is of particular interest, as administrative 
health data were not originally collected for research and 
surveillance, potentially impacting the data’s ‘fitness-for-
use’. Previous research has used administrative health data 

in control charts; however, the primary interest was the 
quality of the healthcare process, not the data itself. Con-
trol charts have been used to monitor the quality of cancer 
registry data [45]; thus, there is a precedent for using con-
trol charts as a first step to investigating potential sources 
of systematic error in administrative data.

Strengths and limitations
Strengths of this study include the use of observed-
expected control charts to assess trend stability. With this 
method, underlying risk strata were accounted for and 
calculation of control limits were appropriate to surveil-
lance data (i.e., no grand mean incorporated and there-
fore appropriate for data trending over time; does not rely 
on previous case counts). In addition, using restricted 
cubic splines to model change over time relaxed the 
assumption of a linear effect without overfitting and 
reducing the control chart’s ability to detect out-of-con-
trol observations. Good model fit was confirmed by the 
goodness-of-fit measures for the best fitting models.

There are some limitations to this study. While con-
trol limits were set to have practical meaning, the accu-
racy for detecting true out-of-control estimates based on 
these limits was not tested. To account for this, multiple 
control limits were used, with the limits for the sensitiv-
ity analysis being based on previous literature that used 
simulations to maximized out-of-control detection accu-
racy [10, 34].

Clinical data were not used to produce a known ‘in-
control’ (i.e., not influenced by error in the data coding 
process) trend. Rather, a reference algorithm validated 
using chart abstraction was the comparator for the 
remaining algorithms. This provided an indication of 
how trend stability for remaining algorithms compared 
to a proxy in-control process; however, results may differ 
when using a clinical database as the standard as defining 
an in-control reference process.

Conclusions and future research
Control charts can be used to visualize the stability 
of chronic disease surveillance trends captured using 
administrative health data and indicate where potential 
systematic sources of error may affect surveillance esti-
mates. Differences in trend stability across algorithms 
were observed for prevalence, but only at wider control 
limits. Potential areas of future research include identi-
fying optimal control limits for trends ascertained with 
administrative health data. Future research should also 
apply control charts to other chronic disease surveil-
lance estimates. Adaptation of control charts as a vis-
ual tool to inform policy and decision makers is also a 
potential area for future research.
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