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time and drug dosage on the biomarkers’ progression. When applied to multi-modal imaging and clinical data from the

Alzheimer’s Disease Neuroimaging Initiative the method enables to generate hypothetical scenarios of amyloid lowering interven-

tions. The results quantify the crucial role of intervention time, and provide a theoretical justification for testing amyloid modifying

drugs in the pre-clinical stage. Our experimental simulations are compatible with the outcomes observed in past clinical trials, and

suggest that anti-amyloid treatments should be administered at least 7 years earlier than what is currently being done in order to

obtain statistically powered improvement of clinical endpoints.
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Introduction
The number of people affected by Alzheimer’s disease has

recently exceeded 46 millions and is expected to double

every 20 years,1 thus posing significant healthcare chal-

lenges. Yet, while the disease mechanisms remain in large

part unknown, there are still no effective pharmacological

treatments leading to tangible improvements of patients’

clinical progression. One of the main challenges in under-

standing Alzheimer’s disease is that its progression goes

through a silent asymptomatic phase that can stretch

over decades before a clinical diagnosis can be established

based on cognitive and behavioural symptoms. To help

designing appropriate intervention strategies, hypothetical

models of the disease history have been proposed, charac-

terizing the progression by a cascade of morphological

and molecular changes affecting the brain, ultimately

leading to cognitive impairment.2,3 The dominant hypoth-

esis is that disease dynamics along the asymptomatic

period are driven by the deposition in the brain of the

amyloid b peptide, triggering the so-called ‘amyloid cas-

cade’.4–8 Based on this rationale, clinical trials have been

focussing on the development and testing of disease

modifiers targeting amyloid b aggregates,9 for example,

by increasing its clearance or blocking its accumulation.

Although the amyloid hypothesis has been recently invi-

gorated by a post-hoc analysis of the aducanumab trial,10

clinical trials failed so far to show efficacy of this kind of

treatments,11 as the clinical primary endpoints were not

met,12–14 or because of unacceptable adverse effects.15 In

the past years, growing consensus emerged about the crit-

ical importance of intervention time, and about the need

of starting anti-amyloid treatments during the pre-symp-

tomatic stages of the disease.16 Nevertheless, the design

of optimal intervention strategies is currently not sup-

ported by quantitative analysis methods allowing to

model and assess the effect of intervention time and dos-

ing.17 The availability of models of the pathophysiology

of Alzheimer’s disease would entail great potential to test

and analyze clinical hypothesis characterizing Alzheimer’s

disease mechanisms, progression and intervention

scenarios.

Within this context, quantitative models of disease pro-

gression, Disease progression Models referred to as

DPMs, have been proposed,18–22 to quantify the dynam-

ics of the changes affecting the brain during the whole

disease span. These models rely on the statistical analysis

of large datasets of different data modalities, such as
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clinical scores, or brain imaging measures derived from

MRI, Amyloid- and Fluorodeoxyglucose-PET.23–27 In gen-

eral, DPMs estimate a long-term disease evolution from

the joint analysis of multivariate time-series acquired on

a short-term time-scale. Owing to the temporal delay be-

tween the disease onset and the appearance of the first

symptoms, DPMs rely on the identification of an appro-

priate temporal reference to describe the long-term dis-

ease evolution.28,29 These tools are promising approaches

for the analysis of clinical trials data, as they allow to

represent the longitudinal evolution of multiple bio-

markers through a global model of disease progression.

Such a model can be subsequently used as a reference in

order to stage subjects and quantify their relative progres-

sion speed.30–33 However, these approaches remain purely

descriptive as they don’t account for causal relationships

among biomarkers. Therefore, they generally don’t allow

to simulate progression scenarios based on hypothetical

intervention strategies, thus providing a limited interpret-

ation of the pathological dynamics. This latter capability

is of utmost importance for planning and assessment of

disease modifying treatments.

To fill this gap, recent works such as34,35 proposed to

model Alzheimer’s disease progression based on specific

assumptions on the biochemical processes of pathological

protein propagation. These approaches explicitly define

biomarkers interactions through the specification of sets

of Ordinary Differential Equations (ODEs), and are ideal-

ly suited to simulate the effect of drug interventions.36

However, these methods are mostly based on the arbi-

trary choices of pre-defined evolution models, which are

not inferred from data. This issue was recently addressed

by Garbarino and Lorenzi,37 where the authors proposed

a hybrid modeling method combining traditional DPMs

with dynamical models of Alzheimer’s disease progres-

sion. Still, since this approach requires to design suitable

models of protein propagation across brain regions,

extending this method to jointly account for spatio-tem-

poral interactions between several processes, such as

amyloid propagation, glucose metabolism, and brain atro-

phy, is considerably more complex. Finally, these meth-

ods are usually designed to account for imaging data

only, which prevents to jointly simulate heterogeneous

measures,38 such as image-based biomarkers and clinical

outcomes, the latter remaining the reference markers for

patients and clinicians.

In this work, we present SimulAD, a novel computa-

tional model of Alzheimer’s disease progression allowing

to simulate intervention strategies across the history of

the disease. SimulAD is here used to quantify the poten-

tial effect of amyloid modifiers on the progression of

brain atrophy, glucose metabolism, and ultimately on the

clinical outcomes for different scenarios of intervention.

To this end, we model the joint spatio-temporal variation

of different modalities along the history of Alzheimer’s

disease by identifying a system of ODEs governing the

pathological progression. This latent ODEs system is

specified within an interpretable low-dimensional space

relating multi-modal information, and combines clinically-

inspired constraints with unknown interactions that we

wish to estimate. The interpretability of the relationships

in the latent space is ensured by mapping each data mo-

dality to a specific latent coordinate. The model is formu-

lated within a Bayesian framework, where the latent

representation and dynamics are efficiently estimated

through stochastic variational inference. To generate

hypothetical scenarios of amyloid lowering interventions,

we apply SimulAD to multi-modal imaging and clinical

data from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI). Our results provide a meaningful quan-

tification of different intervention strategies, compatible

with findings previously reported in clinical studies. For

example, we estimate that in a study with 100 individu-

als per arm, statistically powered improvement of clinical

endpoints can be obtained by completely arresting amyl-

oid accumulation at least 11 years before Alzheimer’s de-

mentia. The minimum intervention time decreases to

7 years for studies based on 1000 individuals per arm.

Materials and methods
In the following sections, healthy individuals will be

denoted as NL stable, subjects with mild cognitive impair-

ment as MCI stable, subjects diagnosed with Alzheimer’s

dementia as AD. We define conversion as the change of

diagnosis towards a more pathological state. Therefore,

NL converters are subjects who were diagnosed as

cognitively normal at baseline and whose diagnosis

changed either in MCI or AD during their follow-up visits.

MCI converters are subjects who were diagnosed as MCI

at baseline and subsequently progressed to AD. Diagnosis

was established using the DX column from the

ADNIMERGE file (https://adni.bitbucket.io/index.html),

which reflects the standard ADNI clinical assessment based

on Wechsler Memory Scale, Mini-Mental State

Examination (MMSE) and Clinical Dementia Rating.

Amyloid concentration and glucose metabolism are re-

spectively measured by (18)F-florbetapir Amyloid (AV45)-

PET and (18)F-fluorodeoxyglucose (FDG)-PET imaging.

Cognitive and functional abilities are assessed by the fol-

lowing neuro-psychological tests: Alzheimer’s Disease

Assessment Scale (ADAS11), MMSE, Functional

Assessment Questionnaire (FAQ), Rey Auditory Verbal

Learning Test (RAVLT) immediate, RAVLT learning,

RAVLT forgetting and Clinical Dementia Rating Scale

Sum of Boxes (CDRSB).

Study cohort and biomarkers’
changes across clinical groups

Our study is based on a cohort of 442 amyloid positive

individuals composed of 71 NL stable subjects, 33 NL

converters subjects, 131 subjects diagnosed with MCI,
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105 MCI converters subjects and 102 AD patients.

Among the 131 MCI subjects, 78 were early MCI and

53 were late MCI. Concerning the group of MCI con-

verters, 80 subjects were late MCI at baseline and 25

were early MCI. The term ‘amyloid positive’ refers to

subjects whose amyloid level in the CSF was below the

nominal cutoff of 192 pg/ml39 either at baseline, or dur-

ing any follow-up visit, and conversion to AD was deter-

mined using the last available follow-up information.

This preliminary selection of patients aims at constituting

a cohort of subjects for whom it is more likely to observe

‘Alzheimer’s pathological changes’.40 The length of fol-

low-up varies between 0 and 16 years. Further informa-

tion about the data is available on https://adni.bitbucket.

io/reference/, while details on data acquisition and proc-

essing are provided in Section Data acquisition and pre-

processing. In Table 1A, we show socio-demographic

information for the training cohort across the different

clinical groups. Table 1B shows baseline values and an-

nual rates of change across clinical groups for amyloid

burden (average normalized AV45 uptake in frontal cor-

tex, anterior cingulate, precuneus and parietal cortex),

glucose metabolism (average normalized FDG uptake in

frontal cortex, anterior cingulate, precuneus and parietal

cortex), for hippocampal and medial temporal lobe vol-

umes, and for the cognitive ability as measured by

ADAS11. Compatibly with previously reported

results,41,42 we observe that while regional atrophy, glu-

cose metabolism and cognition show increasing rate of

change when moving from healthy to pathological condi-

tions, the change of AV45 is maximum in NL stable, NL

converters and MCI stable subjects. We also notice the

increased magnitude of ADAS11 in AD as compared to

the other clinical groups. Finally, we note that glucose

metabolism and regional atrophy show comparable mag-

nitudes of change.

The observations presented in Table 1 provide us with

a coarse representation of the biomarkers’ trajectories

characterizing Alzheimer’s disease. The complexity of the

dynamical changes we may infer is limited, as the clinical

stages roughly approximate a temporal scale describing

the disease history, while very little insights can be

obtained about the biomarkers’ interactions. Within this

context, our model allows the quantification of the fine-

grained dynamical relationships across biomarkers at

stake during the history of the disease. Investigation of

intervention scenarios can be subsequently carried out by

opportunely modulating the estimated dynamics parame-

ters according to specific intervention hypothesis (e.g.

amyloid lowering at a certain time).

Model overview

In Fig. 1, we provide an overview of SimulAD. Baseline

multi-modal imaging and clinical information for a given

subject are transformed into a latent variable composed

of four z-scores quantifying respectively the overall sever-

ity of atrophy, glucose metabolism, amyloid burden, and

cognitive and functional assessment. The model estimates

the dynamical relationships across these z-scores to opti-

mally describe the temporal transitions between follow-up

observations. These transition rules are here mathematic-

ally defined by the parameters of a system of ODEs,

which is estimated from the data. This dynamical system

allows to compute the evolution of the z-scores over time

from any baseline observation, and to predict the associ-

ated multi-modal imaging and clinical measures. It is im-

portant to note that this modelling choice requires to

have at least one visit per patient for which all the meas-

ures are available, in order to compute the z-scores tem-

poral evolution.

SimulAD thus enables to simulate the pathological pro-

gression of biomarkers across the entire history of the

disease. Once the model is estimated, we can modify the

ODEs parameters to simulate different evolution scenarios

according to specific hypothesis. For example, by reduc-

ing the parameters associated with the progression rate of

amyloid, we can investigate the relative change in the

evolution of the other biomarkers. This setup thus pro-

vides us with a data-driven system enabling the explor-

ation of hypothetical intervention strategies, and their

effect on the pathological cascade.

Data modelling

We consider observations XiðtÞ ¼ ½x1
i ðtÞ;x2

i ðtÞ; . . . ; xM
i ðtÞ�

T ,

which correspond to multivariate measures derived from

M different modalities (e.g. clinical scores, MRI, AV45, or

FDG measures) at time t for subject i. Each vector xm
i ðtÞ

has dimension Dm. We postulate the following generative

model, in which the modalities are assumed to be inde-

pendently generated by a common latent representation of

the data ziðtÞ:

pðXiðtÞjziðtÞ;r2;wÞ¼
Y
m

pðxm
i ðtÞjziðtÞ;r2

m;wmÞ

¼
Y
m

NðlmðziðtÞ;wmÞ;r2
mÞ; (1)

ziðtÞ ¼ Kðziðt0Þ; tÞ;
ziðt0Þ~ pðziðt0ÞÞ;

where r2
m is measurement noise, while wm are the param-

eters of the function lm which maps the latent state to

the data space for the modality m. For simplicity of nota-

tion, we denote ziðtÞ by zðtÞ. We assume that each coord-

inate of z is associated to a specific modality m, leading

to an M-dimensional latent space. The K operator which

gives the value of the latent representation at a given

time t, is defined by the solution of the following system

of ODEs:
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dzmðtÞ
dt

¼ kmzmðtÞð1� zmðtÞÞ þ
P

j 6¼m am;jz
jðtÞ;m ¼ 1; . . . ;M:

(2)

For each coordinate, the first term of the equation

enforces a sigmoidal evolution with a progression rate

km, while the second term accounts for the relationship

between modalities m and j through the parameters am;j.

This system can be rewritten as:

dzðtÞ
dt
¼WzðtÞ � Vz2ðtÞ ¼ gðzðtÞ; hODEÞ where;

ðWi;jÞ ¼
(

ki if i ¼ j;
ai;j otherwise;

and ðVi;jÞ ¼
(

ki if i ¼ j
0 otherwise; ð1Þ

ðVi;jÞ ¼
(

ki if i ¼ j

0 otherwise:

hODE denotes the parameters of the system of ODEs,

which correspond to the entries of the matrices W and V.

According to Equation (3), for each initial condition zð0Þ,
the latent state at time t can be computed through integra-

tion, zðtÞ ¼ zð0Þ þ
Ð t
0 gðzðxÞ; hODEÞdx.

We resort to variational inference and stochastic gradient

descent in order to optimize the parameters of the model.

The procedure is detailed in Sections Variational inference

and Model optimization of the Supplementary material.

Simulating the long-term
progression of Alzheimer’s disease

To simulate the long-term progression of Alzheimer’s dis-

ease, we first project the AD subjects in the latent space

via the encoding functions. We can subsequently follow

the trajectories of these subjects backward and forward

in time, in order to estimate the associated trajectory

from the healthy to their respective pathological condi-

tion. In practice, a Gaussian Mixture Model is used to fit

the empirical distribution of the AD subjects’ latent pro-

jection. The number of components and covariance type

of the Gaussian Mixture Model is selected by relying on

the Akaike information criterion.43 The fitted Gaussian

Mixture Model allows us to sample pathological latent

representations ziðt0Þ that can be integrated forward and

backward in time thanks to the estimated set of latent

ODEs, to finally obtain a collection of latent trajectories

ZðtÞ ¼ ½z1ðtÞ; . . . ; zNðtÞ� summarizing the distribution of

the long-term Alzheimer’s disease evolution.

Simulating intervention

In this section, we assume that we computed the average

latent progression of the disease zðtÞ. Thanks to the mo-

dality-wise encoding (cf. Supplementary section

Variational inference) each coordinate of the latent repre-

sentation can be interpreted as representing a single data

modality. Therefore, we propose to simulate the effect of

a hypothetical intervention on the disease progression, by

modulating the vector dzðtÞ
dt after each integration step

such that:

dzðtÞ
dt

� ��
¼ C

dzðtÞ
dt

where;C ¼
c1

. .
.

cm

0
B@

1
CA: (4)

The values cm are fixed between 0 and 1, allowing to

control the influence of the corresponding modalities on

the system evolution, and to create hypothetical scenarios

of evolution. For example, for a 100% (resp. 50%) amyl-

oid lowering intervention we set camy ¼ 0 (resp.

camy ¼ 0:5).

Evaluating disease severity

Given an evolution zðtÞ describing the disease progression

in the latent space, we propose to consider this trajectory

as a reference and to use it in order to quantify the indi-

vidual disease severity of a subject X. This is done by

estimating a time-shift s defined as:

s ¼ argmintjjf ðX;/1Þ � zðtÞjj1
¼
P

m jf ðxm;/1Þ � zmðtÞj:
(5)

This time-shift allows to quantify the pathological stage

of a subject with respect to the disease progression along

the reference trajectory zðtÞ. Moreover, the time-shift can

still be estimated even in the case of missing data modal-

ities, by only encoding the available measures of the

observed subject.

Statistical analysis

The model was implemented using the Pytorch library.44

The estimated disease severity was compared group-wise

via two-sided Wilcoxon–Mann–Whitney test (P< 0.01).

Differences between the clinical outcomes distribution

after simulation of intervention were compared via two-

sided Student’s t-test (P< 0.01). Shadowed areas in the

different figures show 6 standard deviation of the mean.

Data availability

The data used in this study are available from the ADNI

database (adni.loni.usc.edu).

Results
In the following, MRI, FDG-PET and AV45-PET images

are processed in order to respectively extract regional

grey matter density, glucose metabolism and amyloid

load from a brain parcellation. The z-scores of grey mat-

ter atrophy (zatr), glucose metabolism (zmet) and amyloid

burden (zamy), are computed using the measures obtained

by this pre-processing step. The clinical z-score zcli is

derived from neuro-psychological scores: ADAS11,

MMSE, FAQ, RAVLT immediate, RAVLT learning,
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RAVLT forgetting and CDRSB. This panel of scores was

chosen to provide a comprehensive representation of cog-

nitive, memory and functional abilities.

Data acquisition and preprocessing

Data used in the preparation of this article were obtained

from the ADNI database. The ADNI was launched in

2003 as a public–private partnership, led by Principal

Investigator Michael W. Weiner, MD. For up-to-date in-

formation, see www.adni-info.org.

We considered four types of biomarkers, related to

clinical scores, grey matter atrophy, amyloid load and

glucose metabolism, and respectively denoted by cli, atr,

amy and met. MRI images were processed following the

longitudinal pipeline of Freesurfer,45 to obtain grey mat-

ter volumes in a standard anatomical space. AV45-PET

and FDG-PET images were aligned to the closest MRI in

time and normalized to the cerebellum uptake. Regional

grey matter density, amyloid load and glucose metabol-

ism were extracted from the Desikan-Killiany parcella-

tion.46 We discarded white-matter, ventricular and

cerebellar regions, thus obtaining 82 regions that were

averaged across hemispheres. Therefore, for a given sub-

ject, xatr, xamy and xmet are respectively 41-dimensional

vectors. The variable xcli is composed of the neuro-psy-

chological scores ADAS11, MMSE, RAVLT immediate,

RAVLT learning, RAVLT forgetting, FAQ and CDRSB.

The total number of measures is of 2781 longitudinal

data points. We recall that the model estimation requires

a visit for which all the measures are available in order

to obtain the z-scores evolution of a given subject, but

can handle missing data in the follow-up by finding the

parameters that best match the available measures.

Progression model and latent
relationships

In Fig. 2, we show the dynamical relationships across the

different z-scores estimated by SimulAD, where direction

and intensity of the arrows quantify the estimated in-

crease of one variable with respect to the other. Being

the scores adimensional, they have been conveniently

rescaled to the range [0,1] indicating increasing

Figure 1 Overview of SimulAD. (A) High-dimensional multi-modal measures are projected into a four-dimensional latent space. Each

data modality is transformed in a corresponding z-score zamy, zmet, zatr, zcli. (B) The dynamical system describing the relationships between

the z-scores allows to compute their transition across the evolution of the disease. (C) Given the latent space and the estimated dynamics,

the follow-up measurements can be reconstructed to match the observed data.
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pathological levels. These relationships extend the sum-

mary statistics reported in Table 1 to a much finer tem-

poral scale and wider range of possible biomarkers’

values. We observe in Fig. 2A–C that large values of the

amyloid score zamy trigger the increase of the remaining

ones: zmet, zatr and zcli. Figure 2D shows that large in-

crease of the atrophy score zatr is associated to patho-

logical glucose metabolism indicated by large values of

zmet. Moreover, we note that high zmet values also con-

tribute to an increase of zcli (Fig. 2E). Finally, Fig. 2F

shows that high atrophy values lead to an increase most-

ly along the clinical dimension zcli. This chain of relation-

ships is in agreement with the cascade hypothesis of

AD.2,3

Relying on the dynamical relationships shown in

Fig. 2, starting from any initial set of biomarkers values

we can estimate the relative trajectories over time.

Figure 3 (left) shows the evolution obtained by extrapo-

lating backward and forward in time the trajectory asso-

ciated to the z-scores of the AD group. The x-axis

represents the years from conversion to AD, where the

instant t¼ 0 corresponds to the average time of diagnosis

estimated for the group of MCI progressing to dementia.

As observed in Fig. 2 and Table 1, the amyloid score

zamy increases and saturates first, followed by zmet and

zatr scores whose progression slows down when reaching

clinical conversion, while the clinical score exhibits strong

acceleration in the latest progression stages. Figure 3

(right) shows the group-wise distribution of the disease

severity estimated for each subject relatively to the mod-

elled long-term latent trajectories. The group-wise differ-

ence of disease severity across groups is statistically

significant and increases when going from healthy to

pathological stages (Wilcoxon–Mann–Whitney test

P< 0.01 for each comparisons). The reliability of the esti-

mation of disease severity was further assessed through

testing on an independent cohort, and by comparison

with a previously proposed disease progression modeling

method from the state-of-the-art.28 The results are pro-

vided in section Time-shift comparison and validation of

the Supplementary material and show positive generaliza-

tion results as well as a favourable comparison with the

benchmark method.

From the z-score trajectories of Fig. 3 (left), we predict

the progression of imaging and clinical measures shown in

Fig. 4. We observe that amyloid load globally increases

and saturates early, compatibly with the positive amyloid

condition of the study cohort. Abnormal glucose metabol-

ism and grey matter atrophy are delayed with respect to

amyloid, and tend to map prevalently temporal and par-

ietal regions. Finally, the clinical measures exhibit a non-

linear pattern of change, accelerating during the latest pro-

gression stages. These dynamics are compatible with the

summary measures on the raw data reported in Table 1.

Figure 2 Dynamical relationships. Estimated dynamical relationships across the different z-scores (A to F). Given the values of two z-

scores, the arrow at the corresponding coordinates indicates how one score evolves with respect to the other. The intensity of the arrow

gives the strength of the relationship between the two scores.
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Simulating clinical intervention

This experimental section is based on two intervention

scenarios: a first one in which amyloid is lowered by

100%, and a second one in which it is reduced by 50%

with respect to the estimated natural progression. In

Fig. 5, we show the latent z-scores evolution resulting

from either 100% or 50% amyloid lowering performed

at the time t ¼ �20 years. According to these scenarios,

intervention results in a sensitive reduction of the patho-

logical progression for atrophy, glucose metabolism and

clinical scores, albeit with a stronger effect in case of

total blockage.

We further estimated the resulting clinical endpoints

associated with the two amyloid lowering scenarios, at

increasing time points and for different sample sizes.

Clinical endpoints consisted in the simulated ADAS11,

MMSE, FAQ, RAVLT immediate, RAVLT learning,

RAVLT forgetting and CDRSB scores at the reference

conversion time (t¼ 0). The case placebo indicates the

scenario where clinical values were computed at conver-

sion time from the estimated natural progression shown

in Fig. 3 (left). Figures 6 and 7 show the change in statis-

tical power depending on intervention time and sample

sizes. For large sample sizes (1000 subjects per arm), a

power greater than 0.8 can be obtained around 7 years

before conversion, depending on the outcome score,

where in general we observe that RAVLT forgetting

exhibits a higher power than the other scores. When

sample size is lower than 100 subjects per arm, a power

greater than 0.8 is reached if intervention is performed at

the latest 11 years before conversion, with a mild variabil-

ity depending on the considered clinical score. We notice

that in the case of 50% amyloid lowering, in order to

reach the same power intervention needs to be consistent-

ly performed earlier compared to the scenario of 100%

amyloid lowering for the same sample size and clinical

score. For instance, if we consider ADAS11 with a

sample size of 100 subjects per arm, a power of 0.8 is

obtained for a 100% amyloid lowering intervention per-

formed 11.5 years before conversion, while in case of a

50% amyloid lowering the equivalent effect would be

obtained by intervening 15 years before conversion.

In Table 2, we provide the estimated improvement for

each clinical score at conversion with a sample size of

100 subjects per arm for both 100% and 50% amyloid

lowering depending on the intervention time. We observe

that for the same intervention time, 100% amyloid low-

ering always results in a larger improvement of clinical

endpoints compared to 50% amyloid lowering. We also

note that in the case of 100% lowering, clinical end-

points obtained for intervention at t ¼ �15 years corres-

pond to typical cutoff values for inclusion into

Alzheimer’s disease trials (ADAS11¼ 13.7 6 5.8, MMSE

¼ 25.7 6 2.5, see Supplementary Table 2).39,47

Discussion
We presented SimulAD, a framework to jointly model

the progression of multi-modal imaging and clinical data,

based on the estimation of latent biomarkers’ relation-

ships governing Alzheimer’s disease progression. The

model is designed to simulate intervention scenarios in

clinical trials, and in this study we focussed on assessing

the effect of anti-amyloid drugs on biomarkers’ evolution,

by quantifying the effect of intervention time and drug ef-

ficacy on clinical outcomes. Our results underline the crit-

ical importance of intervention time, which should be

performed sensibly early during the pathological history

to effectively appreciate the effectiveness of disease

modifiers.

The results obtained with our model are compatible

with findings reported in recent clinical studies.12–14 For

example, if we consider 500 patients per arm and per-

form a 100% amyloid lowering intervention for 2 years

Figure 3 z-scores evolution and disease staging. Left: Estimated long-term latent dynamics (time is relative to conversion to Alzheimer’s

dementia). Shadowed areas represent the standard deviation of the average trajectory. Right: Distribution of the estimated disease severity

across clinical stages, relatively to the long-term dynamics on the left. AD, Alzheimer’s dementia; MCI, mild cognitive impairment; NL, normal

individuals.
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Figure 4 Model-based progression of Alzheimer’s disease. Estimated long-term evolution of cortical measurements for the different

types of imaging markers, and clinical scores. Shadowed areas represent the standard deviation of the average trajectory. Brain images were

generated using the software provided in Marinescu et al.61

Figure 5 Simulation of amyloid lowering intervention on the z-scores evolution. Hypothetical scenarios of irreversible amyloid

lowering interventions at t ¼ �20 years from Alzheimer’s dementia diagnosis, with a rate of 100% (left) or 50% (right). Shadowed areas

represent the standard deviation of the average trajectory.
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to reproduce the conditions of the recent trial of

Verubecestat,13 the average improvement of MMSE pre-

dicted by our model is of 0.02, falling in the 95% confi-

dence interval measured during that study ([�0.5; 0.8]).

While recent anti-amyloid trials such as 12–14 included be-

tween 500 and 1000 mild AD subjects per arm and were

conducted over a period of two years at most, our ana-

lysis suggests that clinical trials performed with less than

1000 subjects with mild AD may be consistently under-

powered. Indeed, we see in Figs. 6 and 7 that with a

sample size of 1000 subjects per arm and a total

blockage of amyloid production, a power of 0.8 can be

obtained only if intervention is performed at least 7 years

before conversion.

These results allow to quantify the crucial role of inter-

vention time, and provide a theoretical justification for

testing amyloid modifying drugs in the pre-clinical

stage.16,48 This is, for example, illustrated in Table 2, in

which we notice that clinical endpoints are close to pla-

cebo even when the simulated intervention takes place

10 years before conversion, while stronger cognitive and

functional changes happen when amyloid is lowered by

Figure 6 Evolution of the statistical power in different intervention scenarios (Part 1). Statistical power of the Student t-test

comparing the estimated clinical outcomes at conversion time between placebo and treated scenarios, according to the year of simulated

intervention (100% and 50% amyloid lowering) and sample size for ADAS11, MMSE, FAQ and RAVLT immediate.
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100% or 50% earlier. These findings may be explained

by considering that amyloid accumulates over more than

a decade, and that when amyloid clearance occurs the

pathological cascade is already entrenched.49 Our results

are thus supporting the need to identify subjects at the

pre-clinical stage, that is to say still cognitively normal,

which is a challenging task. Currently, one of the main

criteria to enrol subjects into clinical trials is the presence

of amyloid in the brain, and blood-based markers are

considered as potential candidates for identifying patients

at risk for Alzheimer’s disease.50 Moreover, recent works

such as 51,52 have proposed more complex entry criteria

to constitute cohorts based on multi-modal measure-

ments. Within this context, SimulAD could also be used

as an enrichment tool by quantifying the disease severity

based on multi-modal data as shown in Fig. 3 (right).

Similarly, the method could be applied to predict the

evolution of single patient given its current available

measurements.

An additional critical aspect of anti-amyloid trials is

the effect of dose exposure on the production of amyl-

oid.17 Currently, b-site amyloid precursor protein cleaving

enzyme (BACE) inhibitors allow to suppress amyloid pro-

duction from 50% to 90%. In this study, we showed

that lowering amyloid by 50% consistently decreases the

treatment effect compared to a 100% lowering at the

same time. For instance, if we consider a sample size of

1000 subjects per arm in the case of a 50% amyloid

lowering intervention, 80% power can be reached only

10 years before conversion instead of 7 years for a 100%

amyloid lowering intervention. This ability of SimulAD

to control the rate of amyloid progression is fundamental

in order to provide realistic simulations of anti-amyloid

trials.

Figure 7 Evolution of the statistical power in different intervention scenarios (Part 2). Statistical power of the Student t-test

comparing the estimated clinical outcomes at conversion time between placebo and treated scenarios, according to the year of simulated

intervention (100% and 50% amyloid lowering) and sample size for RAVLT forgetting, RAVLT learning, and CDRSB.
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In Fig. 2, we showed that amyloid triggers the patho-

logical cascade affecting the other markers, thus confirm-

ing its dominating role on disease progression. Assuming

that the data used to estimate the model is sufficient to

completely depict the history of the pathology, our model

can be interpreted from a causal perspective. However,

we cannot exclude the existence of other mechanisms

driving amyloid accumulation, which our model cannot

infer from the existing data. Therefore, our findings

should be considered with care, while the integration of

additional biomarkers of interest will be necessary to ac-

count for multiple drivers of the disease. It is worth not-

ing that recent works ventured the idea to combine drugs

targeting multiple mechanisms at the same time.53 For in-

stance, pathologists have shown tau deposition in brain-

stem nuclei in adolescents and children,54 and clinicians

are currently investigating the pathological effect of early

tau spreading on Alzheimer’s disease progression,55 rais-

ing crucial questions about its relationship with amyloid

accumulation, and the impact on cognitive impairment.56

In this study, 190 subjects underwent at least one Tau-

PET scan. However, when considering the subjects for

whom there exists one visit in which all the data modal-

ities were available, the number of patients in the study

cohort decreased to 33. This low sample size prevented

us from estimating reliable trajectories for this biomarker.

It is also important to note that among the 190 subjects

with at least one Tau-PET scan, only 19 of them had

one follow-up visit. This means that tau markers dynam-

ics cannot be reliably estimated. Including tau data will

require studies on larger cohorts with complete sets of

PET imaging acquisitions. This could be part of future

extensions of this work, where the inclusion of tau

markers will allow to simulate scenarios of production

blockage of both amyloid and tau at different rates or

intervention time.

Lately, disappointing results of clinical studies led to

hypothesize specific treatments targeting AD sub-popula-

tions based on their genotype.57 While in our work we

describe a global progression of Alzheimer’s disease, in

the future we will account for sub-trajectories due to gen-

etic factors, such as the presence of �4 allele of apolipo-

protein (APOE4), which is a major risk for developing

Alzheimer’s disease influencing both disease onset and

progression.58 This could be done by estimating dynamic-

al systems specific to the genetic condition of each pa-

tient. This was not possible in this study due to a strong

imbalance between the number of carriers and non-

Table 2 Estimated mean (standard deviation) improvement of clinical outcomes at predicted conversion time for

the normal progression case by year of simulated intervention (100% and 50% amyloid lowering interventions).

Amyloid lowering intervention 100%

Point improvement per intervention time

220 215 212.5 210 25 23 22 21

ADAS11 11.1 (6.4) 5.2 (2.9) 3.0 (1.7) 1.6 (1.0) 0.3 (0.2) 0.1 (0.1) 0.0 (0.0) 0.0 (0.0)

MMSE 4.9 (2.8) 2.3 (1.3) 1.3 (0.8) 0.7 (0.4) 0.1 (0.1) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

FAQ 9.6 (5.6) 4.5 (2.5) 2.6 (1.5) 1.4 (0.8) 0.2 (0.2) 0.1 (0.1) 0.0 (0.0) 0.0 (0.0)

RAVLT

immediate

15.3 (8.9) 7.2 (4.1) 4.2 (2.4) 2.3 (1.4) 0.5 (0.3) 0.2 (0.1) 0.1 (0.1) 0.0 (0.0)

RAVLT

learning

2.7 (1.6) 1.3 (0.7) 0.7 (0.4) 0.4 (0.2) 0.1 (0.1) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

RAVLT

forgetting

37.2 (21.5) 17.7 (9.9) 10.5 (6.0) 5.8 (3.5) 1.3 (0.9) 0.5 (0.4) 0.2 (0.2) 0.1 (0.1)

CDRSB 3.5 (2.0) 1.6 (0.9) 0.9 (0.5) 0.5 (0.3) 0.1 (0.1) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Amyloid lowering intervention 50%

Point improvement per intervention time

220 215 212.5 210 25 23 22 21

ADAS11 5.0 (2.5) 2.4 (1.2) 1.4 (0.7) 0.8 (0.4) 0.2 (0.1) 0.1 (0.0) 0.0 (0.0) 0.0 (0.0)

MMSE 2.2 (1.1) 1.0 (0.5) 0.6 (0.3) 0.4 (0.2) 0.1 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

FAQ 4.3 (2.1) 2.0 (1.0) 1.2 (0.6) 0.7 (0.4) 0.1 (0.1) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

RAVLT

immediate

6.9 (3.4) 3.3 (1.6) 1.9 (1.0) 1.2 (0.6) 0.2 (0.1) 0.1 (0.1) 0.0 (0.0) 0.0 (0.0)

RAVLT

learning

1.2 (0.6) 0.6 (0.3) 0.3 (0.2) 0.2 (0.1) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

RAVLT

forgetting

16.7 (8.2) 8.1 (4.0) 4.8 (2.5) 2.9 (1.6) 0.6 (0.4) 0.2 (0.2) 0.1 (0.1) 0.0 (0.0)

CDRSB 1.6 (0.8) 0.7 (0.4) 0.4 (0.2) 0.2 (0.1) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Results in bold indicate a statistically significant difference between placebo and treated scenarios (P< 0.01, two-sided t-test, 100 cases per arm).

AD, Alzheimer’s dementia; ADAS11, Alzheimer’s Disease Assessment Scale; CDRSB, Clinical Dementia rating Scale Sum of Boxes; FAQ: Functional Assessment Questionnaire;

MMSE, Mini-Mental State Examination; RAVLT, Rey Auditory Verbal Learning Test.
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carriers across the different clinical groups (cf. Table 1).

Indeed, we observe that the number of ADNI non-car-

riers is much lower than the number of carriers, especial-

ly in the latest stages of the disease (MCI converters and

AD). On the contrary, the majority of NL stable subjects

are non-carriers. Therefore, applying the model in such

conditions would lead to a bias towards more repre-

sented groups during the different stages of the disease

progression (APOE4� at early stages and APOE4þ at

late ones), thus preventing us from differentiating the bio-

markers dynamics based on the genetic status. Yet, simu-

lating dynamical relationships specific to genetic factors is

a crucial avenue of improvement of our approach, as it

would allow to evaluate the effect of APOE4 on interven-

tion time or drug dosage. In addition to this example,

there exist numerous non-genetic aggravating factors that

may also affect disease evolution, such as diabetes, obes-

ity or smoking. Extending SimulAD to account for panels

of risk factors would ultimately allow to test in silico

personalized intervention strategies. Moreover, a key as-

pect of clinical trials is their economic cost. Our model

could be extended to help designing clinical trials by opti-

mizing intervention with respect to the available funding.

Given a budget, we could simulate scenarios based on

different sample size, and trials duration, while estimating

the expected cognitive outcome.

Results presented in this work are based on a model

estimated by relying solely on a subset of subjects and

measures from the ADNI cohort, and therefore they may

not be fully representative of the general Alzheimer’s dis-

ease progression. Indeed, subjects included in this cohort

were either amyloid-positive at baseline, or became amyl-

oid-positive during their follow-up visits. This was moti-

vated by the consideration that evidence of pathological

amyloid levels is a necessary condition for diagnosing AD

as it puts subjects within the ‘Alzheimer’s disease con-

tinuum’.40 By narrowing the list of subjects to a sub-

group of amyloid positive we increase the chances of

selecting a set of patients likely to develop the disease.

Moreover, the inclusion of subjects at various clinical

stages allows to span the entire spectrum of morphologic-

al and physiological changes affecting the brain. Through

the joint analysis of markers of amyloid, neurodegenera-

tion and cognition, our model estimates the average tra-

jectory that best describes the progression of the observed

measures when going from NL individuals towards AD

patients. The selection of amyloid positive patients aims

at increasing the signal of Alzheimer’s pathological

changes within this cohort, in order to estimate long-term

dynamics for the biomarkers that can be associated to

the disease. We believe that this modeling choice is based

on a clinically plausible rationale, and allows us to per-

form our study on a sufficiently large cohort enabling the

estimation of our model. Bearing this in mind, we ac-

knowledge the potential presence of bias towards the spe-

cific inclusion criterion adopted in this work. Indeed, the

present results may provide a limited representation of

the pathological temporal window captured by the

model. For example, applying the model on a cohort

containing amyloid-negative subjects may provide add-

itional insights on the overall disease history. However,

this is a challenging task as it would require to identify

sub-trajectories dissociated from normal ageing.59,60

Another potential bias affecting the results may come

from the choice of the clinical scores used to estimate

our model. In this study, we relied on a panel of 7

neuro-psychological assessments providing a comprehen-

sive representation of cognitive, memory and functional

abilities: ADAS11, MMSE, RAVLT immediate, RAVLT

learning, RAVLT forgetting, FAQ, and CDRSB. The

choice of these particular scores is consistent with previ-

ous literature on DPM.24,28 However, it is important to

note that SimulAD can handle any type of clinical assess-

ment. Therefore, investigating the effect of adding supple-

mentary clinical scores on the model’s findings would be

an interesting future application of our approach, and

could be done without any modification of its current

formulation. Finally, in addition to these specific charac-

teristics of the cohort, there exists additional biases

impacting the model estimation. For instance, the fact

that grey matter atrophy and glucose metabolism become

abnormal approximately at the same time in Fig. 3 (left)

can be explained by the high atrophy rate of change in

some key regions in normal elders, such as in the hippo-

campus, compared to the rate of change of FDG (see

Table 1). We note that this stronger change of atrophy

with respect to glucose metabolism can already be appre-

ciated in the clinically healthy group.

Conclusion
In this study, we investigated SimulAD, a novel quantita-

tive instrument for the development of intervention strat-

egies for disease modifying drugs in AD. Our framework

enables the simulation of the effect of intervention time

and drug dosage on the evolution of imaging and clinical

biomarkers in clinical trials. The proposed data-driven

approach is based on the modeling of the spatio-temporal

dynamics governing the joint evolution of imaging and

clinical measurements throughout the disease. The model

is formulated within a Bayesian framework, where the la-

tent representation and dynamics are efficiently estimated

through stochastic variational inference. To generate

hypothetical scenarios of amyloid lowering interventions,

we applied SimulAD to multi-modal imaging and clinical

data from ADNI. The results quantify the crucial role of

intervention time, and provide a theoretical justification

for testing amyloid modifying drugs in the pre-clinical

stage. Our experimental simulations are compatible with

the outcomes observed in past clinical trials and suggest

that anti-amyloid treatments should be administered at

least 7 years earlier than what is currently being done in
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order to obtain statistically powered improvement of clin-

ical endpoints.

Supplementary material
Supplementary material is available at Brain

Communications online.
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Evans AC, Alzheimer’s Disease Neuroimaging Initiative. Early role

of vascular dysregulation on late-onset Alzheimer’s disease based

on multifactorial data-driven analysis. Nat Commun. 2016;7:

11934.

26. Burnham SC, Fandos N, Fowler C, et al. Longitudinal evaluation

of the natural history of amyloid-b in plasma and brain. Brain

Commun. 2020;2(1):fcaa041.
27. Koval I, Schiratti J-B, Routier A, et al. Spatiotemporal propagation

of the cortical atrophy: Population and individual patterns. Front

Neurol. 2018;9:235.
28. Lorenzi M, Filippone M, Frisoni GB, Alexander DC, Ourselin S.

Probabilistic disease progression modeling to characterize diagnos-

tic uncertainty: Application to staging and prediction in

Alzheimer’s disease. Neuroimage. 2017;190:56–68.

29. Marinescu RV, Eshaghi A, Lorenzi M, et al.; Alzheimer’s Disease

Neuroimaging Initiative. DIVE: A spatiotemporal progression

model of brain pathology in neurodegenerative disorders.

Neuroimage. 2019;192:166–177.
30. Young AL, Oxtoby NP, Daga P, et al. A data-driven model of bio-

marker changes in sporadic Alzheimer’s disease. Brain. 2014;

137(9):2564–2577.

31. Oxtoby NP, Young AL, Cash DM, et al. Data-driven models of

dominantly-inherited Alzheimer’s disease progression. Brain. 2018;

141(5):1529–1544.
32. Li D, Iddi S, Thompson WK, Donohue MC; Alzheimer’s Disease

Neuroimaging Initiative. Bayesian latent time joint mixed effect

models for multicohort longitudinal data. Stat Methods Med Res.

2019;28(3):835–845.

33. Insel PS, Mormino EC, Aisen PS, Thompson WK, Donohue MC.

Neuroanatomical spread of amyloid b and tau in Alzheimer’s dis-

ease: Implications for primary prevention. Brain Commun. 2020;

2(1):fcaa007.

34. Hao W, Friedman A. Mathematical model on Alzheimer’s disease.

BMC Syst Biol. 2016;10(1):108.
35. Petrella JR, Hao W, Rao A, Doraiswamy PM. Computational

causal modeling of the dynamic biomarker cascade in Alzheimer’s

disease. Comput Math Methods Med. 2019;2019:6216530.
36. Iturria-Medina Y, Carbonell FM, Sotero RC, Chouinard-Decorte

F, Evans AC; Alzheimer’s Disease Neuroimaging Initiative.

Multifactorial causal model of brain (dis)organization and thera-

peutic intervention: Application to Alzheimer’s disease.

Neuroimage. 2017;152:60–77.
37. Garbarino S, Lorenzi M. Modeling and inference of spatio-tem-

poral protein dynamics across brain networks. In: IPMI 2019 -

26th International Conference on Information Processing in
Medical Imaging. Vol. 11492. LNCS. Hong Kong. China.

Springer; 2019:57–69. https://hal.inria.fr/hal-02165021.
38. Antelmi L, Ayache N, Robert P, Lorenzi M. Sparse multi-channel

variational autoencoder for the joint analysis of heterogeneous

data. In: ICML 2019 - 36th International Conference on Machine

Learning; Long Beach; USA; 2019.
39. Gamberger D, Lavra�c N, Srivatsa S, Tanzi RE, Doraiswamy PM.

Identification of clusters of rapid and slow decliners among sub-

jects at risk for Alzheimer’s disease. Sci Rep. 2017;7(1):6763-

40. Jack CR, Bennett DA, Blennow K, et al. NIA-AA Research

Framework: Toward a biological definition of Alzheimer’s disease.

Alzheimers Dement. 2018;14(4):535–562.
41. Cash DM, Frost C, Iheme LO, et al. Assessing atrophy measure-

ment techniques in dementia: Results from the MIRIAD atrophy

challenge. Neuroimage. 2015;123:149–164.
42. Schuff N, Woerner N, Boreta L, et al.; Alzheimer’s Disease

Neuroimaging Initiative. MRI of hippocampal volume loss in early

Alzheimer’s disease in relation to ApoE genotype and biomarkers.

Brain. 2009;132(Pt 4):1067–1077.
43. Akaike H. Information theory and an extension of the maximum

likelihood principle. In: Selected Papers of Hirotugu Akaike.

Springer New York; 1998:199–213.

44. Paszke A, Gross S, Massa F, et al. PyTorch: An imperative style,

high-performance deep learning library. In: Wallach H, Larochelle
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