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Abstract
Cells represent the basic building blocks of living organisms. Accurate characterisation of cellular phenotype, intercel-
lular signalling networks, and the spatial organisation of cells within organs is crucial to deliver a better understanding
of the processes underpinning physiology, and the perturbations that lead to disease. Single-cell methodologies have
increased rapidly in scale and scope in recent years and are set to generate important insights into human disease. Here,
we review current practices in nephropathology, which are dominated by relatively simple morphological descriptions of
tissue biopsies based on their appearance using light microscopy. Bulk transcriptomics have more recently been used to
explore glomerular and tubulointerstitial kidney disease, renal cancer, and the responses to injury and alloimmunity in
kidney transplantation, generating novel disease insights and prognostic biomarkers. These studies set the stage for
single-cell transcriptomic approaches that reveal cell-type–specific gene expression patterns in health and disease.
These technologies allow genome-wide disease susceptibility genes to be interpreted with the knowledge of the specific
cell populations within organs that express them, identifying candidate cell types for further study. Single-cell technol-
ogies are also moving beyond assaying individual cellular transcriptomes, to measuring the epigenetic landscape of sin-
gle cells. Single-cell antigen-receptor gene sequencing also enables specific T- and B-cell clones to be tracked in
different tissues and disease states. In the coming years these rich ‘multi-omic’ descriptions of kidney disease will enable
histopathological descriptions to be comprehensively integrated with molecular phenotypes, enabling better disease
classification and prognostication and the application of personalised treatment strategies.
© 2020 The Authors. The Journal of Pathology published by JohnWiley & Sons Ltd on behalf of Pathological Society of Great Britain and
Ireland.

Keywords: single-cell; scRNAseq; mass cytometry; scATACseq; glomerulonephritis; transplantation; renal cell carcinoma; chronic kidney dis-
ease; kidney; nephropathology

Received 13 February 2020; Revised 25 February 2020; Accepted 27 February 2020

No conflicts of interest were declared.

Introduction

Cells represent the fundamental unit of biology, and tis-
sue homeostasis and function in multicellular organisms
requires complex interactions between diverse cell types
that ultimately determine organ-specific phenotype and
function. Accurate characterisation of phenotypic het-
erogeneity, intercellular signalling networks, and the
spatial organisation of cells within an organ are crucial
to deliver a better understanding of the cellular mecha-
nisms underpinning physiology, and the perturbations
that lead to disease. The use of microscopy to examine
cellular morphology, together with techniques that allow
the detection of immune activation in organs, has formed
the cornerstone of tissue-based disease diagnostics. The
application of these imaging techniques, in combination
with the measurement of circulating immune cells and

biomarkers, has provided a framework for disease classi-
fication and staging, and yielded insights into pathogen-
esis. In this review, using nephropathology as an
exemplar, we examine how the rapid expansion of
single-cell technologies is transforming our understand-
ing of disease states, and consider its potential for future
translation to clinical practice.

Current nephropathology practice and limitations

The investigation of renal disease relies on biochemical
and immunological analysis of blood and urine, and his-
topathological examination of biopsy specimens. Non-
invasive diagnostics can yield important information,
and in some cases, obviate the need for invasive tissue
sampling. However, specific circulating biomarkers of
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disease are available for only a small subset of patholo-
gies, for example, the presence of anti-phospholipase
A2 receptor (PLA2R) antibodies in membranous
nephropathy [1], the presence of anti-myeloperoxidase
(MPO) or anti-proteinase 3 (PR3) antibodies in anti-
neutrophil cytoplasmic antibody (ANCA)-associated
vasculitis, or circulating anti-glomerular basement mem-
brane (GBM) antibodies in Goodpasture’s disease [1,2].
Thus, renal biopsy remains a crucial investigation in

nephrology, providing both diagnostic and prognostic
information. Biopsies consist principally of cortical tis-
sue that is subsequently evaluated using a combination
of light microscopy, immunofluorescence, and electron
microscopy (Figure 1A). Typically, the acquisition of a
biopsy is prompted by biochemical analysis of blood
demonstrating impaired excretory function of the native
kidneys or allograft, often in the context of abnormal uri-
nalysis (haematuria or proteinuria).

Figure 1. Overview of clinical and experimental methods in nephropathology. (A) Conventional nephropathology relies primarily on morpho-
logic descriptions of renal cortical biopsies. These are examined using a combination of light microscopy (image showing anti-GBM disease),
immunofluorescence (image showing anti-GBM disease), and electron microscopy (image showing mesangial deposits in immune-complex
mediated glomerulonephritis). (B) Bulk transcriptomics approaches measure aggregate transcript levels in kidney tissue. Image shows genes
differentially expressed between samples from cortical and medullary regions from Lindgren et al 2017 [37]. (C) Both droplet barcoding (left)
and fluorescence-activated cell sorting into plate wells (right) can be used to generate scRNAseq data. The heterogeneity of the tissue can be
uncovered at single-cell resolution. Heatmap shows gene expression of single human blood dendritic cells from Villani et al 2017 [52].

694 BJ Stewart and MR Clatworthy

© 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org

J Pathol 2020; 250: 693–704
www.thejournalofpathology.com

http://www.pathsoc.org
http://www.thejournalofpathology.com


In native kidney biopsies, underlying pathologies
include autoimmunity, viral or bacterial infection, meta-
bolic disease (such as diabetes mellitus), or genetic disor-
ders. Each are characterised by typical morphological
changes within the glomerular, vascular, interstitial, and
tubular compartments that allow a diagnostic category to
be assigned. For example, a thickened glomerular base-
mentmembrane is consistent with a diagnosis ofmembra-
nous glomerulonephritis (GN).At the ultrastructural level,
electron microscopy can identify disease-associated mor-
phological changes, including podocyte foot-process
effacement and aberrant deposition of immune complexes
or fibrils. Immunostaining supplements these data, pro-
viding information on the presence and location of spe-
cific molecular features. For example, linear glomerular
immunoglobulin G (IgG) deposition in anti-GBM dis-
ease, or ‘full house’ immunostaining in lupus nephritis.
In transplantation, renal biopsies have a central diagnostic
role in the context of allograft dysfunction. The consensus
classification system for allograft biopsies is the Banff cri-
teria [3]. Biopsy appearances are categorised according to
the pattern of renal injury and diagnostic subsets include
antibody-mediated rejection (ABMR), T-cell–mediated
rejection (TCMR), and interstitial fibrosis and tubular
atrophy. Immunostaining allows the detection of C4d,
indicative of complement fixation by donor-specific anti-
bodies (DSAs), supporting a diagnosis of ABMR. How-
ever, although valuable in classifying appearances into
historically defined diagnostic categories, these
approaches do not provide insights into the cell-specific
molecular processes that drive disease pathogenesis.

Malignant diseases of the kidney are also classified
according to histological appearance. Renal cell carcino-
mas (RCCs) are the principal neoplasm to affect the kid-
ney parenchyma, and there is considerable heterogeneity
within this diagnostic category. RCCs are classified into
clear cell RCC (ccRCC), papillary RCC (pRCC), and
chromophobe RCC (chRCC), with ccRCC being the most
prevalent [4]. This classification system is based on histol-
ogy and characteristic chromosomal alterations [4,5]. In
addition, there is heterogeneity within tumour types in
terms of oncogene and tumour suppressor genemutational
status. A small proportion of RCCs (2–3%) arise in the
context of a hereditary genetic syndrome, for example
von Hippel–Lindau (VHL) disease [6]. Aside from diag-
nosis, histological evaluation of cancer biopsies can also
provide prognostic information and guide treatment. There
is an increasing appreciation that the presence of immune
cells within tumoursmay have prognostic value; for exam-
ple, infiltration of the tumour with exhausted CD8+ T cells
and Tregs identifies patients with poor prognosis [7].

Bulk transcriptomics analysis of kidney tissue:
Setting the stage for single cell approaches

Over the last decade, high-throughput genomics technol-
ogies have brought revolutionary new insights into a
range of clinical research questions. Transcriptomic

technologies including DNA microarrays and RNA-seq
(using next generation sequencing technology), have
allowed scientists to assay the full set of RNA transcripts
present in a biopsy. Such a measurement represents a
bulk average expression of all the cell types within the
tissue. Although this information lacks cell-type speci-
ficity, the patterns of gene expression can suggest the
presence and even proportions of particular cell types,
and the gene expression programmes at play. Further-
more, samples can be clustered in an unbiased manner,
on the basis of their global gene expression signatures,
revealing disease-specific transcriptional patterns, and
potentially identifying subsets of disease, with implica-
tions for targeted therapies or prognosis (Figure 1B).

Biopsy transcriptomics in benign renal disease
Application of transcriptomics to kidney biopsies has
provided valuable insights into a range of renal diseases
[8]. Much work has focussed on focal segmental glomer-
ulosclerosis (FSGS), a disease characterised clinically
by nephrotic syndrome resulting from podocyte injury
and the subsequent development of sclerotic glomerular
lesions. Microarray analysis of microdissected glomeruli
revealed downregulation of markers of differentiated
podocytes, and increased transforming growth factor β
(TGF-β) signalling. This study also highlighted the role
of leukocyte recruitment, with chemokine genes
CXCL1, CXCL2, CCL3, and CXCL14 found to be upre-
gulated in FSGS samples [9]. Indeed circulating leuko-
cytes may be an important aspect of the pathogenesis
of FSGS: Work in the mouse models suggests that the
circulating factor soluble urokinase-type plasminogen
activator receptor (suPAR)—proposed as a pathogenic
permeability factor acting on the podocyte [10,11] —is
produced by bone marrow–derived Gr-1lo immature
myeloid cells. Indeed transfer of these cells induces pro-
teinuric kidney disease in healthy mice [12].
In addition, transcriptomics can yield prognostic

information and identify disease biomarkers. Ju et al
used renal biopsies from four tissue banks to derive
non-invasive biomarkers for chronic kidney disease,
including EGF. EGF kidney transcripts correlated
tightly with estimated glomerular filtration rate (eGFR)
and urinary EGF (uEGF). Furthermore, urinary EGF
(uEGF) correlated with interstitial fibrosis, tubular atro-
phy, and the rate of eGFR loss [13]. The EGF protein
is a tubular-derived mitogenic protein that modulates
responses to injury, promoting repair and regeneration
of nephrons [14]. These findings have been replicated
in a cohort of diabetic patients [15], with uEGF in
archived urine samples predictive of chronic kidney dis-
ease (CKD) progression in children [16].
More recently, renal biopsy transcriptomics have been

applied to study the molecular characteristics of kidney
aging. Rowland et al studied a 206-biopsy data set from
the TRANScriptome of renaL humAn TissuE Study
(TRANSLATE), and validated their findings in publicly
available data sets. They identified a gene set associated
with kidney aging, including EGF and several other
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genes with predominantly tubular expression, such as
the monocarboxylate transporter gene SLC16A5, and
the Na+/K+ transporter subunit gene ATP1B2. Further-
more, TSPYL5 expression appeared to be under both
genetic and epigenetic control, influenced by a single
nucleotide polymorphism (SNP) and CpG methyla-
tion [17].
One limitation of bulk transcriptomic analysis of

human kidney biopsies is that proximal tubular cells
are the numerically dominant cell type in kidney paren-
chyma; therefore tubular cell gene expression dominates
the transcriptome. To overcome this limitation, specific
anatomical regions can be microdissected to generate
compartment-specific transcriptional profiles, or gene
expression patterns mapped in a biopsy depth- and
compartment-specific manner [18]. These data sets
served as a useful reference for the analysis of subse-
quent complex scRNAseq data sets [19,20]. More
recently investigators have made progress into under-
standing expression quantitative trait loci (eQTLs) oper-
ating in the human kidney in a compartment-specific
manner. Building on efforts to map eQTLs from bulk
renal transcriptomics data [21], compartment-specific
eQTL analyses of nephrotic syndrome biopsies identi-
fied a range of glomerular- and tubulointerstitial-specific
eQTLs. Integrating these data with scRNAseq data
established that the expression of genes associated with
glomerular or tubulointerstitial eQTLs was enriched in
podocytes and proximal tubular cells, respectively [22].
Applying a similar approach to chronic kidney disease,
Qiu et al microdissected 151 human biopsies into glo-
merular and tubular compartments. Within the tubular
compartment they identified an eQTL in the DAB2 gene
specific to the tubular compartment. The associated SNP
was also found to be a significant hit in a CKD genome-
wide association study (GWAS). In the scRNAseq data,
this gene exhibited selective expression in proximal
tubular cells. They concluded that this gene, encoding
an adapter for the TGF-β pathway, is an important novel
player in CKD [23].

Biopsy transcriptomics in transplantation
Molecular diagnostics have been applied extensively to
transplantation, with microarray data showing distinct
transcriptional patterns in patients with TCMR and
ABMR, enabling a more accurate identification of the
disease process present in renal transplant biopsies.
Reeve et al used microarray data from 1208 transplant
biopsies and applied the archetypal analysis method to
generate probabilistic assessments of biopsy rejection
categories. Overall, they were able to identify six biopsy
categories, distinguishing biopsies with no rejection,
early and late stage ABMR, TCMR, or a small group
with mixed TCMR and ABMR. This molecular diagnos-
tic approach showed some discrepancies with histologi-
cal diagnosis. Indeed, of the biopsies with no
histological rejection, 16% had ‘molecular rejection’
according to the transcriptomic readout [24]. Of interest,
in a separate cohort of transplant biopsies with paired

transcriptome profiling and conventional histological
assessment, a molecular ABMR score enhanced the
power of histological assessment in determining time
to graft loss [25].

These studies have also yielded additional insights
into pathogenesis, not readily appreciated by light
microscopy, for example, natural killer (NK) cell and
macrophage genes are enriched in DSA+ humoral rejec-
tion [26,27]. Indeed, cellular deconvolution of bulk tran-
scriptomic biopsy data confirmed an association of NK
cell signature genes with worse outcomes in ABMR
biopsies [27].

Several studies have used allograft biopsy transcrip-
tomics to make inferences about dynamic alloimmune
and reparative responses at play within the kidney allo-
graft over post-transplant time. The large Genomics of
Chronic Allograft Rejection (GoCAR) study used
biopsy transcriptomics to predict injury due to fibrosis
in kidney allografts. Studying 204 biopsies taken
3 months following transplantation from patients with
stable renal function, they identified a core set of
13 genes predictive for the development of fibrosis at
1 year. Many of these genes are known to be involved
in cell growth and developmental pathways, and are
expressed highly in fibroblasts, suggesting that activa-
tion of repair processes after an initial insult are associ-
ated with kidney fibrosis [28].

Analysis of an additional set of kidney allograft proto-
col biopsies taken at a variety of timepoints post-
transplant demonstrated an early transcriptional
response to ischaemia–reperfusion, followed by bifur-
cating trajectories toward either healthy recovery or
fibrosis and renal dysfunction. Genes upregulated along
the fibrotic trajectory included fibroblast-specific genes
such as COL1A2 and DCN, but also chemokine genes
such as CCL19 and CCL20, implicating leukocyte
recruitment as a feature of progression to chronic graft
injury [29]. Consistent with this, these authors inferred
an accumulation of B cells over post-transplant time
from the correlated expression patterns of B-cell signa-
ture genes. B-cell gene expression was prominent in
samples with chronic allograft fibrosis, and using a
murine model of chronic injury after ischaemia-reperfu-
sion, there was an accumulation of clonally expanded B
cells in tertiary lymphoid structures within the kidney.
These findings suggest that B-cell activation and recruit-
ment operates reciprocally with tissue fibrosis responses,
culminating in chronic allograft dysfunction [30].
Although the transcriptional assessment of transplant
biopsies has proved useful in broadly profiling the tem-
poral patterns of gene expression after transplantation,
it cannot definitively establish the cell-type–specific
contributions to pathological processes, or determine if
gene signatures are of donor or recipient origin.

Biopsy transcriptomics in kidney cancer
Interrogation of gene expression patterns in renal cell
carcinoma has been pursued through The Cancer
Genome Atlas (TCGA) [31,32]. This landmark data set
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revealed transcriptional differences between tumour
subtypes that relate to characteristic chromosomal aber-
rations, and also important insights into cellular meta-
bolic state. In aggressive ccRCCs, there is a switch
away from Kreb’s cycle gene expression toward gluta-
mine transport and fatty acid synthesis, consistent with
the adoption of a ‘Warburg effect’ in cancer cells [31].
These data have also provided insights into the immune
phenotypes of renal cancers. Overall, ccRCCs show
higher expression of immune signature genes than
pRCCs or chRCCs, and Th2 skewing of the immune
response across all subtypes correlated with poor sur-
vival [33]. At the level of single genes, expression of
PDCD1 (encoding the T-cell checkpoint receptor PD-
1) and CTLA-4 (encoding CTLA-4, a T-cell costimula-
tion inhibitor), also marked tumours with a poor patient
survival [34]. This was a crucial finding, providing a
robust rationale for the use of dual-checkpoint blockade
with nivolumab and ipilimumab in RCCs [35]. More
recent data also implicate the presence of B-cell aggre-
gates in tertiary lymphoid structures in the efficacy of
checkpoint blockade inhibitors [36].

The cellular origins of different subtypes of RCCs
remain an important question that can be informed by
comparing the transcriptomes of normal and malignant
tissue. Lindgren et al identified modules of genes within
the normal tissue TCGA data that matched segment-spe-
cific, or compartment-specific, gene expression patterns
in rat and human nephron, respectively. These modules
represented coarse ‘cell-type’ gene expression profiles.
Applying these signatures to cancer data, they found a
FOXI1-driven signature in chRCCs, suggesting they
arise from intercalated cells of the collecting duct, and
an HNF1-driven signature in ccRCCs and pRCCs, sug-
gesting that these arise from proximal tubule precursor
cells [37].

Single-cell technologies

Flow- and mass-cytometry
Flow cytometry enables cell populations to be studied at
single-cell resolution and has proved revolutionary for
cell-type classification and inferring functional
heterogeneity—particularly in immunology and haema-
tology where it is used routinely. This includes the diag-
nosis of haematological malignancies, primary and
secondary immunodeficiencies, and some benign hae-
matological pathologies (such as paroxysmal nocturnal
haemoglobinuria, inherited platelet disorders, and in
titration of ATG dosing for immunosuppression) [38].
However, although flow cytometry has many strengths,
such as a wide dynamic measurement range, high
throughput, and capacity for specialised measurements
(such as intracellular phospho-signalling, proliferation
assays, and calcium flux assays), the number of markers
that can be simultaneously measured is limited by spec-
tral overlap of fluorochromes.

In contrast to flow cytometry, which utilises fluores-
cently labelled antibodies, the more recently developed
technology mass cytometry uses antibodies conjugated
with heavy metals, which are measured in a mass spec-
trometer [39]. This minimises, but does not eliminate,
signal overlap, and allows the simultaneous measure-
ment of up to 40 markers. In theory, this number may
extend to around 100 markers, but the limitation in its
current use is antibody and isotope availability. Mass
cytometry is inherently destructive, and so in contrast
to flow cytometry, cannot be used for sorting cells on
the basis of surface phenotype. Furthermore, when com-
pared to flow cytometry, mass cytometry has a lower
throughput per unit time, and more of the sample is
wasted.
Although generating single-cell data at scale, both

flow cytometry and mass cytometry suffer from the bias
of antibody availability and marker selection. Although
these methods can distinguish populations of cells on
the basis of a selected repertoire of markers, these assays
do not permit a truly unbiased or comprehensive assay of
cellular heterogeneity.
The advent of mass cytometry brought a set of distinct

analytical challenges, many of which are present in high-
throughput scRNAseq data. These data are ‘high dimen-
sional’. A large number of features are measured on
each cell, and conventional biaxial gating is therefore
impractical. Furthermore, the data have the ‘curse of
dimensionality’—distances between data-points become
progressively greater with more features, frustrating
conventional clustering algorithms. For these reasons,
investigators have turned to visualisation methods,
which aim to generate a two-dimensional embedding
that faithfully represents the high-dimensional distances
between cells, and the local and global structures of the
data [40,41]. In addition, methods have been developed
to assign cells to clusters that represent putative popula-
tions, modelling the high-dimensional manifold as a
graph structure, and aiming to find well-connected com-
munities within this graph [42–44]. This approach has
also spurred the development of numerous ‘pseudotime’
algorithms, which attempt to order cells captured during
a snapshot according to the progress along the trajectory
of a biological process (for example, differentiation or
activation) [45].

Single-cell RNAseq
Over the past decade, scRNAseq has been widely
adopted as a powerful tool to understand the heterogene-
ity and diversity of cells within a sample in an unbiased
manner. The approach has scaled from early experi-
ments involving in-depth characterisation of a handful
of cells, to the contemporary generation of atlas-scale
data sets, comprising in excess of hundreds of thousands
of cells [46].
The earliest scRNAseq experiments used manual cap-

ture of single cells [47], before the field moved to an inte-
grated fluidic circuit approach [48]. Currently two broad
technical approaches are in widespread use. First, plate-
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based scRNAseq in which single cells are partitioned
into individual wells of 96- or 384-well plates before
reverse transcription and sequencing (Figure 1C).
Methods using this approach include theMARseq proto-
col, which for the first time demonstrated the capacity of
scRNAseq to recover the transcriptional identities of cell
types within a whole organ, generating profiles of
murine splenocytes and their responses to LPS stimula-
tion [49]. The SmartSeq2 (SS2) protocol is an alternative
plate-based strategy [50], with the advantage that it gen-
erates full-length transcript data but with a lower
throughput. SS2 is therefore suited to uncovering the
heterogeneity within a defined population of cells.
Full-length transcript information opens the possibility
of uncovering splice variant usage; however, such ana-
lyses remain at an early stage of development [51]. In a
landmark paper demonstrating the utility of this method,
Villani et al performed SS2 scRNAseq on dendritic cells
(DCs) and monocytes sorted from human blood based
on knownmarkers. This study revealed previously unap-
preciated heterogeneity among these cells, including the
identification of a novel DC subset expressing AXL and
SIGLEC6, termed ‘AXL DCs’ [52]. In contrast to these
focused approaches, which do not explicitly barcode
cells, an alternative plate-based approach—SPLiT-
Seq—performs multiple rounds of splitting cells into
plate wells at random, ligation with barcode oligonucle-
otides, and pooling to generate unique cellular barcode
sequences. The pioneers of this approach were able to
produce a comprehensive cell type atlas of the murine
brain and spinal cord comprising >100 000 cells [53].
The second major approach is droplet-encapsulation

scRNAseq, in which single cells are incorporated into
droplets along with barcoded beads. The reverse tran-
scription reaction occurs within the droplets before lysis,
generating barcoded transcripts for pooling to generate
highly multiplexed cDNA libraries (Figure 1C). Initially
used to characterise heterogeneity among thousands of
embryonic stem cells [54], this approach is now capable
of delivering massive-throughput scRNAseq data
sets [55]. However, the data generated from this
approach suffer from relative sparsity, and the formation
of technical doublets when two cells are encapsulated in
a single droplet. This method has been used to generate
large-scale scRNAseq atlases of human kidneys across
development and lifespan [19,20,56,57].

Single-nucleus RNAseq
In contrast to single-cell RNAseq, single-nucleus RNA-
seq (snRNAseq) captures only the transcripts present in
the nucleus. Nuclei can be prepared from frozen or fresh
tissue without the need for tissue dissociation. Although
snRNAseq captures fewer transcripts, it avoids tissue
dissociation–associated cell stress responses that may
generate transcriptional artefacts, and loss of informa-
tion due to a failure of enzymatic digestion to recover
certain cell types [58]. snRNAseq is easily incorporated
into droplet-encapsulation pipelines, and has been used
effectively on human kidney samples [56].

Single-cell assay for transposase-accessible
chromatin sequencing (ATACseq)
The gene expression programmes dictating cellular iden-
tity are controlled by regulatory mechanisms operating
on the genome such as the chromatin state. Genes may
be expressed if their chromatin exists in an open state.
scATACseq allows the identification of regions of
DNA accessible to the transcription machinery with
single-cell resolution [59]. This method has been
adapted to perform high throughput droplet-
encapsulation ATACseq on tens of thousands of single
nuclei [60], and has been used to chart dynamic shifts
in chromatin accessibility during human haematopoi-
esis, and in basal cell carcinoma of the skin [61].
Although this technology remains relatively immature
compared to scRNAseq, already scATACseq data on
themurine kidney has provided insights into the chroma-
tin regulatory states associated with major kidney cell
types [62,63].

Defining the immune landscape of the human
kidney

The human kidney is an anatomically complex structure.
Within the kidney, hundreds of thousands of functional
nephron units are arranged over cortico-medullary-
pelvic depth and are accompanied by specialised vascu-
lar beds along distinct nephron segments. Glomerular
endothelium forms a tight connection with podocytes
of the glomeruli, and ascending and descending endo-
thelium of the vasa recta accompany the loop of Henle
in the medulla. Each anatomical region is associated
with unique environmental features. Gradients of salin-
ity and hypoxia exist between the cortex and the
medulla. Furthermore, the dominant immune challenge
in each region is distinct: the cortex is exposed to circu-
lating factors, including immune complexes, whereas
the pelvis and medulla are sites of exposure to ascending
bacterial infection. We have previously demonstrated
that this gradient of salinity orchestrates the recruitment
of antibacterial macrophages to the medulla via
epithelia-derived signals to counter this infectious threat
[64]. Recently, we have profiled the immune compart-
ment of the human kidney in both development and
maturity, and uncovered a heterogeneous landscape of
leukocytes resident in the kidney. These included a pop-
ulation of M2 (anti-inflammatory) polarised tissue-
resident macrophages, likely seeded to the kidney early
in fetal life [19]. These cells expressed markers consis-
tent with macrophage populations identified in normal
tissue samples profiled in a mass cytometric atlas of
renal cell carcinoma [65]. The kidney also harbours
monocyte-derived myeloid populations, T cells, B cells,
and heterogeneous populations of NK cells. Probing the
non-immune compartment within these scRNAseq data,
we systematically interrogated ligand-receptor interac-
tions and uncovered epithelia-derived chemokine sig-
nals predicted to attract neutrophils and antibacterial
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macrophages to the pelvic region. Indeed, in a murine
model of pyelonephritis, neutrophils accumulate in the
pelvic region of the kidney. Notably, this regionally
localised immune defence appears to develop postna-
tally, as the signals directing this antibacterial defence
were not expressed in fetal pelvic epithelial cells [19].

Smaller scale scRNAseq data sets in murine kidney
have corroborated this atlas of tissue-resident immune
populations in the human kidney. Using scRNAseq of
the mouse kidney, Park et al identified a diverse range
of immune cells, including macrophages, T and B lym-
phocytes, and NK cells, alongside major subsets of
endothelial and nephron epithelial cell types [66].

Other studies have focussed on kidney development,
tracing trajectories of cellular differentiation toward
major nephron cell types. Here too, populations of
tissue-resident macrophages seeding the kidney early
in development can be discerned [67–69]. Taken
together these data are consistent with a model estab-
lished in murine fate mapping experiments, that resident
macrophages in the kidney can be seeded early in life,
and coexist in the mature kidney with monocyte-derived
macrophages [70,71]. These early seeded cells likely
have ‘accessory’ non-immunological functions in sup-
porting tissue homeostasis or modulating disease pro-
cesses [72].

Exploring cellular complexity in human cancers

Much effort has been dedicated to atlasing tissues,
including the kidney, at a single-cell resolution [73].
Characterising the transcriptional networks that define
cellular identity provides a framework for understanding
the cellular origins of malignant disease, assuming that
partially de-differentiated cells retain a gene expression
signature of their cell of origin. Using droplet-
encapsulation scRNAseq of the human kidney in both
development, maturity, and in malignancy (Wilms’
tumours, ccRCCs, and pRCCs), malignant cells were
identified on the basis of somatic copy number variants
in the RNAseq data, and corroborated using whole-
genome sequencing. Measuring transcriptional similar-
ity with a classification model trained on data from
healthy tissues, the fetal origins of Wilms’ tumour cells
were confirmed, whereas ccRCCs and pRCCs derived
from a specific subtype of mature proximal tubule
marked by the expression of VCAM1 and SLC17A3 [20].

One key contemporary challenge for single-cell omics
approaches in the study of cancer is matching genetic
status of malignant cells with their heterogeneous tran-
scriptional profiles. scRNAseq can infer copy number
variation [74,75], but identifying somatic mutations
and reconstructing the evolutionary relationships of
malignant cells from these data is currently not possible.
Future work is therefore likely to integrate multiple
omics methods to discern the relationship between
tumour evolution and transcriptional state and will fur-
ther leverage the ability of unbiased scRNAseq to

provide information on infiltrating and resident non-
malignant cells in the tumour microenvironment.

scRNAseq applied to kidney biopsy samples

scRNAseq has also been used to investigate tissues
affected by disease. Kidney and skin biopsies donated
by patients with lupus in the AMP RA/SLE Consortium
identified an interferon-inducible gene signature in renal
tubular cells, which was also present in keratinocytes.
These data have suggested that skin biopsy transcrip-
tomics could be utilised as a biomarker for disease sever-
ity in lupus nephritis [76]. More recently, the approach
was scaled up to include paired skin and renal biopsies
from 21 individuals yielding 4019 cells. Again these
data showed an interferon-inducible gene signature in
both tubular cells and keratinocytes in lupus nephritis
patients that correlated with poor responses to treatment
[77].
A further study of kidney biopsies from patients with

lupus nephritis revealed 21 subsets of leukocytes, with
all major subsets displaying an interferon-induced signa-
ture. Within the lymphoid compartment, effector mem-
ory T cells, Treg cells, and Tfh-like cells, plasma cells,
and B cells were observed. A subset of B cells expressed
an ‘age-associated B cell’ signature, previously impli-
cated in autoimmunity [77,78]. There was also good
concordance between the transcriptomes of leukocytes
recovered from urine and those in the kidney biopsy,
suggesting that a cellular urinary biomarker of renal
autoimmunity may be feasible [79].
In a larger scale study, Wilson et al performed

snRNAseq on cryopreserved kidney samples from
patients with diabetic kidney disease (DKD) and con-
trols, generating 23 980 single nuclear transcriptomes.
These data included most major nephron cell types in
addition to endothelial cells, mesangial cells, and leuko-
cytes (including monocytes, plasma cells, T cells, and B
cells). Here the authors uncovered unexpected insights
into renal pathophysiology in DKD, showing that cells
from distal nephron segments upregulate genes for
potassium secretion such asWNK1 and the mineralocor-
ticoid receptor. In the proximal nephron, they noted
increased angiogenic signalling in podocytes and proxi-
mal tubular cells. DKD typically results in the develop-
ment of glomerular lesions and is accompanied by
proteinuria. Within this study, the authors uncovered
alterations in ligand-receptor interactions between podo-
cytes, mesangial cells, and endothelial cells, which may
represent the earliest pathophysiological changes of
DKD. These included CCN1 expression by mesangial
cells; this ligand is capable of modulating podocyte
and endothelial cell integrins, and is known to direct tis-
sue repair and fibrosis [80]. Although this study identi-
fied leukocytes within the DKD biopsies, in contrast to
scRNAseq data from a streptozotocin-induced eNOS-/-

murine model of DKD, they did not recover macro-
phages [81,82]. This may reflect a species-specific
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difference or indicate that macrophage accumulation
occurs in response to the substantial injury induced in
the murine model, but may not be present in early, mild
DKD. This underpins the importance of pairing conven-
tional histological and biochemical analyses with
sequencing approaches to better understand the biologi-
cal significance of transcriptional signatures.
In transplantation, one study has reported single-cell

transcriptomics data from kidney allograft biopsy mate-
rial, generating data on 8746 cells from a recipient with a
diagnosis of mixed rejection. Within the endothelial cell
compartment, activated endothelial cells displayed a
gene-expression signature consistent with Fc receptor
pathway activation, and the data provided a cell-type
specific transcriptional characterisation of DSA-induced
vasculopathy in ABMR. No macrophages were recov-
ered in this experiment, but two monocyte populations
corresponding to classical and non-classical monocytes
were evident [83]. The latter had a high expression of
CD16 (FCGR3A), conferring the capacity to respond to
IgG alloantibodies. This study also illustrates how
scRNAseq data may be used to refine conclusions made
from bulk transcriptomic experiments; a number of
genes previously included in an ‘endothelial cell activa-
tion’ signature indicative of ABMR, were, in fact, found
to be expressed in podocytes, fibroblasts, and a variety of
kidney immune cells, providing important insights into
the pathogenic mechanisms underpinning this ABMR-
associated signature.
This study did not delineate donor and recipient cells in

the inflammatory infiltrate in the allograft but the differen-
tiation of genotypically distinct cells has been achieved
using droplet encapsulation scRNAseq data in a bone mar-
row transplant recipient using both autosomal [55] and
mitochondrial variant status [84]. Byrne et al used sex-
restricted gene expression patterns in scRNAseq data from
sex-mismatched lung transplant recipients to show that
alveolar macrophages in the transplant context are predom-
inantly recipient derived [85]. Donor- or recipient-derived
cells can also be sorted based on HLA genotype using
HLA-specific antibodies, before profiling using single-cell
genomics [86]. In the context of the maternal-fetal inter-
face, Vento-Tormo et al used reference whole genome
sequence data to differentiate maternal and fetal cells in
the human decidua [87]. Cutting-edge methods are in
development allowing dissection of genotypic chimerism
on the basis of variants called directly from scRNAseq
data [87–89]. These will be powerful tools to distinguish
donor and recipient cells in transplant tissue.

Matching single-cell genomics and GWAS data

GWAS identify loci and genes that are associated with dis-
ease susceptibility, but give no indication as to in which
cell type the gene is expressed tomediate disease pathogen-
esis. scRNAseq data sets allow the cell expression patterns
of genes implicated in GWAS, or indeed monogenic
disease-associated genes, to be precisely mapped. In the

kidney, murine scRNAseq data localise the expression of
the majority of nephrotic syndrome associated genes to
the podocyte, whereas genes associated with hypertension,
renal stone formation, and hypertension localised to neph-
ron tubular cell types [66]. Combining lupus GWAS hits
with their atlas of cell types and states in lupus nephritis
biopsies, Arazi et al found that the majority of GWAS-
identified genes are expressed in the B cells infiltrating
the kidney in disease [79]. To date, comprehensive map-
ping of kidney disease–associated genes to human kidney
scRNAseq data sets has not been performed, but utilising
data from Stewart et al, in combination with results from
a large scale GWAS of CKD and renal function traits
[90], we mapped variants associated with renal function
to kidney cell types (Figure 2). This analysis identified
gene sets with specific patterns of cell-type enrichment—
notably proximal tubule—and fibroblast-specific genes
are evident, and genes with compartment specificity
including a gene set expressed in vascular endothelium
(Figure 2). This illustrates the value of scRNAseq to
inform future studies, guiding cell-type enrichment
strategies in disease biopsies for targeted investigation.

Future directions

As the scale and throughput of single-cell methodologies
increases, these technologies will be applied routinely to
clinical samples. Coupling this information with tradi-
tional methods of interrogating biopsies will reveal
richer descriptions of pathophysiology, and enable
data-driven diagnosis, prognostication, and selection of
rational therapeutic strategies.

These technologies are also poised tomove beyond tran-
scriptional profiling to enable simultaneous multi-omic
profiling of single cells. Currently single-cell nucleosome,
methylation, and transcription sequencing (scNMTseq)
can profile chromatin accessibility, methylation, and tran-
scriptome simultaneously in single cells [91], and this
method has already uncovered the globalmolecular regula-
tion underpinning germ layer formation duringmurine gas-
trulation [92]. Similarly genome and transcriptome
sequencing (G + Tseq) is able to jointly profile single-cell
genomes and transcriptomes [93]. In the context of cancer
biology, suchmethodswill delineate the clonal architecture
of cancers and profile intratumoral heterogeneity.

Current high throughput single-cell methodologies gen-
erate transcriptional information from cells in a suspension
produced by disaggregating tissue. These experiments
do not preserve information on the spatial relationships
between cells, which is critical for normal tissue function.
One solution to this problem is reconstruction of spatial
arrangements using well-characterised reference data. This
has been effectively achieved in the mammalian liver,
where gradients of gene expression in hepatocytes and
endothelial cells accompany environmental gradients
across liver lobules [94,95]. In organs with more complex
parenchymal structures such as nephrons in the kidney, in
situ spatial transcriptomics offer an opportunity to spatially
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define patterns of gene expression. These methods can be
divided into single-cell approaches, which measure a smal-
ler repertoire of markers using fluorescent RNA probes
[96], or methods that provide a whole transcriptome read
out but lack single-cell resolution [97]. Both are likely to
play a role in translating insights gained from scRNAseq
to a spatial context. Indeed, these methods will be integral
to bridging the gap between molecular characterisation of
disease using transcriptomics, and classical morphologic
approaches to nephropathology, enabling better disease
classification and prognostication and the application of
personalised treatment strategies.
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