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Abstract

Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest pheno-

typically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV

to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to

regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic

architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant

population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and

covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic

manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher

order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects

across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of

these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment

specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying

identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms

regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the

ability to predict disease predisposition and identify specific therapeutic targets.
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Introduction

Understanding how variation at genetic level bears on pheno-

typic variation is the fundamental question in biology. Multiple

mapping studies in laboratory model systems, domesticated

populations and human populations have identified a pre-

dominant additive regulation of phenotypic variation, i.e., de-

spite presence of high genetic diversity, only a few

independently acting loci result in the observed phenotypic

variation (Mackay 2001; Mackay et al. 2009). A reason

behind such an additive architecture is the focus on the iden-

tification of loci with main effects, i.e., effects averaged over

phenotype of all other loci (Mackay 2014). Attempts to iden-

tify epistasis have been limited by the lack of power in most

organisms (Phillips 2008). The studies that have analyzed epis-

tasis show minimal effects of genetic interactions on pheno-

typic variation (Bloom et al. 2015). Paradoxically, despite

limited discovery of epistasis, the identified additive loci

show high genetic background dependence (Mackay 2001;

Mackay et al. 2009), questioning their independent effects. In

parallel, a highly interconnected non-linear architecture of ge-

netic networks is emerging from the numerous genome-wide

molecular studies (Vidal et al. 2011). These studies in various

organisms including yeast, fly, worms, mice, and humans have

identified a complex interactome constituting the genotype–

phenotype map. A salient feature of these interactomes is the

presence of regulatory hubs, which cross talk with other genes

to mediate phenotype. This argues for existence of such a
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multi-layered architecture of the genetic variants that regulate

phenotypic variation. In this study, we ask why only a subset of

the diverse genetic variation has been associated with pheno-

typic variation. Is such an additive architecture a true reflection

of the genotype–phenotype map or a result of the bias in the

mapping approaches?

To understand the architecture of genetic variation, it is

important to take into account various evolutionary processes

that result in accumulation of this genetic variation. An

adapted population is not genetically constant, instead it con-

tinues to accumulate genetic variants phenotypically neutral in

that selection condition (Gibson and Dworkin 2004). In a sce-

nario of a change of genetic background or environment,

these accumulated variants can manifest phenotypically, i.e.,

show their effects, thereby facilitating adaptation. This genetic

potential is termed cryptic genetic variation (CGV). Various

studies have investigated regulation of CGV at a single locus

level. Waddington’s initial observations in Drosophila later lead

to identification of genes with the ability to buffer the pheno-

typic effects of other genetic variants or CGV in various sys-

tems—Ultrabithorax (Gibson et al. 1999), EGFR (Dworkin et al.

2003) in Drosophila, IRA2 (Taylor and Ehrenreich 2015) in

yeast and, the most commonly studied gene, HSP90

(Rutherford and Lindquist 1998) in various model systems.

Upon genetic or environmental perturbation, the buffering

ability of these genes is altered, resulting in phenotypic man-

ifestation of CGV. However, these few examples of regulators

of CGV cannot account for its proposed central role in adap-

tation and speciation (Gibson and Dworkin 2004). At a pop-

ulation level, CGV refers to genetic variation that is masked

through epistatic effects and released in the presence of spe-

cific polymorphisms (Hermisson and Wagner 2004; Siegal and

Leu 2014). However, the mainly additive nature of causal ge-

netic variation in mapping studies challenges the role of loci

regulating CGV in phenotypic variation. At a molecular level,

high genetic crosstalk resulting in redundant pathways (Wu

and Lai 2015) has been proposed to be a compensatory mech-

anism to buffer CGV (Costanzo et al. 2010) indicating its per-

vasive role in shaping the genetic architecture. Therefore, in

order to understand the impact of CGV on phenotypic varia-

tion, it is important to study its regulation at a genome-wide

level.

In this paper, we investigate genetic architecture regulating

phenotypic variation by employing QTL mapping to study reg-

ulation of CGV. We ask the following questions: can we iden-

tify loci whose alleles have differential effects on the

phenotypic manifestation of other genetic variants, i.e.,

CGV? If such loci exist, how do they compare to the conven-

tionally identified loci and how are they distributed across di-

verse environments? Finally, like the highly interconnected

molecular interactome, do the genetic variants also show

high interconnectivity and how does this impinge on regula-

tion of CGV?

Linkage mapping in segregants of a large biparental pop-

ulation will allow comparison of the effect of the two diver-

gent alleles of a locus on thousands of genetic variants, i.e.,

CGV. Whereas conventional quantitative trait locus (QTL)

mapping identifies alleles that show significant difference in

population mean, their effects on population variance are not

considered (Rönnegård and Valdar 2012). A significant differ-

ence in mean of the two alleles indicates difference in mean

phenotype averaged over other genetic variants. Whereas, a

difference in variance would indicate that while rest of the

genetic variants are phenotypically neutral or buffered in the

presence of one allele resulting in lower variance, the other

allele allows their phenotypic manifestation resulting in higher

variance (Lempe et al. 2013). The term to describe these var-

iance-regulating loci, variance QTL (vQTL) was first introduced

by Rönnegård and Valdar (2011). Whereas vQTL with signif-

icant effect on variation have been identified, viz. MOT1

(Forsberg et al. 2015) and nFT (Lee et al. 2014) in plants,

these loci tend to be small effect when compared with

conventional QTL (Shen et al. 2012). In addition, while vQTL

mapping has been proposed to be a predictor of prevalence of

gene-gene interactions (Paré et al. 2010; Rönnegård and

Valdar 2012), thereby supporting our hypothesis of differen-

tial regulation of CGV by these loci, empirical evidence for this

remains scarce.

We used linkage mapping to identify loci that regulate

CGV in a biparental yeast population grown in diverse

environments. These genetically diverse parental strains

(BY and RM11) have accumulated large number of genetic

variants over the course of their evolutionary trajectories

(Liti et al. 2009; Bloom et al. 2013). We perform single

locus mean and variance QTL mapping and compare their

distribution in diverse environments. We then perform

across environment covariance analysis of the identified

loci to study the environment specific pleiotropy of the

regulation of CGV and its impact on gene–environment

interactions (GEI). Please note that from this point on-

wards in this paper, pleiotropy refers to environment spe-

cific pleiotropy, i.e., effect of a locus in multiple

environments. In the end, we perform a two-locus analysis

to detect genetic loci whose interactions affect mean, var-

iance or both and identify genetic networks regulating

CGV. Our results demonstrate that vQTL mapping can

be used to identify the regulators of CGV. We show that

environment is the primary determinant of regulation of

CGV, such that it is buffered in most environments and is

released only in certain environments. While most large

effect pleiotropic loci affect CGV in these select environ-

ments, we identify environment specific genetic and mo-

lecular networks, which work in a redundant manner to

buffer the CGV. We believe that such networks are a part

of genetic architecture of all quantitative traits and these

networks are revealed only upon certain genetic and en-

vironmental perturbations.
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Methods

In this paper, for clarity, we have used following terms to

define various mapping techniques used: “mQTL”, mean

QTL, is used to describe conventional QTL mapping based

on F-statistic comparison; “vQTL” for variance QTL mapping

based on BF-statistic comparison; “mvQTL” for a locus which

has a significant F- and BF-statistic; “2-mQTL” denotes pair of

loci with significant two-way F-statistic comparison; “2-vQTL”

with two-way BF-statistic comparison; and “2-mvQTL” with

two-way F- and BF-statistic comparison.

Dataset

The raw growth data analyzed in this study was derived from

a study by Bloom et al. (2013), in which the experimental

procedures are described in detail. The data we used was

generated for 1,008 segregants derived from a cross between

S. cerevisiae strains BY (a laboratory strain) and RM11-1a (a

wine isolate, indicated as RM). These segregants were grown

in 46 different environments and phenotyped for colony size

of which 34 environments were considered in this study (sup-

plementary table S1, Supplementary Material online). A total

of 11,623 markers were considered.

mQTL and vQTL Mapping

The mQTL mapping was carried out as described previously

(Bhatia et al. 2014). In brief, the R/qtl package (Broman et al.

2003; Broman and Sen 2009) was used to identify QTL sep-

arately for colony size in each environment. mQTL were iden-

tified using the LOD score, which is the log10 of the ratio of the

likelihood of the experimental hypothesis to the likelihood of

the null hypothesis (Broman and Sen 2009). An interval map-

ping method using R/qtl “scanone” function was used to

compute this LOD score using the Haley–Knott regression al-

gorithm (Broman et al. 2003).

The following formula was used to calculate the F-score,

which was further used to derive the LOD score. At a partic-

ular marker, let segregant i’s phenotypic value be yij where j

can take two values (j = 1: BY allele and j = 2: RM allele).

F ¼

Pk
j¼1

nj y j � y
� �2

= k � 1ð Þ

Pk
j¼1

Pnj

i¼1

yij � y j

� �2

= n� kð Þ

Here, N is the total number of segregants, n1 and n2 are the

number of segregants having the BY and RM allele, respec-

tively (k = 2) and yi is the genotypic mean of allele j.

Let df denote the degrees of freedom (df = 1 for a back-

cross and df = 2 for an intercross). The LOD score is accordingly

derived as follows:

LOD ¼
n

2
log10 F

df

n� df � 1

� �
þ 1

� �

Under the null hypothesis, there is no significant difference

in the means at the marker under consideration whereas

under the alternative hypothesis, there is a presence of an

mQTL.

To estimate the difference in phenotypic variance between

the two genotypic groups, i.e., to identify vQTL in each envi-

ronment, the standard Brown–Forsythe (BF) statistic

(Rönnegård and Valdar 2011; Lee et al. 2014) and the corre-

sponding LOD score were calculated for each genetic marker

in each environment (supplementary file S1, Supplementary

Material online). The BF-test is equivalent to an F-test per-

formed on the deviations of the phenotypic values from

their respective genotypic medians (or the means). Hence,

under the alternative hypothesis, the phenotypes of the two

alleles reveal a difference in the variance.

At a particular marker, let zij be the absolute deviation of

segregant i’s phenotypic value yij from its genotypic mean ~yj

where, j can take two values ( j = 1: BY allele and j = 2: RM

allele).

zij ¼ jyij � ~yj j

Then BF-statistic for that marker can be computed as

follows:

F ¼
N � pð Þ

p� 1ð Þ

Xp

j¼1
nj ~z:j � ~z::
� 	2

Xp

j¼1

Xnj

i¼1
z ij � ~z:j
� 	2

Here, N is the total number of segregants, n1 and n2 are the

number of segregants having the BY and RM allele, respec-

tively (p = 2). In order to estimate the effects of vQTL in the

same order as in QTL, LOD scores were computed as described

previously (Broman and Sen 2009).

To establish the statistical significance of the putative mQTL

and vQTL, P values were computed using a genome-wide

permutation test of 1,000 permutations, where the null dis-

tribution consisted of the highest genome-wide LOD score

obtained from each permutation (Broman et al. 2003). A

marker with LOD score> 3.0 and a permutation P< 0.1

was considered significant. In order to account for multiple

comparisons performed on this dataset, we used permutation

testing which represents a more robust substitute to various

multiple testing correction algorithms (Camargo et al. 2008).

In brief, permutations disrupt the genotype–phenotype asso-

ciation and then test the chances of identification of a partic-

ular locus as significant. This is independent of any other test

performed on the dataset. In order to test the association

between permutation values for F- and BF-tests, we calculated
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correlation of permutation P values of the two tests for all

single QTL and identified a non-significant correlation of

r2 =�0.143.

Comparing mQTL and vQTL and Estimating Pleiotropy

To compare mQTL and vQTL and estimate pleiotropy, we di-

vided the genome into 50 kb non-overlapping regions. A 50

kb region containing significant mQTL and vQTL in the same

environment was considered an mvQTL. Similarly a 50 kb

region containing two or more mQTL or vQTL significant in

different environments was considered a pleiotropic locus.

Within one type of mapping in an environment, we did not

identify two peaks within a 50 kb locus. This is also tested

independently in the original study, Bloom et al. (2013), which

did not identify two peaks closer than 50 kb in the same

environment. Furthermore, we observed that for significant

loci any linkage degenerated beyond a 50 kb interval inde-

pendent of the LOD score. Therefore, a 50 kb region was

sufficient to compare loci pleiotropic across environments.

We compared 40 and 50 kb intervals and found no difference

in our results. We have therefore used a universal QTL interval

of 50 kb. We would like to note that linked loci can have an

effect in the same environment as well, as reported previously

(Steinmetz et al. 2002) and distinguishing the effect of such

loci across environments is beyond the scope of linkage map-

ping and this paper.

Calculating Correlation between Mean and Variance

To calculate environment specific correlation, difference in the

mean (mean_BY � mean_RM) and difference in the variance

(var_BY� var_RM) was calculated for all significant loci within

each environment. Pearson’s correlation between these two

parameters was then calculated for each environment.

Covariance across Environmental Pairs

To assess the differential covariance of a locus across multiple

pairs of environments, we considered the collated set of pleio-

tropic loci for our study (supplementary table S3,

Supplementary Material online). To quantify the differential

covariance across a pair of environments, a Deming regression

was calculated between the phenotype values of the chosen

pair of environments for each allele, using R package “mcr”.

Deming regression, which minimizes errors in multiple dimen-

sions simultaneously, served as a suitable measurement error

model for assessing buffering across two or more environ-

ments. Unlike simple least squares regression, Deming regres-

sion accounts for deviations in observations on both the x- and

the y-axis. Assuming (yi; xi) are measured observations of the

“true” values (y�i ; x
�
i ), which lie on the regression line.

yi ¼ y�i þ "i

xi ¼ x�i þ Zi

where, errors " and Z are independent and the ratio of their

variances is the estimate d ¼ s2
"

s2
Z
. Deming regression seeks to

find the line of best fit: y� ¼ b0 þ b1x�, such that the

weighted sum of squared residuals is minimized.

1

s2
"

Xn

i¼1

yi � b0 � b1x�i
� 	2

þ d xi � x�i
� 	2� �

Because both the phenotypic values (yi; xi) are normally

distributed across their respective axes, Deming regression,

serves as a suitable measurement-error model for assessing

buffering across two environments. Two Deming regression

models were fitted for each environment pair corresponding

to the two alleles.

A Student’s t-test was performed between the deviations

of the phenotypic values from the Deming fit of the BY and

RM alleles (P< 0.05). The sign of the t-test value indicated

which of the alleles had higher mean of deviations, i.e.,

lower covariance. A positive t-test value denotes that the

mean deviation of BY allele was greater than that of the RM

allele and vice versa. All the significant loci and their corre-

sponding environmental pairs along with mean deviations of

the alleles and independent mean and variance of both the

alleles and both the environments are given in supplementary

table S3, Supplementary Material online. A locus with signif-

icantly different allelic covariance across more than 15 envi-

ronmental pairs was considered to have pleiotropic effect on

covariance. For each of these loci, total number of positive and

negative t-test statistic were compiled. A Fisher’s Exact test of

random distribution of positive and negative t-test statistic was

done for each locus and corrected for the total number of

environmental pairs considered. A P< 0.05 was considered

significant.

2-mQTL and 2-vQTL Mapping

A 2-mQTL interaction occurs when the effect of an mQTL at a

single locus depends on another locus. We used a two-locus

mapping technique described previously to test the interac-

tions (Bhatia et al. 2014). LOD scores were computed for

pairwise comparisons among a set of selected loci, instead

of doing a whole genome analysis. To increase power to iden-

tify 2-mQTL and 2-vQTL interactions, for each environment,

genetic loci significant in either QTL or vQTL or mvQTL map-

ping were collated for each environment (supplementary table

S1, Supplementary Material online). For the 2-mQTL mapping,

P values were computed using a permutation test (10,000

permutations), where the null distribution consisted of the

highest LOD score obtained among all pairwise comparison

for each permutation of the phenotype. Interactions with per-

mutation P <0.1 were considered significant. The following

hypotheses were compared:

HI : yi ¼ mþ b1g1i þ b2g2i þ gg1ig2i þ ei
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HA : yi ¼ mþ b1g1i þ b2g2i þ ei :

Here, g1i and g2i are the binary variables that specify the

genotype at the two loci, m, �1, �2, and g are inferred from the

data using maximum likelihood. The parameters �1 and �2

quantify the individual effect of each QTL, and g quantifies

the effect of the 2-mQTL interaction. See supplementary file

S1, Supplementary Material online, for details of calculation of

the interaction LOD (LODi) score.

Apart from the 2-mQTL mapping described above, we

mapped variance-controlling interactions by mapping 2-

vQTL interactions, which occurs when the phenotypic variance

at one locus depends on the genotype at another locus. The

hypothesis testing for 2-vQTL interactions was done in the

same way as 2-mQTL interactions except that instead of

scaled values of colony size as the phenotypic values, devia-

tions from the mean were used as the phenotype for each

allelic combination (Method for vQTL mapping). In order to

compare 2-mQTL and 2-vQTL across environments, loci within

a 50 kb linkage interval were considered the same.

Identifying Molecular Networks

For each genetic network independently, we compiled the

genes present in the constituent loci using Bloom et al.

(2013) data. Interactions between these gene lists were iden-

tified using STRING (http://string-db.org; last accessed May 27,

2016) (Szklarczyk et al. 2015) with following settings: interac-

tion sources selected were experimental evidence, curated

databases and co-expression with interaction score of

medium confidence (0.4).

Results

A Non-Uniform Distribution of Loci Affecting Mean and
Variance

Using a previously published dataset (Bloom et al. 2013) of a

recombinant haploid population generated from a biparental

cross between a laboratory strain BY and a vineyard isolate

RM, we carried out single locus linkage mapping to identify

genetic loci that showed an effect on the mean (mQTL) and

variance (vQTL) of colony size variation. This mapping was

done independently in 34 diverse environments, ranging

from different carbon sources to oxidative and DNA damaging

stresses. mQTL were estimated using F-test, whereas vQTL

were estimated using Brown–Forsythe (BF) test (fig. 1A,

Methods). Significance was determined by performing

1,000 permutations per marker and a locus with LOD

score> 3 and permutation P< 0.1 was termed significant. If

the peaks of mQTL and vQTL in one environment were within

50 kb interval, the locus was termed mvQTL, i.e., this locus

that had an effect on both mean and variance. The environ-

ments considered had a high broad sense heritability

(H2>0.5) estimated using replicates of more than 500 segre-

gants in most cases (Bloom et al. 2013). This robustness of the

replicates ensured that the phenotype of segregants was

robust and the differential variance was not a result of tech-

nical noise in phenotype estimation.

A total of 296 significant loci (LOD score> 3.0; permuta-

tion P< 0.1, supplementary table S1, Supplementary

Material online) were identified across the 34 environments,

of which 72% (212) behaved solely as mQTL, 6% (19)

uniquely as vQTL and the remaining 22% (65) as mvQTL

(fig 1B). Two main conclusions emerge from these results.

First, almost three-fourths of the loci are mQTL, i.e., they

have independent additive effects and only one-fourth of

the loci result in a difference in variance. Furthermore,

among the loci resulting in difference in variance, a substan-

tially higher number of mvQTL were identified compared

with vQTL. This indicated that in most cases variance hetero-

geneity is accompanied by a difference in mean. Even

though we did not identify many additional loci compared

with the original study (Bloom et al. 2013), using two meth-

ods of QTL mapping (mQTL and vQTL), we classified the

identified loci into different categories based on their allelic

variance heterogeneity. Second, these vQTL and mvQTL loci

are not uniformly distributed in all environments, instead,

they are more prevalent in a few select environments (fig.

1B and D). If the difference in variance were a statistical

effect, then vQTL and mvQTL would have been present

with similar frequency across all environments without the

observed distribution bias. Therefore, this observation over-

rules a purely statistical origin of mvQTL without any biolog-

ical implication. Additionally, we observe a strong negative

correlation (r2 =�0.9) between frequencies of mQTL and

mvQTL, indicating exclusivity of presence of either mQTL or

mvQTL in an environment, but not both. In other words, two

types of genetic architectures regulating phenotypic varia-

tion appear to exist in different environments, one consisting

predominantly of mQTL and other of mvQTL.

Environment Determines Association between Population
Mean and Variance

A higher frequency of mvQTL compared with vQTL indicates

that in most cases increase in variance is accompanied by a

shift in the mean resulting in a higher or a lower average

phenotype. We next asked what determined the higher or

lower direction of the shift in mean; was it is a property of

the locus or determined by the environment. A positive direc-

tion of release of variance would mean that an increase in

variance is associated with an increase in mean phenotype,

whereas a negative direction of release of variance would

mean that an increase in variance is associated with a decrease

in phenotypic mean (fig. 2A). In order to test if this direction-

ality of release of variance was a property of the locus, as a first

step, pleiotropic loci that affected both mean and variance
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across multiple environments were identified. As described

previously, fewer loci behaved as mvQTL (65/296) compared

with mQTL (212/296), with most of the mvQTL being envi-

ronment specific (supplementary table S1, Supplementary

Material online). Pearson correlation was calculated between

the mean and the variance of the alleles of each locus across

different environments. Little correlation was observed be-

tween the allelic mean and variance of these pleiotropic loci

across environments. For example, a chrXV (140,012) locus

had a pleiotropic effect on mean and variance across eight

environments. Whereas the BY allele had a higher mean in

MgCl2 and LiCl, and RM allele in MgSO4, the RM allele had a

higher variance in all these three environments showing a poor

correlation (r2=0.3) between the mean and the variance

(fig. 2B, supplementary table S2, Supplementary Material

online). A similar lack of association between the mean and

the variance was observed for other loci as well. On the other

hand, a strong association was observed between the mean
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and the variance of alleles of loci within each environment (fig.

2B). Pearson correlation was calculated between the mean and

the variance of alleles of all significant loci for each environment

independently. A poor correlation across the environments

would indicate that the release of variance could occur in

either a positive or a negative mean direction, whereas a

strong correlationwould mean that release of variance occurred

in only a specific direction (either positive or negative but never

both) within an environment. Interestingly, a significant corre-

lation (P<0.01) was observed in majority of the environments

(26/33, fig. 2C). Half of the environments (13/26) showed a

strong positive correlation (r2>0.5; Pearson correlation,

P< 0.01) indicating that in these environments high variance

was associated with higher phenotypic mean. The other half of

environments showed a negative correlation (r2<�0.5;

Pearson correlation, P< 0.01), i.e., high variance was associated

with poor phenotypic mean (fig. 2C). For example, a strong

positive correlation (r2=0.9) was observed for all loci in

MgSO4 such that, independent of the locus, an allele with a

highermeanalways hadahigher variance (fig.2B). Even though

in different environments, segregants showing both high and

low phenotype contribute to high variance demonstrating that

differential variance is not a result of a technical bias in pheno-

typic estimation but is a biologically relevant phenomenon. This

meant that independent of the molecular nature of the regula-

tory locus and the genetic variation present in the population,

the environment was the primary determinant of the effect of

increase in variance on the population mean.

Pleiotropy of Loci Affecting Variance Underlies Gene-
Environment Interactions

This prepotency of the environment in determining the direc-

tion of release of variance could potentially be the underlying

basis of gene–environment interactions. In a previous study,
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we reported high antagonism of the mean effect of loci across

multiple environments (Yadav et al. 2015). Thus, we next

asked how the environment, by determining direction of re-

lease of variance, impacts the mean effects of pleiotropic loci.

A locus can show environment dependent effect on variance

in two ways; either it can result in difference in variance in one

environment but not the other, or the identity of the segre-

gants that show extreme phenotypes contributing to high

variance can be different in the two environments.

Therefore, in order to compare the effect of loci on variance

across multiple environments in a comprehensive manner, we

compared trait covariance of alleles across pairs of environ-

ments. Trait covariance measures how a population behaves

across two environments (Haber and Dworkin 2016). A high

covariance means similar phenotype of the segregants across

a pair of environments, whereas a low covariance indicates

uncorrelated phenotype of the segregants across the environ-

ments. As an alternative to performing a genome-wide trait

covariance analysis, we chose only those loci (mQTL, vQTL, or

mvQTL) that had a significant effect in more than one envi-

ronment. Forty-two such loci were selected and the trait

covariance of their alleles was compared across all possible

pair-wise combinations of environments (Methods), where

the locus had a significant effect (supplementary table S3,

Supplementary Material online). Eighteen loci showed a sig-

nificant difference (F-statistic, corrected P< 0.05) in the allelic

covariance across at least one environmental pair, of which 5

loci were significant across more than 15 environmental pairs

(fig. 3A, supplementary table S3, Supplementary Material

online). We observed that low covariance was often a

property of the allele that had higher variance between the

two environments compared. Further, we observed that the

loci with significantly different covariance across multiple pairs

of environments showed an allelic bias. Among the 5 loci that

showed differential covariance in more than 15 environmental

pairs, 4 had a significant allelic bias, i.e., one allele had a ten-

dency to show higher covariance than the other allele (Fisher

Exact test, P<0.05, fig. 3A). This was independent of the

association between mean and variance in the environments

compared. For example, in fig. 3B, Paraquat shows a positive

correlation between the mean and the variance whereas

Copper (Cu) shows a negative correlation (fig. 2C).

However, BY allele of the chrXIII (45,801) locus shows reduced

variance in both environments whereas the RM allele shows a

higher variance in both. Hence, independent of the environ-

ment, alleles of a locus tend to either increase variance or

decrease it across most environments in a consistent manner.

This consistent effect of alleles on covariance, along with

strong environmental control of mean and variance, has pro-

found implications on the nature of gene–environment inter-

actions across diverse environments. Assume a following

scenario where a locus shows differential covariance in two

environments that show strong but opposite correlation be-

tween the mean and the variance. Because there is a high

consistency in release of variance, one allele will result in high

variance in both environments, whereas the other allele will

show lower variance. The opposite correlation of mean and

variance in the two environments would result in opposite

effects on the allele with high variance in the two environ-

ments resulting in antagonistic pleiotropy. As a case in point,
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FIG. 3.—Allelic bias in across environment covariance. (A) Frequency distribution of the number of positive and negative values of Deming regression

t-test (Methods) across pleiotropic covariance loci (x-axis). The t-test value is positive where Cov (BY)> Cov (RM) and negative for Cov (BY)< Cov (RM). The

y-axis indicates the number of environmental pairs across which the locus showed a significant difference in covariance. An asterisk denotes a significant

Fisher Exact test (P < 0.05). The locus is indicated as a chromosome number followed by the locus position in bp within brackets. (B) Covariance of

normalized growth phenotype of the BY (blue) and the RM (red) allele of chrXIII (45,801) locus in Paraquat and Cu (Copper). The mean and the variance of

each allele in each environment are indicated in the box. Paraquat shows a positive correlation between the mean and the variance whereas Cu shows a

negative correlation (fig. 2C). The locus is indicated as a chromosome number followed by the locus position in bp within brackets.
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in figure 3B, BY allele of chrXIII (45,801) locus shows antago-

nism for mean values between Cu and Paraquat, the under-

lying basis of which is high variance of RM allele in both

environments but differential effect of high variance in two

environments.

Difference in Variance is an Accurate Predictor of Genetic
Interactions

The genetic interpretation of differential variance is that an

allele with higher variance allows phenotypic manifestation of

other genetic variants in the population, whereas the allele

with lower variance buffers their effects. This implies that

the vQTL and mvQTL regulate the effect of other loci, i.e.,

show genetic interactions. If this inference is correct then

we should observe an increased tendency of these loci to

show two-locus interactions. Additionally, just like a single

locus can affect mean, variance or both, two loci can also

interact to affect mean, variance or both. We carried out con-

ventional two-locus mapping (2-mQTL mapping) that identi-

fies two loci which interact to affect phenotypic mean. In

addition, we modified the two-locus mapping technique

using BF-statistic to identify genetic interactions that affect

the variance of the segregants (2-vQTL mapping). If interaction

between two loci resulted in a difference in both mean and

variance, we termed it as 2-mvQTL interaction.

A 2-mQTL and 2-vQTL mapping was carried out in each

environment independently between all loci that were signif-

icant as mQTL, vQTL, or mvQTL in those environments. A total

of 73 significant interactions (P<0.1) were identified of which

18 (25%) were 2-mQTL, 33 (45%) were 2-vQTL and 22 (30%)

were 2-mvQTL interactions (fig. 1C). This substantially high

number of 2-vQTL interactions, in comparison to a relatively

small proportion of single vQTL (fig. 1B), highlights the role of

genetic interactions contributing to population variation with-

out demonstrating epistasis of the mean effects. This may

explain the lack of identification of two-locus interactions in

other studies that focus only on mean effects. Whereas we did

not identify more number of loci compared with Bloom et al.

(2013), using 2-vQTL mapping we identified a substantially

high number of two-locus interactions than previously ob-

served. Most of the 2-mQTL and 2-mvQTL interactions were

identified in environments that showed a large difference be-

tween broad (H2) and narrow (h2) sense heritabilities, i.e., the

high heritability was a result of epistatic interactions instead of

primarily additive effects. However, Bloom et al. (2013) did not

identify two-locus interactions in all of these environments.

For example, for Hydroquinone, broad sense heritability (H2)

was 0.6, but the additive QTL identified could only explain a

variance of 0.24 in the population and did not identify any

two-locus interactions (Bloom et al. 2013). Our 2-vQTL map-

ping approach identified three 2-vQTL interactions that could

potentially explain this difference between broad and narrow

sense heritabilities observed in this environment

(supplementary table S4, Supplementary Material online).

Interestingly, amongst the loci showing 2-mQTL interactions,

only 10% had mQTL effects, whereas 80% were either vQTL

or mvQTL. Moreover, a negative correlation was observed

between the total number of mQTL and the numbers of 2-

mQTL (r2 =�0.46) and 2-vQTL (r2 =�0.37) interactions across

environments. On the other hand, a strongly positive correla-

tion was observed between number of mvQTL and numbers of

2-mQTL (r2=0.64) and 2-vQTL (r2=0.65) interactions. This fur-

ther supports our previous observation of two types of genetic

architectures, one consisting predominantly of mQTL and other

of mvQTL with higher abundance of epistatic interactions in

environments constituting mainly of mvQTL. Along with dem-

onstrating a genetic basis of difference in variance, we show

that difference in phenotypic variance is a robust predictor of

tendency of a locus to show genetic interactions.

A higher likelihood of mvQTL to show genetic interactions

provides an evidence for a genetic basis of why one allele of

vQTL has higher variance compared with the other allele. The

differential variance and covariance of the two alleles is a due

to the phenotypic manifestation of other genetic loci, or CGV,

in the presence of one allele but not the other. At a genetic

level, it indicates that CGV is released in the presence of one

allele (with higher variance) and buffered in the presence of

the other (with lower variance). As an example to explain the

above argument, chrXIV (368,185) locus shows differential

allelic covariance across 4-HBA and Galactose and has distinct

genetic interactions in both the environments. The BY allele of

the chrXIV (368,185) locus has a higher variance in both 4-

HBA and Galactose whereas RM allele has a lower variance

(fig. 4A). In 4-HBA, the chrXIII locus shows a larger effect in

the presence of the BY allele of chrXIV locus than the RM allele

(fig. 4B). Similarly, in Galactose, chrXV locus shows a stronger

effect on the phenotype in the presence of BY allele of chrXIV

locus than the RM allele (fig. 4C). Similar results were also

observed for other genetic interactions as well (supplementary

table S4, Supplementary Material online).

Environment Specific Combinations of Genetic
Interactions Regulate Phenotypic Variance

Enrichment of mvQTL in a few environments (fig. 1D) and

higher tendency of mvQTL to show genetic interactions,

these two observations together indicate that whereas genetic

interactions are abundant in quantitative traits, they are not

uniformly distributed. In other words, for the same population

and the same phenotype (colony size), some environments

reveal multiple genetic interactions whereas others show a

primarily additive genetic regulation. Additionally, whereas

these genetic interactions are environment specific, we ob-

served that the same loci are involved in multiple genetic in-

teractions within an environment (fig. 5A). Furthermore, most

of the interactions with overlapping interacting loci were

either 2-vQTL or 2-mvQTL, i.e., these loci affected variance
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FIG. 4.—Two-locus interactions showing phenotypic manifestation of CGV. (A) Covariance of normalized growth phenotype of the BY (blue) and the

RM (red) segregants for chrXIV (368,185) locus in 4-HBA and Galactose. The mean and the variance of each allele in each environment are indicated in the

box. The axes are normalized growth of segregants in the two environments indicated. (B) Two-locus interaction between chrXIV (368,185)–chrXIII (46,758)

in 4-HBA. (C) Two-locus interaction between chrXIV (368,165) - chrXV (555,452) in Galactose. The locus is indicated as a chromosome number followed by
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of the segregating population in a redundant manner within

an environment. As a case in point, the four interacting loci

identified in Indoleacetic acid (IAA) show significant 2-mvQTL

interactions with each other (fig. 5B and C). In IAA, a negative

correlation (fig. 2C) was observed between mean and variance

such that alleles with higher mean are associated with low

variance. In each two-locus interaction, only 1 of 4 biallelic

combinations has higher variance and lower mean phenotype

compared with other combinations (fig. 5B). A significant

two-locus interaction between all six pairs of these loci is in-

dicative of existence of a higher order interaction among

them. While we did not perform multi-locus interaction map-

ping, this implies presence of a higher order genetic interac-

tion network that regulates phenotypic variance. Most allelic

combinations of this network result in low variance, i.e., buff-

ered phenotype, but some allelic combinations result in re-

lease of variance. Similar such genetic networks were

identified in other environments based on comparison of

two-locus interactions (fig. 6). As commented previously,

these networks were identified in environments with high

broad but low narrow sense heritabilities, indicating a high

contribution of epistatic interactions in their regulation, e.g.,

IAA and MgSO4 have H2 of 0.81 and 0.87 but h2 of only 0.44

and 0.43, respectively. Whereas the degree of interactivity

of a locus varied within each environment, all interactions

affected just variance or both mean and variance.

Furthermore, we observed that these potential genetic inter-

action networks were highly environment specific. Even

though pleiotropic loci were part of these interactions, the

effect of these loci in such environments depended on the

allelic combinations of other loci in the network. These re-

sults suggest a tempting possibility that a dense genetic

interactome underlies all traits, which is revealed under

very specific genetic combinations and environmental cues.

The loci involved in genetic networks are large effect loci

affecting both mean and variance. To discover the candidate

molecular network underlying the genetic networks identified

in our study, we extracted the list of genes within these inter-

acting loci using Bloom et al. (2013) data (supplementary table

S5, Supplementary Material online). We used protein–protein

interactions, experimental evidence and co-expression evi-

dences in STRING database (Methods) to identify a network

of interacting genes for each environment specific genetic

network. We deduced candidate molecular networks for 5 of

the8geneticnetworks (fig.6) identified inour study, revealing

potential environment specific molecular networks that main-

tain CGV and hence regulate the phenotype (supplementary

fig. S1, Supplementary Material online). Interestingly, despite

the high environment specificity of these networks, the candi-

date genes identified are associated with central cellular pro-

cesses viz., stress response transcription factors, protein

chaperones, ribosomal biogenesis, etc. (fig. 5B and C). This

indicates that regulation of CGV may not be brought about

byspecializedsetofgenesbutcouldbeafundamentalproperty

inherent to cellular functioning. Moreover, such an approach

can be used to identify environment specificity of pleiotropic

molecular regulators. As an example, a similar genetic archi-

tecture regulating phenotypic variation was identified in two

different typesof cellular stresses, IAAandFormamide. IAA is a

planthormonethatstimulatesadhesionmediatedbyYap1and

Flo11 at lower concentrations and growth arrest at high con-

centration (Prusty et al. 2004; Spaepen and Vanderleyden

2011). On the other hand, Formamide acts as a stressor of

biomolecules by affecting hydrogen bonds and invokes a gen-

eral stress response (Hampsey 1997). Despite different known

molecular responses, identical single QTL, covariance and ge-

netic interactions (fig. 5C and D) were identified in both these

environments. We identified a significant protein–protein in-

teractionnetworkof10genesamongstthe61genespresentin

these specific genetic networks (PPI enrichment, P = 4.7 �

10�9; supplementary table S5, Supplementary Material

online). This network of proteins is enriched in ribosome path-

way (Bonferroni corrected FDR = 0.0073), specifically related

to mitochondrial regulation. These mitochondrial regulators

have not been previously associated with yeast growth in

either IAA or Formamide. Additionally, that such constitutive

ribosomal network could have potentially evolved as result of

adaptation to specific selection pressures like IAA or

Formamide. Hence, by overlaying molecular information over

genetic networks regulating CGV, we have identified possible

interactome that may have evolved in response to adaptation

to diverse stresses.

Discussion

In this paper, by identifying loci that affect mean and variance

in a diverse array of environments, we uncovered the regula-

tion of phenotypic variation beyond a relatively simplistic ad-

ditive architecture of genetic variation. We show that CGV is

ingrained in the architecture of complex traits and under-

standing its regulation can uncover the genetic networks un-

derlying the genotype–phenotype map. Our results uncover a

hierarchical regulation of phenotypic manifestation of genetic

variants where the large effect regulators buffer the effects of

cryptic variants in most environments and the variants are

FIG. 4.—Continued

the locus position in bp within brackets. For (B, C), the x-axis is normalized growth of segregants in the environment and the y-axis of number of segregants.

Dash lines in segregant distributions (B, C) indicate the means of the distributions. The biallelic locus segregant distributions (in the locus order written above

the plots) are indicated as BB (light blue), BR (light brown), RB (dark green) and RR (purple). Inset plots show the average distributions of the first locus (BY

(blue) and RM (red) alleles). See supplementary table S4, Supplementary Material online for details.
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revealed only upon a change in genetic background or under

certain environments. These specific environments, probably

determined by the adaptive history of the strains, perturb the

internal buffering mechanisms that maintain the homeostasis

between genetic and phenotypic diversity. This homeostasis is

probably the main reason behind the primarily additive archi-

tecture of complex traits such that the underlying genetic net-

works are revealed only upon its perturbation. The genetic

networks identified show two key properties. First, a single

unique genetic network is active within each environment.

FIG. 5.—Two-locus interactions identify genetic networks. (A) Two-locus interactions between various loci shown as connected links. The chrII (245,879)

locus (red) has multiple interactions (deep red) for growth in the same environment (Congo red). The chrXIV (466,590) locus (green) has 6 environment-

specific two-locus interactions (4-NQO = dark green, Formamide = deep purple, Indoleacetic acid (IAA) = light blue, Lithium chloride (LiCl) = deep orange,

Trehalose = deep yellow, Xylose = orange). Other two-locus interactions are indicated as light grey links. Genomic interaction maps made using Circos

(Krzywinski et al. 2009). See supplementary table S4, Supplementary Material online for data. (B) Scatter plots showing examples of two-locus interactions of

four loci [chrIII (191,928), chrIV (997,621), chrVIII (101,016), chrXIV (466,105)] in Indoleacetic acid (IAA). The biallelic locus segregant distributions (in the

locus order written above the plots) are indicated as BB (red), BR (yellow), RB (green), and RR (blue) on x-axis. The mean and the variance of each allelic pair

are indicated in the box with allelic pair with maximum value of variance indicated in red. The y-axis is normalized growth phenotype. (C) Schematic

representation of genetic network of four loci, indicated in (B) above, showing two-locus interactions in Indoleacetic acid. Only the genes that showed

molecular interactions are shown. The black lines indicate genetic interaction identified by two-locus analysis and purple line indicates molecular interactions

identified through STRING (Methods). (D) Schematic representation of genetic network of four loci showing two-locus interactions in Formamide. Only the

genes that showed molecular interactions are shown. The black lines indicate genetic interaction identified by two-locus analysis and purple line indicates

molecular interactions identified through STRING.
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Even though some loci are pleiotropic across environments,

the environment specific genetic networks determine their

effects in each environment. Second, each environment and

hence each network release CGV in only one direction, i.e.,

the released CGV either has a positive or a negative effect on

mean but never both.

It is possible that some of the mvQTL identified by us can be

composed of a vQTL linked to an mQTL. However, the mvQTL

distribution observed in the study was highly skewed (fig. 1D)

to be a result of such linkage. In some environments, most loci

affected only mean (mQTL) without significant effect on phe-

notypic variance, whereas in other environments most loci af-

fected both mean and variance (mvQTL), i.e., they behaved as

both mQTL and vQTL. If an mvQTL was a result of linkage

between an mQTL and a vQTL, then we would have observed

some mvQTL in most environments, with the rest loci behaving

as mQTL and vQTL. Such a clear demarcation of the presence

of mvQTL, as observed in our study, rules out presence of

linked loci affecting mean and variance independently as the

major reason of mvQTL.

Gene–environment interactions (GEI) are a fundamental

property of quantitative traits, such that all loci show environ-

ment dependence, albeit to different degrees (Mackay 2001).

Whereas such an environmental dependence could be due to

multiple reasons, our results indicate thatdifferential regulation

of CGV is a major contributor to GEI. Small effect GEI can arise

if genetic variants are buffered in one environment such that

they have no or small effects in that environments and revealed

in the other environments thereby resulting in environment

specific phenotypic effects. This explains the abundant small

effect GEI observed previously (Mackay 2001; Yadav et al.

2015). This has implications towards understanding the envi-

ronmental influence on phenotype, especially to explain the

increasing rate of identification of trade-offs in various traits. In

our previous paper (Yadav et al. 2015), we show that the en-

vironments like different carbon sources showed less trade-off

among themselves than with other forms of stresses. In this

paper, we show that a potential reason behind that could be

buffered CGV in different carbon sources compared with stres-

ses. Furthermore, we demonstrate how large scale GEI, espe-

cially antagonistic pleiotropy, could be due to differential

association between mean and variance in various environ-

ments (fig. 3B). We believe that this can explain the increasing

identification of antagonistic effects in various disease causing

alleles (Carter and Nguyen 2011). Our study indicates that the

trade-off of causal loci could be a result of differential buffering

of CGV in different populations. This CGV is increasingly being

uncovered due to population admixture and diverse lifestyles

and can be a significant contributor to increasing incidence of

modern complex diseases (Gibson and Reed 2008).

Environment is the primary determinant of the regulation

of CGV such that it is released in only one direction in a par-

ticular environment. Even though other studies have focused

on a few environments or phenotypes, we observed a similar
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FIG. 6.—Genetic networks identified in diverse environments. (A) Examples of specific genetic networks identified in different environments using two-

locus interaction mapping. Pleiotropic loci identified through covariance mapping (see fig. 3B) are highlighted as nodes with black outlines. See supple-

mentary table S4, Supplementary Material online for details.
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“directionality” of the released CGV in them, for example in

studies interrogating the effects of Hsp90 (Jarosz et al. 2010)

and other vQTL studies (Lee et al. 2014). Our multi-environ-

ment comparison shows that this is a property conserved

across many environments. Because we show that single net-

work of genetic loci is active in each environment, this direc-

tionality can be extrapolated to be a property of the genetic

network. Multiple reasons can underlie this directional regu-

lation of the effects of genetic variants. We propose that a

genetic network, evolved for regulation of a phenotype, can

work in two ways – the maximalistic or the minimalistic ap-

proach. The maximalistic approach would be evolution of net-

works that maintain the phenotype in a default “high” state.

In this scenario, any genetic variant that results in a lower

phenotype will not have substantial effect because an excess

of “high” signal will mask its effect. As a result, such variants

will get accumulated due to lack of purifying selection on

them. Concurrently, a variant that increases the phenotype

further will get fixed and become a part of the network.

Therefore, perturbation in the buffering state of this network

will result in phenotypic manifestation of only genetic variants

that result in a poorer phenotype. The alternative, minimalistic

approach would describe a default “low” state, such that the

network maintains the phenotype in a nearly shut down state.

With the upstream signal off or minimal, the downstream

genetic variants that increase the flux will not be able to

show their effects and hence get accumulated.

Consequently, a breakdown in buffering of this network will

reveal genetic variants that increase the phenotype. This reg-

ulation may happen at various levels (transcription, translation,

or for metabolites) and can differ for different phenotypes and

environments based on evolutionary histories of the popula-

tions. We would like to note that although weak and rare, a

few loci affecting only variance without any significant effect

on mean (vQTL) were also identified in our study. We have

refrained from discussing properties of vQTL because their

small number limits the ability to make any generalized obser-

vations. However, as an extrapolation from our two-QTL re-

sults, a vQTL would result in phenotypic manifestation of

genetic variants in both directions and thus, not follow the

two approaches as described above. It is therefore possible

that different selection pressures would act on vQTL and

mvQTL and future studies in this area will crucial to under-

stand the differences in evolutionary importance of these two

types of loci.

Finally, our results form a link between the genotype–phe-

notype map identified by studying population variation and

genome-wide molecular studies. The environment specific ge-

netic networks identified in our study reflect the trait and

disease specific modular networks identified by various mo-

lecular studies. Integrating the two will help understand how

the molecular networks are modified in diverse individuals and

populations to regulate various phenotypes. Moreover, inte-

grating the information from mapping studies and molecular

studies can throw light upon the mechanistic basis of regula-

tion of CGV and evolution of various networks.

Identification of molecular networks corresponding to ge-

netic networks suggests that regulation of CGV is an integral

part of adaptation and is potentially a major force shaping

evolution of regulatory networks. We would like to highlight

that identification of such genetic and molecular networks

would not have been possible through conventional

approaches for following reasons. First, these loci could not

be identified in isogenic strains because a genetically hetero-

geneous population is required to detect differential effects on

other genetic variants. Second, our study indicates existence

of higher order genetic interactions that regulate CGV and

hence, population phenotype. Identification of these multi-

allelic higher order interactions will difficult through deletion

studies. Our results propose a high prevalence of such higher

order interactions and emphasize the need to overlap genetic

and molecular networks to comprehensively understand the

genotype–phenotype map.

We propose that studying both mean and variance hetero-

geneity can address various long-standing questions in regu-

lation of complex traits. The large effect loci identified for

various phenotypes may not be directly causal but buffer

the causal variants such that they show their effects only

under certain allelic combinations of the genetic networks.

This may explain the genetic background dependence and

differential penetrance of causal loci that result in missing her-

itability in various GWA studies (Manolio et al. 2009; Eichler

et al. 2010). Additionally, whereas molecular studies in model

systems and cell lines have identified extensive networks as-

sociated with various diseases, we do not yet understand

which of the sub-networks within these networks result in

variation in disease predisposition in humans. This limits

both disease prediction as well as identification of therapeutic

targets within these large networks. Our study demonstrates

that how studying variance heterogeneity and overlapping

identified genetic networks with known molecular net-

works has the potential to address these limitations. The

ease of yeast model allowed discovery of such genetic

networks, therefore, revisiting the already existing data-

sets of human diseases in the light of conclusions from this

study can provide better insights into mechanisms regu-

lating variation in human diseases.

Supplementary Material

Supplementary tables S1–S5, figure S1, and file S1 are avail-

able at Genome Biology and Evolution online (http://

www.gbe.oxfordjournals.org/).
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