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Background and Aims: The aim of this study was to apply machine learning models and
a nomogram to differentiate critically ill from non-critically ill COVID-19 pneumonia patients.

Methods: Clinical symptoms and signs, laboratory parameters, cytokine profile, and
immune cellular data of 63 COVID-19 pneumonia patients were retrospectively reviewed.
Outcomes were followed up until Mar 12, 2020. A logistic regression function (LR model),
Random Forest, and XGBoost models were developed. The performance of these models
was measured by area under receiver operating characteristic curve (AUC) analysis.

Results: Univariate analysis revealed that there was a difference between critically and
non-critically ill patients with respect to levels of interleukin-6, interleukin-10, T cells,
CD4+ T, and CD8+ T cells. Interleukin-10 with an AUC of 0.86 was most useful predictor of
critically ill patients with COVID-19 pneumonia. Ten variables (respiratory rate, neutrophil
counts, aspartate transaminase, albumin, serum procalcitonin, D-dimer and B-type
natriuretic peptide, CD4+ T cells, interleukin-6 and interleukin-10) were used as
candidate predictors for LR model, Random Forest (RF) and XGBoost model
application. The coefficients from LR model were utilized to build a nomogram. RF and
XGBoost methods suggested that Interleukin-10 and interleukin-6 were the most
important variables for severity of illness prediction. The mean AUC for LR, RF, and
XGBoost model were 0.91, 0.89, and 0.93 respectively (in two-fold cross-validation).
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Individualized prediction by XGBoost model was explained by local interpretable model-
agnostic explanations (LIME) plot.

Conclusions: XGBoost exhibited the highest discriminatory performance for prediction
of critically ill patients with COVID-19 pneumonia. It is inferred that the nomogram and
visualized interpretation with LIME plot could be useful in the clinical setting.
Additionally, interleukin-10 could serve as a useful predictor of critically ill patients
with COVID-19 pneumonia.
Keywords: COVID-19, infection, pneumonia, severity, critically ill, predictor, machine learning
HIGHLIGHTS

1. XGBoost exhibited the highest discriminatory performance
for prediction of critically ill patients with COVID-19
pneumonia.

2. The nomogram and visualized interpretation with LIME plot
could be useful in the clinical setting.

3. Interleukin-10 is a useful predictor of critically ill patients
with COVID-19 pneumonia.
INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a newly recognized
illness, caused by the highly contagious severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) and spread rapidly
around the world in the last two years (Hong et al., 2021). As
of February 28, 2022 (based on the WHO statistics), over 430
million confirmed cases and over 5.7 million deaths have been
recorded (2022). COVID-19 causes a spectrum of symptoms
ranging from mild to severe pneumonia as well as asymptomatic
cases. Our previous study indicated that 34.9% patients with viral
pneumonia would develop critical illness, and required
admission to the ICU. They either had a fraction of inspired
oxygen (FiO2) value of at least 60% or more during
hospitalization and required mechanical ventilation (Hong
et al., 2021). Delayed presentation of symptoms increases the
risk of mortality and need for high-intensity healthcare (Suliman
et al., 2021). The 28-day mortality span was reported for 61.5% of
critically ill patients, with an average interval of 7 days between
ICU admission to death in Wuhan, China (Yang et al., 2020).
Early identification of critical illness grants an opportunity for
timely intervention and thus, prevent more complicated,
protracted and less successful hospital admissions (Suliman
et al., 2021).

Anurag et al. validated the Pneumonia Severity Index (PSI)/
PORT, Confusion, Respiratory rate, Blood pressure, 65 years of
age and older (CURB-65) and the Severe Community-Acquired
Pneumonia (SCAP) scoring system in COVID-19 pneumonia,
for prediction of disease severity and 14-day mortality (Anurag
and Preetam, 2021). However, in this study the severe
COVID-19 pneumonia was defined by PSI/PORT score >130,
gy | www.frontiersin.org 2
CURB-65 score ≥53 or SCAP score ≥10 (Anurag and Preetam,
2021). San et al. classified the disease severity according to the
interim guidance of the World Health Organization (San et al.,
2021). They suggested that predicting high-risk group by the
Brescia-COVID Respiratory Severity Scale (BRCSS) and quick
SOFA (qSOFA), may improve clinical outcomes in COVID-19
patients (San et al., 2021). Bats et al. defined the severity with
arterial oxygen saturation (SaO2) of less than 90% on room air or
need of ≥4 L/min oxygen therapy (O2) to obtain a SaO2 ≥94%
(Bats et al., 2021) and developed a COVID-19 severity risk score
upon hospital admission (Bats et al., 2021). By enrolling patients
both with and without pneumonia and using the definition of
severity of COVID-19 recommended by the National Health
Commission of China, Liang et al. developed a clinical risk score
to predict the occurrence of critical illness in hospitalized
patients with COVID-19 (Liang et al., 2020a). Using the same
definition of severity of COVID-19 as Liang et al. (2020a), Zhang
et al. (2020) developed a score consisting of age, WBCs,
neutrophil count, glomerular filtration rate and myoglobin, for
prediction of disease severity in COVID-19 (Zhang et al., 2020).
Nomogram is a mathematical model that allows for
individualized and evidence-based risk estimation, facilitating
management-based decision-making. Feng et al. divided patients
into three types (moderate, severe, and critical type) and reported
that a nomogram based on chest CT and clinical characteristics
could predict the disease progression in COVID-19 pneumonia
patients much earlier (Feng et al., 2020). Li reported that, by
using the definition of severity of COVID-19 recommended by
the National Health Commission of China, a nomogram
consisting of CT-based radiomics signature could be used for
predicting severe COVID-19 pneumonia (Li et al., 2021). It has
already been applied in COVID-19 to predict mortality (Ji et al.,
2020) and assess survival (Dong et al., 2021). In summary,
different studies used different definition of severity of disease
and inclusion criteria. Few included clinical and laboratory
prediction scores to identify critical illness in patients with CT
confirmed COVID-19 pneumonia.

Machine learning (ML) methods such as deep learning,
extreme gradient boosting (XGBoost) and RF focus on how
computers learn from data before being applied to real settings.
ML methods are useful for developing robust risk models and
redefining patient classes (Deo, 2015). Therefore, many
applications of ML exist (for clinical diagnosis, prediction, and
classification of patients with COVID-19) (Mottaqi et al., 2021).
April 2022 | Volume 12 | Article 819267
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Previously, Liang et al. have developed a deep learning mediated
survival Cox model for early triage of critically ill COVID-19
patients (with and without X-ray abnormality) (Liang et al.,
2020b). Deep Learning has also been used for the predictive
model for the identification of natural molecules as potential
inhibitors of SARS-CoV-2 inhibitors of main protease (Joshi
et al., 2021). The XGBoost algorithm has shown to outperform
other techniques for various sets of features, in a variety of different
settings. Yan et al. has used XGBoost algorithm to identify lactic
dehydrogenase (LDH), lymphocyte and C-reactive protein (CRP)
as predictors of the mortality of individual patients (Yan et al.,
2020).Wang et al. applied the XGBoost model to build amortality-
prediction model using clinical and laboratory data parameters for
extrapolation of in-hospital mortality in patients with COVID-19
(Wang et al., 2020b). Liu et al. developed anXGBoost-based clinical
model consisting of lymphocyte percentage, lactic dehydrogenase,
neutrophil count, and D-dimer on admission for predicting critical
illness risk inhospitalizedpatientswithCOVID-19pneumonia (Liu
et al., 2021). Ryan et al. reported that XGBoost-based algorithm is a
useful predictive tool for anticipating patient mortality in COVID-
19, pneumonia, and mechanically ventilated patients (Ryan
et al., 2020).

In addition, most of the existing scores are developed based
on only clinical and laboratory features. As the severity of
COVID-19 pneumonia is clearly associated with multifactorial
responses, the use of only clinical and laboratory features may
result in missing important information from other risk factors.
Cytokine storm plays an important role in severe COVID-19
pneumonia (Hu et al., 2021). Therefore, in most severe cases, the
prognosis can be markedly worsened by the hyperproduction of
proinflammatory cytokines, such as Interleukin-6 (IL-6) and
TNF-a, preferentially targeting lung tissue (Costela-Ruiz et al.,
2020). However, immune cells such as B Lymphocytes, T cells,
CD4+ T & CD8+ T cells, and cytokine profile (such as IL-10), are
rarely enrolled in these scores. Hence, further studies are
required for developing scoring systems for prediction of
critically ill patients with COVID-19 pneumonia (with both
cytokine profiles and immune cell data).

The first aim of this study was to develop and compare an
extreme gradient boosting (XGBoost) model, RF model, and a
conventional LR model (present as nomogram) based on clinical,
laboratory data and immune cells and cytokine profiles for
prediction of critically ill patients with COVID-19 pneumonia.
The second aim was to evaluate the role of immune cells
and cytokine profile as potential predictors of the severity of
COVID-19 pneumonia.
MATERIAL AND METHODS

Study Design, Subject Selection
and Ethics
Weconductedapost-hocanalysisof apreviously reportedretrospective
cohort study in the First Affiliated Hospital of Wenzhou
Medical University in mainland China (Hong et al., 2021).
All patients with confirmed COVID-19 pneumonia between January
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
2020 and March 2020 were eligible for inclusion in this study. A
confirmed case ofCOVID-19wasdefined as apositive result on a real-
time reverse-transcriptase–polymerase-chain-reaction (RT-PCR)
assay of nasal and pharyngeal swab specimens (Hong et al., 2021).
Exclusion criteria included lack of pneumonia and unavailability of
chest computed tomography scans.

Definition of Severity
Patients with COVID-19 pneumonia were defined as critically ill if
they were admitted to the intensive care unit (ICU) and required
mechanical ventilation or had a fraction of inspired oxygen (FiO2)
of at least 60% or more (Kumar et al., 2009; Hong et al., 2021).

Data Collection and Follow Up
The epidemiological, clinical symptoms & signs, laboratory
parameters, cytokine profile, and immune cell data on admission
were obtained using data collection forms of electronic medical
records. These data included blood chemical analysis, liver, and
renal function testing, glucose and coagulation testing, creatine
kinase, B-type natriuretic peptide, C-reaction protein,
procalcitonin, IL-2, IL-4, IL-6, IL-10, and tumor necrosis factor
(TNF)-a, B Lymphocytes, T cells, CD4+ T and CD8+ T cell count.
All patients were followed up until March 12, 2020 (Hong et al.,
2021). We used LR and machine learning models to differentiate
critically ill from non-critically ill patients with COVID-
19 pneumonia.

Statistical Analysis
There were missing values in D-dimer, B-type natriuretic peptide
levels, cytokine profiles, and immune cells. To handle this issue,
missing values were imputed using Multiple Imputations by
Chained Equations (MICE), when performing LR and ML
analysis (Royston, 2005). MICE has emerged as one of the
principal statistical approaches for dealing with missing data.
The missing values were replaced by the estimated plausible
values to create a “complete” dataset (Royston, 2005).

Categorical values were described as count and proportions and
compared by the c2 test or Fisher’s exact test (Hong et al., 2020).
According to the results of Shapiro–Wilk test, continuous values
were expressed by mean ± SD or median and Inter Quartile Range
(IQR) and compared using Student’s t-test or the Wilcoxon non-
parametric test. All the variables, found to be different between
critically ill and non-critically ill patients on univariate analysis,
underwent receiveroperatingcharacteristic (ROC)curveanalysis to
identify the valuable single index predictor of critically ill patients
with COVID-19 pneumonia. Then, only variables with the area
under the receiver operating characteristic curve (AUC) >0.7 were
used as potential predictors for critically ill patients havingCOVID-
19 pneumonia (Hong et al., 2017). In addition, an exploratory
variable importance analysis was also performed using both
XGBoost and RF method to evaluate the role of different variables
in prediction of critical illness. In XGBoost method, SHapley
Additive exPlanations (SHAP) summary plot was used to
quantify the variable importance of each variable, and SHAP
force plot was used to explain the individual predictions,
respectively (Deshmukh and Merchant, 2020). In the RF method,
the importance of each variable was subsequently measured by
April 2022 | Volume 12 | Article 819267
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calculatinghowmuchreductioneachvariable offerswhen theywere
added to the RF model using mean decreased accuracy and Gini
(Gong et al., 2020).

Risk models were developed using conventional statistical
method (forward-conditional step-wise LR), traditional machine
learning algorithm (RF), and current state-of-the-art boosting
algorithm utilized for gradient boosted decision trees (XGBoost).
An RF model is a collection of many decision tree models, each
of which is characterized by a tree-like structure (Gong et al.,
2020). A gradient boosting ML algorithm (XGBoost) was
employed for a binary classification task based on the presence
or absence of critically ill patients with COVID-19 pneumonia
(Al’aref et al., 2020).

We randomly held out two patients for individualized
prediction, the remainder number (61 patients) was used to
develop prediction models. When building and tuning prediction
models, we used two-fold cross-validation as the resampling
strategy to avoid overfitting of the model on new data. Training
set was divided into two equal-sized sub-samples inwhich one sub-
sample was taken for training and the other one for testing over all
possible permutations.Analysiswas repeated two times (folds). The
AUC was calculated for each of the two analyses, using only the
respective test data. At last, the mean AUC with 95% CI, and also
area under precision recall curve and area under precision recall
gain curve was calculated and compared (Saito and Rehmsmeier,
2015). Since the incidenceof critical illness inpatientswithCOVID-
19 pneumonia was high (34.9%), we selected the best cut-of point
(detected where the number of true positives was the highest with
sensitivity >90%). This was done by selecting a threshold value at a
point where the longest increase in the specificity of the slope
declines. The sensitivity, specificity, accuracy, as well as F-score,
which is a harmonic mean of recall and precision, were also
calculated and compared (Saito and Rehmsmeier, 2015). To
overcome the black box problem of XGBoost output and improve
its interpretability, the LIME plot was used to explain the
individualized prediction.

As for LR analysis, the conditional probabilities for stepwise
entry and removal of a factor were 0.05 and 0.06, respectively
(Hong et al., 2019). Based on the results of LR, an equation model
and nomogram were developed to predict critical illness
associated with COVID-19 pneumonia. Model calibration was
done by Hosmer–Lomeshow goodness of fit test. Odds ratios
(OR) were calculated, with 95% CI. Multicollinearity was
considered to be significant if the largest variance inflation
factor exceeded 10 (Hong et al., 2020).

A two-tailed P-value of less than 0.05 was considered
statistically significant. All statistical analyses were performed
in the R and STATA software. Data flow diagram of our study is
shown in Supplementary Figure 1.
RESULTS

Clinical Characteristics
A total of 63 hospitalized patients with confirmed COVID-19
pneumonia were enrolled in this study. Baseline clinical and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
laboratory findings of all patients on admission have been
described before (Hong et al., 2021). In summary, out of the
63 patients, 22 (34.9%) required high-flow nasal cannula or
higher-level oxygen support measures to correct hypoxemia
during their hospital stay and were classified as critically ill
patients. The remaining 41 patients were identified as non-
critically ill. The mean age of the patients was 55.9 ± 15.3
years. Among these, 41 (65.1%) patients were men. The mean
time from onset of symptoms to the hospital admission was 6.9 ±
3.7 days. The most frequent symptoms at the onset of illness were
fever and cough (98.4 and 61.94% respectively). Of the clinical
characteristics and laboratory findings, the respiratory rate,
leukocyte, neutrophil counts, levels of aspartate transaminase,
albumin, serum procalcitonin, D-dimer, and B-type natriuretic
peptide levels were useful predictors of critically ill patients with
COVID-19 pneumonia, having an AUC of more than 0.7 (Hong
et al., 2021). Most patients had increased IL-6, IL-10, and
decreased CD4+ T cells. The median values of these variables
in all patients are shown in the Table 1.

Cytokine and Immune Cells
As for the cytokine profiles and immune cells, univariate analysis
revealed that in comparison to the non-critically ill patients,
patients with critical illness had higher levels of, IL-6 and IL-10,
as well as lower levels of T cells, CD4+ T, and CD8+ T cells
(Figure 1) (Hong et al., 2021). There was no significant
difference observed among patients with respect to IL-2, IL-4,
Tumor Necrosis Factor Alpha (TNF-a), and B Lymphocytes.
Among these, the T cells (AUC: 0.72 ± 0.09), CD4+ T levels
(AUC: 0.72 ± 0.08), IL-6 (AUC: 0.85 ± 0.06), and IL-10 (AUC:
0.86 ± 0.06) were useful predictors of critically ill patients with
TABLE 1 | Baseline characteristics of studied variables in the patients (on
admission).

Characteristic Values

Median age, years (IQR) 56 ± 15
Male sex, N (%) 41 (65.1)
Respiratory rate 20 (20–23)
Laboratory findings
Leukocyte (109/L) 6.69 (4.78–11.09)
Neutrophil (109/L) 4.91 (3.1–9.07)
Aspartate transaminase, U/L 32 (25–51)
Albumin, (mg/dl) 33.2 ± 4.6
D-dimer (N = 58), mg/L 0.81 (0.5–1.18)
B-type natriuretic peptide (N = 62), pg/ml 37 (10–66)
Procalcitonin, ng/ml 0.06 (0.04–0.11)

Cytokine profile
IL-2 (N = 45), pg/ml 0.86 (0.64–1.02)
IL-4 (N = 45), pg/ml 0.77 (0.52–1.28)
IL-6 (N = 46), pg/ml 24.44 (5.24–66.9)
IL-10 (N = 45), pg/ml 7.11 (4.43–11.71)
tumor necrosis factor (TNF)-a (N = 46), pg/ml 0.24 (0.1–0.52)

Immune cells
B Lymphocytes (N = 44), (/ul) 180.5 (117.5–240.5)
T cells (N = 44), (/ul) 452.5 (282.5–653.5)
CD4+ T (N = 44), (/ul) 266 (166–387.5)
CD8+ T cells (N = 44) (/ul) 152 (93.5–266)
April 2022 | Volume
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COVID-19 pneumonia, with AUC of more than 0.7 (Figure 2)
(Hong et al., 2021).

Exploratory Variable Importance Analysis
Leukocyte and T cells were not included in further analysis
because of strong multicollinearity. Therefore, the ten variables
(respiratory rate, neutrophil counts, aspartate transaminase,
albumin, serum procalcitonin, D-dimer and B-type natriuretic
peptide, CD4+ T cells, IL-6 and IL-10) were used for machine
learning models. Based on the RF analysis, IL-10 was the most
important predictor of critical illness in patients with COVID-19
pneumonia, followed by IL-6 and serum procalcitonin
(Figure 3). SHAP summary plot revealed the relative
importance of each feature in the XGBoost analysis. IL-10,
IL-6, and CD4+ T cells were the three most important
features (Figure 4).

Development and Comparison of
Prediction Models
The same ten variables (respiratory rate, neutrophil counts,
aspartate transaminase, albumin, serum procalcitonin, D-
dimer, B-type natriuretic peptide, CD4+ T cells, IL-6 and IL-
10) were used for multivariable logistic analysis. Step-up LR
identified the following three independent variables as predictive
of critical illness in patients with COVID-19 pneumonia:
aspartate transaminase (OR = 1.03, 95% CI 1.01, 1.05, P =
0.026), B-type natriuretic peptide (OR = 1.02, 95% CI 1.01,
1.03, P = 0.011), and IL-6 (OR = 1.04, 95% CI 1.02, 1.06,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
P <0.001). An LR model was developed to predict critically ill
patients with COVID-19 pneumonia as follows: −5.25 + 0.031
aspartate transaminase (U/L) +0.016 B-type natriuretic peptide
(pg/ml) +0.046 IL-6 (pg/ml). The coefficients from LR model
were utilized to build a nomogram for the prediction of critical
illness (Figure 5). The Hosmer–Lemeshow goodness-of-fit test
FIGURE 1 | Comparison of cytokine profile and immune cells between critically and non-critically ill patients exhibiting COVID-19 pneumonia.
FIGURE 2 | Forest plot for accuracy of IL-10 and T cells in predicting critical
illness relate dto COVID-19 pneumonia. Each marker is plotted as an area
under the curve (AUC) of the receiver operating characteristic curve, with a
95% confidence interval.
April 2022 | Volume 12 | Article 819267
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was significant (P = 0.4), suggesting that our prediction model
fits the actual data well.

When we compared the predicting models in two-fold cross-
validation, the mean AUC of ROC curve analysis for LR model,
RF model, and XGBoost model for the prediction of SAP was
0.91, 0.89, and 0.93, respectively (Figure 6). The area under
precision recall curve also showed that the XGBoost model (0.82)
achieved a higher mean area under precision recall curve than
that of the LR (0.81) and RF model (0.75) (Figure 7). The area
under precision recall gain curve for XGBoost model, LR model
and RF model was 0.53, 0.49, and 0.43, respectively (Figure 8).

XGBoost model achieved a sensitivity of 90.5%, specificity of
87.5%, and diagnostic accuracy of 88.5% and F-score of 84.4%.
As a comparison, when RF and LR model achieved a similar of
sensitivity of 90.1 and 90.5%, respectively, the RF and LR model
achieved a lower specificity, diagnostic accuracy and F-
score (Table 2).
Explanation of XGBoost Model Results:
Individualized Prediction
To clarify the model prediction for individual patients, the LIME
plot shows two typical predictions made by the XGBoost model, in
which one is for critically ill and the other for non-critically ill
patients with COVID-19 pneumonia (Figure 9). The length of the
bar for each feature indicates the importance (weight) of that
FIGURE 3 | Variable importance plot using RF model for the critically ill COVID-19 pneumonia patients. IL-10 and IL-6 were the most important variables in
determining critical illness by either mean decrease accuracy or by mean decrease Gini.
FIGURE 4 | SHAP summary plot for the all the variables contributing to the
XGBoost model prediction for critically ill COVID-19 pneumonia patients. This
shows the ranking features and their impact on the model output. The
horizontal axis shows the corresponding SHAP value of the feature. A positive
SHAP value contributes to the prediction of critically ill COVID-19 pneumonia
patients and vice versa.
April 2022 | Volume 12 | Article 819267
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feature in making the prediction. A longer bar, therefore, indicates
a feature that contributes more towards or against the prediction.

For example, the first case (case 19) is a critically ill patient
that was correctly classified. This patient had a respiratory rate of
21 t/min, albumin = 32 mg/dl, Aspartate transaminase = 83 U/L,
neutrophil = 2.98 (109/L), Procalcitonin = 0.133 ng/ml, B-type
natriuretic peptide = 19 pg/ml, D-dimer = 1.88 mg/L, CD4+ T =
167/ul, IL-6 = 74.65 pg/ml, and IL-10 = 10.8 pg/ml. The high IL-
6 and decreased CD4+ T cells are the main reasons for critical
illness factors, outweighing other factors such as normal B-type
natriuretic peptide and IL-10.

The second case (case 49) is of a non-critically ill patient with
COVID-19 pneumonia classified correctly. This patient had
respiratory rate of 12 t/min, albumin = 33.7 mg/dl, Aspartate
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
transaminase = 84 U/L, neutrophil = 2.11(109/L), Procalcitonin =
0.63 ng/ml, B-type natriuretic peptide = 15 pg/ml, D-dimer = 0.72
mg/L, CD4+ T = 257/ul, IL-6 = 2.46 pg/ml, and IL-10 = 3.5 pg/ml.
The normal IL-10 and IL-6 are the main reasons for non-critical
i l lness factors , outweighing other factors such as
decreased albumin.
DISCUSSION

IL-10 can be produced by many different myeloid and lymphoid
cells, especially produced in large quantity by T helper 2 (Th2)
during COVID-19 infections (Huang et al., 2020). It serves as an
FIGURE 5 | Nomogram predicting the probability of critically ill COVID-19 related pneumonia patients. To obtain the nomogram-predicted probability, patient values
have been plotted on each axis. A vertical line to the point axis depicts attributes for each variable value. Summing the points for all variables and obtaining the sum
for the point line leads to assessment of the individual probability of critically ill COVID-19 related pneumonia patients.
FIGURE 6 | Mean receiver operator characteristic (ROC) curves for the
XGBoost, RF model, and LR model.
FIGURE 7 | Precision recall curves for the XGBoost, RF model, and LR model.
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anti-inflammatory cytokine by suppressing macrophage and
Dendritic Cells (DCs), thereby limiting T helper 1 (Th1) and T
helper 2 (Th2) effector responses (Couper et al., 2008).
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Premature excretion during a virulent infection can cause
overwhelming infection. Conversely, it may lead to severe
tissue damage when produced too late during an avirulent
infection (Couper et al., 2008). A recent study proposed that
dramatic early proinflammatory IL-10 elevation may play a
pathological role in COVID-19 severity as its pro-
inflammatory or anti-inflammatory effects that distinguish
depending on the different course of disease (Lu et al., 2021).
Increasing evidence supports the elevation of IL-10 is correlated
to the severity of COVID-19 (Han et al., 2020; Huang et al., 2020;
Wang et al., 2020a; Zhao et al., 2020; Lu et al., 2021). Our study
indicated the importance of IL-6 and 10 variables for RF
(Figure 3) and SHAP summary plot in XGBoost method
(Figure 4). Results confirm that IL-10 is the most important
variable for the prediction of critical illness in patients with
COVID-19 pneumonia. In addition, based on ROC analysis, IL-
10 (AUC = 0.86) could be a useful single predictor of critically ill
patients with COVID-19 pneumonia (Figure 2). The critically ill
patients with pneumonia caused by this virosis are those who
need high-flow nasal cannula or higher-level oxygen support
measures to correct the hypoxemia. They are always observed to
have pulmonary fibrotic changes on CT scans, ranging from
fibrosis associated with pneumonia to severe lung injury, which
results in hypoxemia (Shi et al., 2020). Several in vivo and in vitro
studies have demonstrated that IL-10 demonstrates anti-fibrotic
function in pancreatic, liver, and bleomycin-induced lung
fibrosis (Thompson et al., 1998; Demols et al., 2002;
Shamskhou et al., 2019). Therefore, it is speculated that IL-10
may play an anti-inflammatory and anti-fibrotic role for
critically ill patients with COVID-19 pneumonia.
FIGURE 8 | Precision recall gain curves for the XGBoost, RF model, and
LR model.
TABLE 2 | Diagnostic values of various models implemented for differentiating
critically ill patients with COVID-19 pneumonia.

Variable AUC Sensitivity Specificity Accuracy F-score

XGBoost model 0.93 90.5% 87.5% 88.5% 84.4%
RF model 0.89 90.1% 47.5% 62.3% 62.2%
LR model 0.91 90.5% 70.0% 78.8% 73.1%
FIGURE 9 | LIME plot explanation of two typical predictions, showing the main contributing features behind the model prediction. The length of the color bar
represents the amount of contribution from the corresponding feature.
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IL-6 is a pleiotropic cytokine secreted by myeloid cells following
immune challenge or tissue injury (Yousif et al., 2021). It has a pro-
inflammatory function but also has anti-inflammatory, pro-
resolution, and regenerative properties (Mcelvaney et al., 2021).
Production of IL-6 helps promote resistance to different pathogens
and the maintenance of tissue homeostasis, but the overproduction
causes chronic inflammatory disorders and severe
hyperinflammation (Jones and Hunter, 2021). Several studies
have reported that serum level of IL-6 is significantly elevated in
the setting of severe COVID-19 disease (Coomes and Haghbayan,
2020; Cummings et al., 2020; Huang et al., 2020; Leisman et al.,
2020). Moreover, the use of tocilizumab, a blocker of IL-6 receptor
(IL-6R), has been recommended for severe cases of COVID-19
(Huang et al., 2020; Ruan et al., 2020; Wu et al., 2020a; Angriman
et al., 2021; Galván-Román et al., 2021; Mcelvaney et al., 2021). IL-6
is also reported as one of the good predictors of progression and
severity in patients with COVID-19 (Guirao et al., 2020; Liu et al.,
2020; Broman et al., 2021; Ren et al., 2021). In addition, it is
suggested that an elevated level of IL-6 is an important predictor of
patients with severe COVID-19 needing ventilator support (Galván-
Román et al., 2021). Therefore, IL-6 may be an effective marker of
both disease severity and decision making in the clinical
management of patients. As expected, our study suggests IL-6
(OR = 1.04, 95% CI 1.02, 1.06) is independently associated with
critical illness in patients with COVID-19 pneumonia (Figure 5).

Aspartate aminotransferase (AST) is one type of
aminotransferase that mainly exists in the liver and plays a
role in the conversion of aspartate to ketoglutaric acid (Kwo
et al., 2017). AST is normally present in the cytoplasm, but it is
released into the serum after the damage of cells (Abd Rashid
et al., 2021). Therefore, it is used as a method of assessing the
liver condition. Recently, studies have reported that critically ill
patients with COVID-19 pneumonia manifest elevated AST level
(Zahedi et al., 2021). Among indicators of liver injury, elevated
AST has been connected with the highest risk of death and the
highest association with mortality (Lei et al., 2020).
Padmaprakash et al. have demonstrated that AST is a
significant predictor of COVID-19 mortality and elevated AST
level is a valid indicator of COVID-19 pneumonia severity
(Padmaprakash et al., 2022). Elevated AST levels have been
independently associated with adverse clinical outcomes in
COVID-19 patients, which includes admission to ICU, use of
invasive mechanical ventilation, and death (Yip et al., 2021). At
admission, AST has been demonstrated as an independent
predictor of COVID-19 mortality, and it is essential to monitor
AST in hospitalized patients (Ding et al., 2021). As expected, our
LR model suggested that AST (OR = 1.03, 95% CI 1.01, 1.05)
could be a predictive mark of critically ill patients with COVID-
19 pneumonia (Figure 5).

Brain natriuretic peptide (BNP) is a 32 amino acid cardiac
natriuretic peptide hormone, which is strongly upregulated in
cardiac failure and locally in the area surrounding a myocardial
infarction (Hall, 2004). Previous studies have highlighted that
COVID-19 is a complex disease, targeting many organs and it is
an independent risk factor for acute myocardial infarction,
promoting the release of BNP (Katsoularis et al., 2021).
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Emerging data suggest that cardiac injury, manifested by
cardiac biomarker elevation, is detected in sizeable COVID-19
patients and is associated with adverse outcomes and increased
mortality (Qin et al., 2020). Stefanini et al. suggested that
concomitant elevation of both BNP and troponin I serves as a
strong independent predictor of all-cause mortality (OR 3.24)
(Stefanini et al., 2020). Our study suggested that BNP (OR = 1.02,
95% CI 1.01, 1.03, P = 0.011) was independently associated with
the development of critical illness in patients with COVID-19
pneumonia (Figure 5).

CD4+ T cells are instrumental as activators of both the innate
and adaptive arms of the immune system (Ruterbusch et al.,
2020). As critical protectors from infectious diseases, they can
assist in humoral responses, indirectly activate macrophages, and
directly suppress inflammation (Miller and Mitchell, 1969;
Parish and Liew, 1972; Jandinski et al., 1976). Rydyznski et al.
have suggested that SARS-CoV-2-specific CD4+ T cells are
strongly associated with COVID-19 disease severity (Rydyznski
Moderbacher et al., 2020). Oja et al. reported that CD4+ T-cell
responses were qualitatively impaired in critically ill patients
with COVID-19 patients (Oja et al., 2020). Our study suggested
that in comparison to the non-critically ill patients, patients with
critical illness had lower levels of CD4+ T cells (Figure 1). The
SHAP summary plot by the XGBoost method suggested that the
CD4+ T cells play an important role in predicting critical
illness (Figure 4).

Nomogram is a two-dimensional graphical tool that could be
used to predict the probability of a result, consisting of several
lines arranged in proportions (Rahman et al., 2021). It
demonstrates a great superiority in quantifying the risk of
clinical events simply and intuitively (Iasonos et al., 2008; Jin
et al., 2017). It is a quantitative and practical prediction tool and
could provide clinicians with an easy-to-use method to predict
severe pneumonia in COVID-19 patients (Feng et al., 2020). Wu
established a nomogram model consisting of seven variables
(age, lymphocyte, CRP, LDH, creatine kinase, urea and calcium)
for severity risk prediction of COVID-19 pneumonia and classify
COVID-19 patients into low-risk, medium-risk, and high-risk
groups (Wu et al., 2020b). Incorporating different factors to
construct a nomogram could have different clinical values. Ding
et al. suggested that the prognosis of COVID-19 patients can be
accurately predicted by the nomogram incorporating abnormal
AST and D-bilirubin levels along with other individual signs at
admission (Ding et al., 2021). Our study suggested that a
nomogram based on LR model, consisting of IL-6, AST, and
BNP achieved an excellent AUC of 0.91 for prediction of
critically ill patients with COVID-19 pneumonia in two-fold
cross-validation (Figure 6). Compared to other studies (Wu
et al., 2020b; Ding et al., 2021), our nomogram was more simple
to calculate because only three variables were needed (Figure 5).
The point of each variable can be determined by referring
vertically to the dotted line at the bottom. The scores of each
corresponding variable have been added to calculate the total
score, and the probability of severe COVID-19 pneumonia is
predicted based on the values of the total points and lines,
corresponding to the total score.
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Compared to other ML methods, XGBoost shows resistance
to overfitting in datasets with imbalanced feature/outcome ratios
and hyperparameters, which allows tuning for imbalanced
datasets (Vaid et al., 2021). By using SHAP summary plot, the
variable importance of each variable could be quantified and
explained. SHAP values are a game-theoretic approach to model
interpretability that provide explanations of global model
structure based on combinations of local explanations for each
prediction (Vaid et al., 2021). XGBoost has been used to predict
respiratory failure within 48 h, morbidity and mortality in
patients hospitalized with COVID-19 (Pan et al., 2020;
Bolourani et al., 2021; Wang et al., 2021). AlJame et al. (2021)
used RF and XGBoost for screening COVID-19 from other
patients while Montomoli et al. (2021) has used it to predict
change in the SOFA score in a five day span for ICU admitted
COVID-19 patients. Feng et al. (2021) used RF and XGBoost for
predicting mortality in Covid-19 patients in comparison to
several other methods and found XGBoost to be the superior
ML method. Iwendi et al. (2020) reported use of RF for COVID-
19 mediated deaths with respect to gender, age and geography.
They reported more deaths in males, Wuhan population and
people aged between 20 and 70 years.

Our study suggested that, when comparing the performance of
the XGBoost model with the RF and LR models, the XGBoost
(AUC = 0.93) exhibited the highest discriminatory performance,
followed by LR (AUC = 0.91) and FR model (AUC = 0.89)
(Figure 6). The area under precision recall curve and area under
precision recall gain curve analysis showed similar results
(Figures 7, 8). XGBoost model achieved a sensitivity of 90.5%,
specificity of 87.5%, diagnostic accuracy of 88.5% and F-score of
84.4%, way higher than that of nomogram and RF models
(Table 2). ML models are sophisticated and it is hard for
clinicians to comprehend them, therefore less practiced in clinics
(Ou et al., 2020). We have provided a visual illustration of the
implemented models to help easily understand the importance of
different models and features by clinicians. The results of XGBoost
have been explained by LIME plot, which makes it easy to
understand the individualized prediction (Figure 9).

To the best of our knowledge, this is the first study in the
literature to implement and compare XGBoost, RF, and LR
model (presented as a nomogram) based on clinical, laboratory
data, immune cell and cytokine profiles for the differentiation of
critically ill from non-critically ill patients with COVID-19
pneumonia. While global measures such as accuracy are useful,
they cannot be used for explaining why a model made a specific
prediction. We used LIME plot to explain the outcome of
XGBoost model. In addition, cytokine profile and immune
cellular data were also evaluated as potential predictors for the
severity of COVID-19 pneumonia. Our study still shows
limitations and there is room for further improvement. First, it
was a retrospective study from a single center. Secondly, the
small sample size bears an intrinsic risk of over-fitting though we
used two-fold cross-validation as the resampling method to
avoid overfitting. Only patients with pneumonia were enrolled,
therefore our results may be not applicable to patients without
pneumonia. Thirdly, given that the proposed ML method is
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purely data-driven, our model may vary if applied on different
datasets (Yan et al., 2020). Our XGBoost approach needs further
model training, validation, and optimization before clinical
application because patients in this study were enrolled from a
single tertiary referral center. However, the findings are
interesting and warrant further research. In future, application
of deep learning models on our data would be interesting. Apart
from classification of patients suffering from COVID-19, our
protocol could be applied to subtype various cancers and could
be extrapolated in other viral diseases as well. Amalgamation of
more methods, deep learning and unsupervised algorithm
comparison could also be interesting. The findings could be
useful for doctors in prioritizing patient treatment and be a part
of decision support systems to obtain useful predictors and
impact clinical outcomes.

In conclusion, comparison stats showed that XGBoost had
the highest discriminatory performance for prediction of
critically ill patients with COVID-19 pneumonia. The
nomogram and visualized interpretation with LIME plot could
also be useful in the clinical setting. Additionally, we identified
that IL-10 is a useful predictor of critically ill patients with
COVID-19 pneumonia and this finding is complemented by
previously available literature as well.
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Katsoularis, I., Fonseca-Rodrıǵuez, O., Farrington, P., Lindmark, K., and Fors
Connolly, A. M. (2021). Risk of Acute Myocardial Infarction and Ischaemic
Stroke Following COVID-19 in Sweden: A Self-Controlled Case Series and
Matched Cohort Study. Lancet 398, 599–607. doi: 10.1016/S0140-6736(21)
00896-5

Kumar, A., Zarychanski, R., Pinto, R., Cook, D. J., Marshall, J., Lacroix, J., et al.
(2009). Critically Ill Patients With 2009 Influenza A(H1N1) Infection in
Canada. JAMA 302, 1872–1879. doi: 10.1001/jama.2009.1496

Kwo, P. Y., Cohen, S. M., and Lim, J. K. (2017). ACG Clinical Guideline:
Evaluation of Abnormal Liver Chemistries. Am. J. Gastroenterol. 112, 18–35.
doi: 10.1038/ajg.2016.517

Lei, F., Liu, Y. M., Zhou, F., Qin, J. J., Zhang, P., Zhu, L., et al. (2020). Longitudinal
Association Between Markers of Liver Injury and Mortality in COVID-19 in
China. Hepatology 72, 389–398. doi: 10.1002/hep.31301

Leisman, D. E., Ronner, L., Pinotti, R., Taylor, M. D., Sinha, P., Calfee, C. S., et al.
(2020). Cytokine Elevation in Severe and Critical COVID-19: A Rapid
Systematic Review, Meta-Analysis, and Comparison With Other
Inflammatory Syndromes. Lancet Respir. Med. 8, 1233–1244. doi: 10.1016/
S2213-2600(20)30404-5

Liang, W., Liang, H., Ou, L., Chen, B., Chen, A., Li, C., et al. (2020a). Development
and Validation of a Clinical Risk Score to Predict the Occurrence of Critical
Illness in Hospitalized Patients With COVID-19. JAMA Intern. Med. 180,
1081–1089. doi: 10.1001/jamainternmed.2020.2033

Liang, W., Yao, J., Chen, A., Lv, Q., Zanin, M., Liu, J., et al. (2020b). Early Triage of
Critically Ill COVID-19 Patients Using Deep Learning. Nat. Commun. 11,
3543. doi: 10.1038/s41467-020-17280-8

Liu, F., Li, L., Xu, M., Wu, J., Luo, D., Zhu, Y., et al. (2020). Prognostic Value of
Interleukin-6, C-Reactive Protein, and Procalcitonin in Patients With COVID-
19. J. Clin. Virol. 127, 104370. doi: 10.1016/j.jcv.2020.104370

Liu, Q., Pang, B., Li, H., Zhang, B., Liu, Y., Lai, L., et al. (2021). Machine Learning
Models for Predicting Critical Illness Risk in Hospitalized Patients With COVID-
19 Pneumonia. J. Thorac. Dis. 13, 1215–1229. doi: 10.21037/jtd-20-2580

Li, L., Wang, L., Zeng, F., Peng, G., Ke, Z., Liu, H., et al. (2021). Development and
Multicenter Validation of a CT-Based Radiomics Signature for Predicting
Severe COVID-19 Pneumonia. Eur. Radiol. 31, 7901–7912. doi: 10.1007/
s00330-021-07727-x

Lu, L., Zhang, H., Dauphars, D., and He, Y. (2021). A Potential Role of Interleukin
10 in COVID-19 Pathogenesis. Trends Immunol. 42, 3–5. doi: 10.1016/
j.it.2020.10.012

Mcelvaney, O., Curley, G., Rose-John, S., and Mcelvaney, N. (2021). Interleukin-6:
Obstacles to Targeting a Complex Cytokine in Critical Illness. Lancet Respir.
Med. 9, 643–654. doi: 10.1016/S2213-2600(21)00103-X
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
Miller, J. F., and Mitchell, G. F. (1969). Thymus and Antigen-Reactive Cells.
Transplant. Rev. 1, 3–42. doi: 10.1111/j.1600-065X.1969.tb00135.x

Montomoli, J., Romeo, L., Moccia, S., Bernardini, M., Migliorelli, L., Berardini, D.,
et al. (2021). Machine Learning Using the Extreme Gradient Boosting
(XGBoost) Algorithm Predicts 5-Day Delta of SOFA Score at ICU
Admission in COVID-19 Patients. J. Intensive Med. 1, 110–116. doi:
10.1016/j.jointm.2021.09.002

Mottaqi, M. S., Mohammadipanah, F., and Sajedi, H. (2021). Contribution of
Machine Learning Approaches in Response to SARS-CoV-2 Infection. Inform.
Med. Unlocked 23, 100526. doi: 10.1016/j.imu.2021.100526

Oja, A. E., Saris, A., Ghandour, C. A., Kragten, N., Hogema, B. M., Nossent, E. J.,
et al. (2020). Divergent SARS-CoV-2-Specific T- and B-Cell Responses in
Severe But Not Mild COVID-19 Patients. Eur. J. Immunol. 50, 1998–2012. doi:
10.1002/eji.202048908

Ou, C., Liu, J., Qian, Y., Chong, W., Zhang, X., Liu, W., et al. (2020). Rupture Risk
Assessment for Cerebral Aneurysm Using Interpretable Machine Learning on
Multidimensional Data. Front. Neurol. 11, 570181. doi: 10.3389/fneur.
2020.570181

Padmaprakash, K. V., Thareja, S., Raman, N., Sowmya Karantha, C.,
Muthukrishnan, J., and Vardhan, V. (2022). Does Transaminitis Predict
Severity and Mortality in COVID 19 Patients?. J. Clin. Exp. Hepatol. doi:
10.1016/j.jceh.2022.01.004

Pan, P., Li, Y., Xiao, Y., Han, B., Su, L., Su, M., et al. (2020). Prognostic Assessment
of COVID-19 in the Intensive Care Unit byMachine Learning Methods: Model
Development and Validation. J. Med. Internet Res. 22, e23128. doi: 10.2196/
23128

Parish, C. R., and Liew, F. Y. (1972). Immune Response to Chemically Modified
Flagellin. 3. Enhanced Cell-Mediated Immunity During High and Low Zone
Antibody Tolerance to Flagellin. J. Exp. Med. 135, 298–311. doi: 10.1084/
jem.135.2.298

Qin, J., Cheng, X., Zhou, F., Lei, F., Akolkar, G., Cai, J., et al. (2020). Redefining
Cardiac Biomarkers in Predicting Mortality of Inpatients With COVID-19.
Hyper tens . (Da l la s Tex 1979) 76 , 1104–1112 . do i : 10 .1161/
HYPERTENSIONAHA.120.15528

Rahman, T., Khandakar, A., Hoque, M. E., Ibtehaz, N., Kashem, S. B., Masud, R.,
et al. (2021). Development and Validation of an Early Scoring System for
Prediction of Disease Severity in COVID-19 Using Complete Blood Count
Parameters. IEEE Access 9, 120422–120441. doi: 10.1109/ACCESS.
2021.3105321

Ren, X., Wang, X., Ge, Z., Cui, S., and Chen, Z. (2021). Clinical Features and
Corresponding Immune Function Status of Recurrent Viral Polymerase Chain
Reaction Positivity in Patients With COVID-19 : A Meta- Analysis and
Sy s t ema t i c Rev i ew . I n t . J . Immunopa tho l . Pha rmaco l . 35 ,
20587384211027679. doi: 10.1177/20587384211027679

Royston, P. (2005). Multiple Imputation of Missing Values: Update of Ice. Stata J.
5, 527–536. doi: 10.1177/1536867X0500500404

Ruan, Q., Yang, K., Wang, W., Jiang, L., and Song, J. (2020). Clinical Predictors of
Mortality Due to COVID-19 Based on an Analysis of Data of 150 Patients
From Wuhan, China. Intensive Care Med. 46, 846–848. doi: 10.1007/s00134-
020-05991-x

Ruterbusch, M., Pruner, K. B., Shehata, L., and Pepper, M. (2020). In Vivo CD4(+)
T Cell Differentiation and Function: Revisiting the Th1/Th2 Paradigm. Annu.
Rev. Immunol. 38, 705–725. doi: 10.1146/annurev-immunol-103019-085803

Ryan, L., Lam, C., Mataraso, S., Allen, A., Green-Saxena, A., Pellegrini, E., et al.
(2020). Mortality Prediction Model for the Triage of COVID-19, Pneumonia,
and Mechanically Ventilated ICU Patients: A Retrospective Study. Ann. Med.
Surg. (Lond.) 59, 207–216. doi: 10.1016/j.amsu.2020.09.044

Rydyznski Moderbacher, C., Ramirez, S. I., Dan, J. M., Grifoni, A., Hastie, K. M.,
Weiskopf, D., et al. (2020). Antigen-Specific Adaptive Immunity to SARS-
CoV-2 in Acute COVID-19 and Associations With Age and Disease Severity.
Cell 183, 996–1012.e1019. doi: 10.1016/j.cell.2020.09.038

Saito, T., and Rehmsmeier, M. (2015). The Precision-Recall Plot is More Informative
Than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets.
PloS One 10, e0118432. doi: 10.1371/journal.pone.0118432

San, I., Gemcioglu, E., Baser, S., Yilmaz Cakmak, N., Erden, A., Izdes, S., et al.
(2021). Brescia-COVID Respiratory Severity Scale (BRCSS) and Quick SOFA
(qSOFA) Score are Most Useful in Showing Severity in COVID-19 Patients.
Sci. Rep. 11, 21807. doi: 10.1038/s41598-021-01181-x
April 2022 | Volume 12 | Article 819267

https://doi.org/10.1002/jmv.26232
https://doi.org/10.1200/JCO.2007.12.9791
https://doi.org/10.3389/fpubh.2020.00357
https://doi.org/10.1084/jem.143.6.1382
https://doi.org/10.1016/j.jtcvs.2016.10.019
https://doi.org/10.1093/cid/ciaa414
https://doi.org/10.1038/s41577-021-00553-8
https://doi.org/10.1080/07391102.2020.1802341
https://doi.org/10.1016/S0140-6736(21)00896-5
https://doi.org/10.1016/S0140-6736(21)00896-5
https://doi.org/10.1001/jama.2009.1496
https://doi.org/10.1038/ajg.2016.517
https://doi.org/10.1002/hep.31301
https://doi.org/10.1016/S2213-2600(20)30404-5
https://doi.org/10.1016/S2213-2600(20)30404-5
https://doi.org/10.1001/jamainternmed.2020.2033
https://doi.org/10.1038/s41467-020-17280-8
https://doi.org/10.1016/j.jcv.2020.104370
https://doi.org/10.21037/jtd-20-2580
https://doi.org/10.1007/s00330-021-07727-x
https://doi.org/10.1007/s00330-021-07727-x
https://doi.org/10.1016/j.it.2020.10.012
https://doi.org/10.1016/j.it.2020.10.012
https://doi.org/10.1016/S2213-2600(21)00103-X
https://doi.org/10.1111/j.1600-065X.1969.tb00135.x
https://doi.org/10.1016/j.jointm.2021.09.002
https://doi.org/10.1016/j.imu.2021.100526
https://doi.org/10.1002/eji.202048908
https://doi.org/10.3389/fneur.2020.570181
https://doi.org/10.3389/fneur.2020.570181
https://doi.org/10.1016/j.jceh.2022.01.004
https://doi.org/10.2196/23128
https://doi.org/10.2196/23128
https://doi.org/10.1084/jem.135.2.298
https://doi.org/10.1084/jem.135.2.298
https://doi.org/10.1161/HYPERTENSIONAHA.120.15528
https://doi.org/10.1161/HYPERTENSIONAHA.120.15528
https://doi.org/10.1109/ACCESS.2021.3105321
https://doi.org/10.1109/ACCESS.2021.3105321
https://doi.org/10.1177/20587384211027679
https://doi.org/10.1177/1536867X0500500404
https://doi.org/10.1007/s00134-020-05991-x
https://doi.org/10.1007/s00134-020-05991-x
https://doi.org/10.1146/annurev-immunol-103019-085803
https://doi.org/10.1016/j.amsu.2020.09.044
https://doi.org/10.1016/j.cell.2020.09.038
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1038/s41598-021-01181-x
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Hong et al. Charting COVID-19 Severity
Shamskhou, E. A., Kratochvil, M. J., Orcholski, M. E., Nagy, N., Kaber, G., Steen,
E., et al. (2019). Hydrogel-Based Delivery of Il-10 Improves Treatment of
Bleomycin-Induced Lung Fibrosis in Mice. Biomaterials 203, 52–62. doi:
10.1016/j.biomaterials.2019.02.017

Shi, H., Han, X., Jiang, N., Cao, Y., Alwalid, O., Gu, J., et al. (2020). Radiological
Findings From 81 Patients With COVID-19 Pneumonia in Wuhan, China: A
Descriptive Study. Lancet Infect. Dis. 20, 425–434. doi: 10.1016/S1473-3099
(20)30086-4

Stefanini, G. G., Chiarito, M., Ferrante, G., Cannata, F., Azzolini, E., Viggiani, G.,
et al. (2020). Early Detection of Elevated Cardiac Biomarkers to Optimise Risk
Stratification in Patients With COVID-19.Heart 106, 1512–1518. doi: 10.1136/
heartjnl-2020-317322

Suliman, L. A., Abdelgawad, T. T., Farrag, N. S., and Abdelwahab, H. W. (2021).
Validity of ROX Index in Prediction of Risk of Intubation in Patients With
COVID-19 Pneumonia. Adv. Respir. Med. 89, 1–7. doi: 10.5603/
ARM.a2020.0176

Thompson, K., Maltby, J., Fallowfield, J., Mcaulay, M., Millward-Sadler, H., and
Sheron, N. (1998). Interleukin-10 Expression and Function in Experimental
Murine Liver Inflammation and Fibrosis. Hepatology 28, 1597–1606. doi:
10.1002/hep.510280620

Vaid, A., Chan, L., Chaudhary, K., Jaladanki, S. K., Paranjpe, I., Russak, A., et al.
(2021). Predictive Approaches for Acute Dialysis Requirement and Death in
COVID-19. Clin. J. Am. Soc. Nephrol. 16, 1158–1168. doi: 10.2215/
CJN.17311120

Wang, F., Hou, H., Luo, Y., Tang, G., Wu, S., Huang, M., et al. (2020a). The
Laboratory Tests and Host Immunity of COVID-19 Patients With Different
Severity of Illness. JCI Insight 5 (10), e137799. doi: 10.1172/jci.insight.137799

Wang, J., Liu, W., Chen, X., Mcrae, M., Mcdevitt, J., and Fenyö, D. (2021).
Predictive Modeling of Morbidity and Mortality in Patients Hospitalized With
COVID-19 and its Clinical Implications: Algorithm Development and
Interpretation. J. Med. Internet Res. 23, e29514. doi: 10.2196/29514

Wang, K., Zuo, P., Liu, Y., Zhang, M., Zhao, X., Xie, S., et al. (2020b). Clinical and
Laboratory Predictors of In-Hospital Mortality in Patients With Coronavirus
Disease-2019: A Cohort Study in Wuhan, China. Clin. Infect. Dis. 71, 2079–
2088. doi: 10.1093/cid/ciaa538

Wu, C., Chen, X., Cai, Y., Xia, J., Zhou, X., Xu, S., et al. (2020a). Risk Factors
Associated With Acute Respiratory Distress Syndrome and Death in Patients
With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern.
Med. 180, 934–943. doi: 10.1001/jamainternmed.2020.0994

Wu, G., Yang, P., Xie, Y., Woodruff, H. C., Rao, X., Guiot, J., et al. (2020b).
Development of a Clinical Decision Support System for Severity Risk
Prediction and Triage of COVID-19 Patients at Hospital Admission: An
International Multicentre Study. Eur. Respir. J. 56 (2), 2001104. doi: 10.1183/
13993003.01104-2020
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
Yang, X., Yu, Y., Xu, J., Shu, H., Xia, J., Liu, H., et al. (2020). Clinical Course and
Outcomes of Critically Ill Patients With SARS-CoV-2 Pneumonia in Wuhan,
China: A Single-Centered, Retrospective, Observational Study. Lancet Respir.
Med. 8, 475–481. doi: 10.1016/S2213-2600(20)30079-5

Yan, L., Zhang, H.-T., Goncalves, J., Xiao, Y., Wang, M., Guo, Y., et al. (2020). An
Interpretable Mortality Prediction Model for COVID-19 Patients. Nat. Mach.
Intell. 2, 283–288. doi: 10.1038/s42256-020-0180-7

Yip, T. C., Lui, G. C., Wong, V. W., Chow, V. C., Ho, T. H., Li, T. C., et al. (2021).
Liver Injury is Independently Associated With Adverse Clinical Outcomes in
Patients With COVID-19. Gut 70, 733–742. doi: 10.1136/gutjnl-2020-321726

Yousif, A. S., Ronsard, L., Shah, P., Omatsu, T., Sangesland, M., Bracamonte
Moreno, T., et al. (2021). The Persistence of Interleukin-6 is Regulated by a
Blood Buffer System Derived From Dendritic Cells. Immunity 54, 235–246.
e235. doi: 10.1016/j.immuni.2020.12.001

Zahedi, M., Yousefi, M., Abounoori, M., Malekan, M., Tajik, F., Heydari, K., et al.
(2021). The Interrelationship Between Liver Function Test and the
Coronavirus Disease 2019: A Systematic Review and Meta-Analysis. Iran J.
Med. Sci. 46, 237–255. doi: 10.30476/ijms.2021.87555.1793

Zhang, C., Qin, L., Li, K., Wang, Q., Zhao, Y., Xu, B., et al. (2020). A Novel Scoring
System for Prediction of Disease Severity in COVID-19. Front. Cell Infect.
Microbiol. 10, 318. doi: 10.3389/fcimb.2020.00318

Zhao, Y., Qin, L., Zhang, P., Li, K., Liang, L., Sun, J., et al. (2020). Longitudinal
COVID-19 Profiling Associates IL-1RA and IL-10 With Disease Severity and
RANTES With Mild Disease. JCI Insight 5 (13), e139834. doi: 10.1172/
jci.insight.139834
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Hong, Zhou, Jin, Lu, Pan, Lin, Yang, Xu, Basharat, Zippi, Fiorino,
Tsukanov, Stock, Grottesi, Chen and Pan. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication in
this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.
April 2022 | Volume 12 | Article 819267

https://doi.org/10.1016/j.biomaterials.2019.02.017
https://doi.org/10.1016/S1473-3099(20)30086-4
https://doi.org/10.1016/S1473-3099(20)30086-4
https://doi.org/10.1136/heartjnl-2020-317322
https://doi.org/10.1136/heartjnl-2020-317322
https://doi.org/10.5603/ARM.a2020.0176
https://doi.org/10.5603/ARM.a2020.0176
https://doi.org/10.1002/hep.510280620
https://doi.org/10.2215/CJN.17311120
https://doi.org/10.2215/CJN.17311120
https://doi.org/10.1172/jci.insight.137799
https://doi.org/10.2196/29514
https://doi.org/10.1093/cid/ciaa538
https://doi.org/10.1001/jamainternmed.2020.0994
https://doi.org/10.1183/13993003.01104-2020
https://doi.org/10.1183/13993003.01104-2020
https://doi.org/10.1016/S2213-2600(20)30079-5
https://doi.org/10.1038/s42256-020-0180-7
https://doi.org/10.1136/gutjnl-2020-321726
https://doi.org/10.1016/j.immuni.2020.12.001
https://doi.org/10.30476/ijms.2021.87555.1793
https://doi.org/10.3389/fcimb.2020.00318
https://doi.org/10.1172/jci.insight.139834
https://doi.org/10.1172/jci.insight.139834
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles

	A Comparison of XGBoost, Random Forest, and Nomograph for the Prediction of Disease Severity in Patients With COVID-19 Pneumonia: Implications of Cytokine and Immune Cell Profile
	Highlights
	Introduction
	Material and Methods
	Study Design, Subject Selection and Ethics
	Definition of Severity
	Data Collection and Follow Up
	Statistical Analysis

	Results
	Clinical Characteristics
	Cytokine and Immune Cells
	Exploratory Variable Importance Analysis
	Development and Comparison of Prediction Models
	Explanation of XGBoost Model Results: Individualized Prediction

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


