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Mid-lateral cerebellar complex spikes encode
multiple independent reward-related signals during
reinforcement learning

Naveen Sendhilnathan® 234°% Anna Ipata?3%°> & Michael E. Goldberg® 234267

Although the cerebellum has been implicated in simple reward-based learning recently, the
role of complex spikes (CS) and simple spikes (SS), their interaction and their relationship to
complex reinforcement learning and decision making is still unclear. Here we show that in a
context where a non-human primate learned to make novel visuomotor associations, clas-
sifying CS responses based on their SS properties revealed distinct cell-type specific encoding
of the probability of failure after the stimulus onset and the non-human primate’s decision. In
a different context, CS from the same cerebellar area also responded in a cell-type and
learning independent manner to the stimulus that signaled the beginning of the trial. Both
types of CS signals were independent of changes in any motor kinematics and were unlikely
to instruct the concurrent SS activity through an error based mechanism, suggesting the
presence of context dependent, flexible, multiple independent channels of neural encoding by
CS and SS. This diversity in neural information encoding in the mid-lateral cerebellum,
depending on the context and learning state, is well suited to promote exploration and
acquisition of wide range of cognitive behaviors that entail flexible stimulus-action-reward
relationships but not necessarily motor learning.
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ARTICLE

he cerebellum has been classically considered to be a center

for supervised motor learning in the brain, where the pre-

dicted results of movement are compared with the animal’s
actual performance, in order to correct the errors in the action that
led to the mismatch!-4. The cerebellar cortex has been posited to
achieve this via its two distinct types of inputs to its principle output
cells, the Purkinje cells (P-cells). First, the mossy fibers, relayed
through the parallel fibers of the granule cells, contain a number of
sensory and efference copy signals, which are read out as high
frequency simple spikes (SS)°. Second, the climbing fibers arising
from the inferior olive (IO), which evoke complex spikes (CS),
signal unexpected events or errors to facilitate learning®. The pre-
cisely timed relationship between the coincidence of CS and SS
causes synaptic plasticity at the granule cell->P-cell synapse, thereby
effecting learning. One such mechanism is long-term depression
(LTD)!47. This flow of information and circuitry explains many
simple motor learning behaviors: connections that led to erroneous
and undesirable behavior could be carefully pruned by the
instructions provided by the CS.

However, motor learning and optimization do not always entail
CS activity providing a teaching signal for SS responses®-10. Fur-
thermore, recent evidence suggest that cerebellar activity is corre-
lated with aspects of behavior that do not involve correcting the
kinematics of movement: for example classical conditioning!!, sti-
mulus prediction!?13, and the magnitude of predicted reward!1>.
The cerebellum’s role in these aspects of reward-related learning
behavior cannot be readily explained by the present classical error-
based learning models, nor do they necessarily entail CS activity
affecting SS responses!# by an LTD mechanism. This is because, in
reward-based learning, rather than pruning connections that led to
erroneous behavior, the brain must strengthen connections that
would lead to the preferred behaviorl®.

When the non-human primates learn to associate arbitrary
visual symbols with hand movement choices, the SS encode a
reinforcement error signal during learning, which gradually
diminishes through learning, and disappears once the learning is
completed!”. This error signal, which could contribute significantly
to reinforcement learning!®, is encoded as the difference in SS
activity between recent correct and wrong outcomes of P-cells!”.
However, (a) the role of concurrent CS activity, (b) the interaction
between SS and CS, and (c) their relationship to complex rein-
forcement learning and decision making are all still unknown.
Here, we show that while the SS carry a reinforcement learning
signal, which has information about the outcome of the animal’s
most recent decision, the concurrent CS do not carry such infor-
mation nor do they instruct a change in SS’s activity. Instead, the
CS encoded two different signals: first, a response to the beginning
of the trial that may have predicted the possibility of reward given
successful performance of the task, independent of both the state of
reinforcement learning and the cell type. Second, a cell type and
learning-state-specific learning response that occurred after two
specific events: the symbol onset and the animal’s decision,
describing the general probability of failure but not the actual
outcome of the prior or current trial. Neither of these types of
signals correlated with any changes in the motor kinematics.

These results show that although the mid-lateral cerebellum
contributes to reinforcement learning!8, the mechanism by which
this learning occurs does not require CS-induced changes at the
parallel fiber-P-cell synapse through an error-based mechanism.
Rather, CS and SS form two independent channels of informa-
tion, both encoding different aspects of reward-based learning
depending on the context. Such differences in neural information
encoding in the mid-lateral cerebellum and their complex inter-
play depending on the context and learning state may promote
exploration and acquisition of wide range of cognitive behaviors
that entail flexible stimulus-action-reward relationships.

Results

Two non-human primates performed a two-alternative forced-
choice discrimination task where, in each session, they associated
one of two visual symbols with a left-hand movement and the
other visual symbol with a right-hand movement!”. They grabbed
the two bars, each with one hand to initiate the trial. A small
square (cuel) appeared on the top-left corner of the screen briefly
(see Methods). After a fixed duration (523 ms), cuel reappeared
in the same position, along with another cue (cue2) at the center
of the screen. Again, after a fixed duration (800 ms), one of the
two symbols briefly appeared on the screen and they released the
hand associated with that symbol, as soon as possible, with a well-
learned stereotypic hand movement to earn a liquid reward
(delivered 1ms after correct movement onset) (Fig. 1a). The
kinematics or the dynamics of hand movement were task irrele-
vant and only the choice of hands used to release the bars
(associated with the symbols) merited reward. The animals
usually performed ~30 trials of an overtrained (OT) association at
the beginning of each session. Then, we presented them with two
novel symbols that they learned to associate with specific choices
(hand releases), through trial and error. They typically achieved
criterion for learning (see Methods) in ~50-70 trials on an
average through an adaptive learning mechanism (Fig. 1b). Their
reaction time was high during early learning and decreased sig-
nificantly through learning (Fig. 1b). The animals were free to
move their eyes and thus occasionally made task-irrelevant eye
movements.

Here we analyzed the CS activity P-cells recorded in Crus I and II
of the non-human primate cerebellum whose SS activity we pre-
viously reported!” (see Methods). We identified P-cells by the
presence of CS online (Fig. 1c), and offline by the (i) spike wave-
forms (Fig. 1d), (ii) the SS and CS interspike interval distribution
(Fig. 1d), and (jii) a pause in SS after a CS (Fig. 1d, )!°. The CS
fired at a very low firing rate, and in a minority of trials, consistent
with prior reports?®2! (Fig. 1f), although they varied in number of
spikelets and duration?! (Fig. 1g). We only analyzed activity from
those cells (n=25) with reliably detected CS that were stable
throughout the entire recording (see Methods; Fig. 1h, i).

P-cell response characteristics during the overtrained task.
During the OT condition, the SS activity significantly changed
from the baseline only during the hand movement (Fig. 1j). In
contrast, there were significant changes in CS responses in three
epochs: after the cuel onset (cuel epoch), after the symbol onset
(symbol epoch), and after the animal’s decision (reward epoch)
(Fig. 1k; see Methods). The majority of the cells responded in
more than one epoch (Supplementary Table S1). The CS
responses in any of the three epochs could not be explained by
any obvious changes in motor kinematics, such as movement of
the responding hand (Fig. 11), the non-responding hand
(Fig. 1m), licking (Fig. 1n), or eye movements (Fig. 10).

The CS responded only in about 20% of trials in the cuel
epoch, 21% of trials in the symbol epoch, and in 19% of trials in
the reward epoch (Supplementary Fig. Sla). Furthermore, we did
not see any modulation in CS waveform duration among these
three epochs (Supplementary Fig. S1b). The CS responses in the
symbol epoch and during hand movement were not selective for
the symbol (Supplementary Fig. S2a) or the choice of hand
respectively (Supplementary Fig. S2b).

CS activity after symbol onset was cell type specific and
learning dependent. The mid-lateral cerebellar P-cell SS encode a
reinforcement error signal when animals learn a new visuomotor
association, by reporting the outcome of the most recent decision
in short epochs called “delta epochs” in a manner entirely
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Fig. 1 Experimental task, behavior, and cerebellar electrophysiology. a Schematic of a trial structure of the task. b Mean learning curve (top) and mean
reaction time (bottom) from all sessions. n =25 sessions. ¢ Two representative raw neural signals from non-human primate B (top) and non-human
primate S (bottom) highlighting the CS in pink. d Top panel: left: mean SS and CS waveforms from the cell shown in top panel of €. Middle: distribution of
SS and CS interspike intervals (ISI) for the same cell. Right: conditional probabilities of spike timings. Bottom panel: same as the top panel but for cell shown
bottom panel of c. @ Average conditional probabilities of spike timings from all P-cells. n = 25 P-cells. f Population CS rate histogram. n =25 P-cells. g Six
representative CS waveforms from different P-cells showing the diversity in duration of CS and number of spikelet. h CS and SS waveforms from a
representative recording at the beginning and end of recording. i Correlation of CS waveforms (left) and SS waveforms (right) between the beginning and
the end of recording for each neuron used in this study. Correlations close to one indicates stability of recorded waveforms through time. n =25 P-cells. j
Mean spike density function of population SS responses in the OT condition. Blue shaded region indicates the cue epoch, orange, symbol epoch and yellow,
reward epoch. n = 25 P-cells. k Mean spike density function of population CS responses in the OT condition. n = 25 P-cells. | Mean horizontal (gray) and
vertical (black) positions of the responding hand. n =25 sessions. m Mean horizontal (gray) and vertical (black) positions of the non-responding hand.
n =25 sessions. n Mean licking activity. n =25 sessions. 0 Mean horizontal (gray) and vertical (black) eye positions. n =25 sessions. Data shown as
mean £ s.e.m. Source data are provided as a Source Data file.

independent of the kinematics of the movement with which the across all learning conditions that is, OT, Lpeg, Linigs and Leng;
animal made the response, or the various sensory events asso-  Fig. 2d, e). Instead, the CS activity of cP-cells was more sustained
ciated with reward delivery!”. During learning, roughly half of the ~or temporally dispersed (estimated as the full width at half
P-cells were selective for the wrong outcome (wP-cells; Supple- maximum firing rate, fwhm) during learning, compared to the
mentary Fig. $3a) and the remaining were selective for the correct ~OT condition (OT-Lpeg: P <0.001; two-tailed Wilcoxon signed
outcome (cP-cells; Supplementary Fig. S3b) during these delta rank test; Fig. 2d, f). After the animals learned the association
epochs!”. The difference between the SS activities of the cP and  between the symbols and the movements, the CS activity became
wP-cells provides the error signal, which approaches zero as the temporally less dispersed (i.e., more temporally precise) as the
animals learn the new association!”. symbols predicted a future reward more accurately (Lpeg -Lend:
We studied the learning-related changes in the CS activity after P <0.001; two-tailed Wilcoxon signed rank test; Fig. 2d, f) and
the symbol presentation in cP-cells (n =14 cells) and wP-cells was no longer different from the OT condition (OT-Leyqg:
(n =11 cells) separately. We analyzed the CS responses in 100 ms P = 0.22; two-tailed Wilcoxon signed rank test; Fig. 2d, f).
epoch (50-150 ms after symbol onset) in four different learning The duration of the CS waveform also differed during learning in
states (illustrated in Fig. 1b): last 20 trials of OT condition, the a cell type-dependent way. Although the wP-cells did not show any
beginning of learning (Lyeg; the first 20 trials after the symbol learning-related changes in their CS waveform durations (P = 0.44,
switch), the middle of learning (L,,iq; the first 40-60 trials after two-way Friedman test, 57 d.f. across all learning conditions;
the symbol switch), and at the end of learning (L.,g; 20 trials after ~ Fig. 2g), the CS waveform for cP-cells was longer at the beginning of
the animal reached the criterion for learned; see Methods). learning compared to the OT condition (OT-Lyeg: P <0.01, two-
The CS peak firing rate of the wP-cells changed with learning:  tailed Wilcoxon signed rank test; Fig. 2g) and decreased after
CS increased their firing rate during early learning from OT (OT- learning, resembling the waveform in the OT condition (OT-Leyg:
Lpeg: P<0.01; two-tailed Wilcoxon signed rank test) and after P =0.06, two-tailed Wilcoxon signed rank test; Fig. 2g).
learning, returned to an activity that was not different from OT During learning, after the symbol onset, there were no changes
(OT-Lepa: P = 0.24; two-tailed Wilcoxon signed rank test; Fig. 2a, in motor kinematics of the non-human primate (hand movement
b). However, the CS peak firing rate of cP-cells did not show any  of the responding hand, the non-responding hand, licking, or the
learning-related changes (P = 0.10, two-way Friedman test, 55 d.f. eye movement) and the motor behavior did not differ between
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Fig. 2 CS activity after symbol onset was cell type specific and learning dependent. a Top panel: spike density functions in the symbol epoch for wP-cells
in the OT condition. Bottom panel: same for wP-cells in Lyeg, Lmig, and Leng. N =11 wP-cells. b Peak firing rate of wP-cells in OT, Lyeg, Lmia, and Leng
conditions in the symbol epoch. **P < 0.01, *P < 0.05, two-tailed Wilcoxon signed rank test. n =11 wP-cells. ¢ Temporal dispersion of CS activity for wP-
cells (estimated as the full width at half maximum firing rate) in OT, Lyeg, and Lenq conditions in the symbol epoch. n =11 wP-cells. d Same as a but for cP-
cells. n =14 cP-cells. e Same as b but for cP-cells. n =14 cP-cells. f Same as ¢ but for cP-cells. ***P < 0.001, two-tailed Wilcoxon signed rank test, n =14 cP-
cells. g Left: duration of CS waveforms in OT, Lyeg Lmid, @and Leng conditions for wP-cells (left, n=11 wP-cells) and for cP-cells (right, n =14 cP-cells).
Histograms were normalized on the maximum frequency among all epochs. *P < 0.05, two-tailed Wilcoxon signed rank test. h From top to bottom: mean
horizontal (H) and vertical (V) hand positions of the hand that was associated with the symbol presented, mean H and V hand positions of the hand that
was not associated with the symbol presented, mean probability of licking, mean H and V eye positions for correct (blue) and wrong (red) trials.

n =25 sessions. i Top: CS activity during Lpeg Separated into correct (blue) and wrong (red) trials for wP-cells (left) and cP-cells (right). Bottom: scatter
plot of peak neural activity during correct and wrong trials for individual wP-cells (left) and cP-cells (right). Data shown as mean £ s.e.m. Source data are
provided as a Source Data file.

correct and wrong trials (Fig. 2h). After the symbol onset, neither  decreased after learning and was comparable to OT (OT-Lg,g;
type of P-cells predicted the impeding decision’s outcome (Fig. 2i; P =0.16, two-tailed Wilcoxon signed rank test; Fig. 3g). The CS
wP-cell: P=0.85, two-tailed Wilcoxon signed rank test, and cP-  waveform duration for cP-cells did not change in this epoch
cell: P =0.88, two-tailed Wilcoxon signed rank test). during learning (P = 0.21, two-way Friedman test, 55 d.f. across
all learning conditions; Fig. 3g).

Finally, during learning, after the non-human primate’s

CS activity after the non-human primate’s decision was also - . : .
decision, there were no changes in motor kinematics of the

cell type specific and learning dependent. CS activity in the . )
rewazlzepoch was also cell type sgeciﬁc. Here, the firing ratt); of wP- non-human primate (hand movement of the rgsp.ondlng hand,
cells significantly increased at the beginning of learning from OT the eye movement, non-resp onding h"‘?‘d’ licking) between
(OT-Lgeg: P <0.01, two-tailed Wilcoxon signed rank, Fig. 3a, b) and correct and wrong trl.alls ,(F ig. 3h). Ne.lther type of P-cells
decreased to a lower activity in the mid learning and finally reported the recent decision’s f)utcom.e (Fig. 31;' cP-cell: P=0.31
decreasing even further, comparable to the activity in the OT and wP-cell: P=0.88 t\{v30-ta11ed Wllcoxon s.1gned rank te;st’),
condition after the animals learned the task (OT-Leyg: P= 0.90, contrary tg prior reports'>. They .dld not predict the next trial’s
two-tailed Wilcoxon signed rank test, Fig. 3a, b). There were no outcome either (Supplementary Fig. S4).
learning-related changes in the temporal dispersion (P = 0.61 two-
way Friedman test, 42 d.f. across all learning conditions, Fig. 3a, c). CS responded to the stimulus that signaled the beginning of
However, across learning, the cP-cells did not show any significant  the trial. On every trial, before we presented the symbols that
learning-related changes either in their peak firing rate (P=0.33, instructed the hand movements, we presented two additional
two-way Friedman test, 54 d.f. across all learning conditions, cues: cuel and cue2 with a fixed interval of 523 ms between them
Fig. 3d, e) or the temporal dispersion of activity (P = 0.36, two-way  (see Methods; Fig. 4a). Both types of P-cells only fired for cuel
Friedman test, 52 d.f. across all learning conditions; Fig. 3d, f). but not for cue2. That is, for both types of P-cells, CS activity in
Consistent with learning-related changes in peak firing rate for  response to cuel was significantly higher than the baseline (cP-
wP-cells, the duration of CS was longer during the beginning of cells: P <0.001; wP-cells: P<0.001 two-tailed Wilcoxon signed
learning compared to the OT condition (OT-Lyeg: P<0.05 two-  rank test; Fig. 4b) and was significantly higher than that for cue2
tailed Wilcoxon signed rank test, Fig. 3g) and the duration (cP-cells: P<0.001, wP-cells: P<0.001, two-tailed Wilcoxon
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Fig. 3 Only wP-cells encoded learning-dependent signal after the animal's decision. a Top panel: CS spike density functions in the reward epoch for wP-
cells in the OT condition. Bottom panel: same for wP-cells in Lyeg, Lmia, and Leng. n =11 wP-cells. b Peak firing rate of wP-cells in OT, Lyeg, Lmia, @and Leng
conditions in the reward epoch. ***P < 0.001, *P < 0.05, two-tailed Wilcoxon signed rank test. n =11 wP-cells. ¢ Temporal dispersion of CS activity for cP-
cells (estimated as the full width at half maximum firing rate) in OT, Lyeg, Lmia, and Lenq conditions in the reward epoch. n =11 wP-cells. d Same as a but for
cP-cells. n =14 cP-cells. e Same as b but for cP-cells. n =14 cP-cells. f Same as ¢ but for cP-cells. n =14 cP-cells. g Left: duration of CS waveforms in OT,
Lbeg: Lmid: @and Leng conditions for wP-cells (left, n =11 wP-cells) and for cP-cells (right, n=14 cP-cells). Histograms were normalized on the maximum

frequency among all epochs. *P < 0.05, two-tailed Wilcoxon signed rank test. h From top to bottom: mean horizontal (H) and vertical (V) hand positions of
the hand that was associated with the symbol presented, mean H and V hand positions of the hand that was not associated with the symbol presented,
mean probability of licking, mean H and V eye positions for correct (blue) and wrong (red) trials. n = 25 sessions. i Top: CS activity during Lyg for correct

(blue) and wrong (red) trials for wP-cells (left) and cP-cells (right). Bottom:

scatter plot of peak neural activity for correct and wrong trials for individual

wP-cells (left) and cP-cells (right). Data shown as mean % s.e.m. Source data are provided as a Source Data file.

signed rank test; Fig. 4b), which was not different from the
baseline value (cP-cells: P =0.36; wP-cells: P=0.54 two-tailed
Wilcoxon signed rank test; Fig. 4b).

For both types of P-cells, there was no learning-related
modulation in either the peak activity (wP-cells: P = 0.49, two-
way Friedman test, 43 d.f; Fig. 4c, d; cP-cells: P = 0.44, two-way
Friedman test, 54 d.f. across all learning conditions; Fig. 4f, g) or
temporal dispersion of activity (wP-cells: P=0.18, two-way
Friedman test, 40 d.f. across all learning conditions; Fig. 4c, e; cP-
cells: P=0.62, two-way Friedman test, 55 d.f. across all learning
conditions; Fig. 4f, h). There were no changes in CS waveform
duration between the two groups or through learning (wP-cells:
P =0.96, two-way Friedman test, 60 d.f., cP-cells: P=0.07, two-
way Friedman test, 124 d.f. across all learning conditions, Fig. 4i).

During this epoch, there were no changes in motor kinematics
of the non-human primate (hand movement of the responding
hand, the eye movement, non-responding hand, or licking). And,
the motor behavior did not differ between correct and wrong trials
for any of the effectors (Fig. 4j). The CS activity in this epoch did
not encode prior decision’s outcome (wP-cell: P = 0.36, two-tailed
Wilcoxon signed rank test, cP-cell: P = 0.92, two-tailed Wilcoxon
signed rank test, Fig. 4k).

CS activity was unrelated to SS activity or behavior during
learning of novel visuomotor associations. Finally, we

investigated whether the CS activity related to the SS activity and
the behavior during learning. In motor learning, CS acts as a
teaching signal, instructing the SS output and the motor behavior
through an error-based supervised learning framework3. How-
ever, we have several lines of evidence suggesting CS activity does
not affect SS activity during learning of novel visuomotor
associations

First, the time of delta epoch was not temporally related to the
time of CS activity in cue, symbol, or reward epoch for either type
of P-cells (Fig. 5a; wP-cells: cue: P=0.72, symbol: P =042,
reward: P=0.59; cP-cells: cue: P=0.43, symbol: P=0.79,
reward: P=0.13 circular Rayleigh z test, see Supplementary
Fig. S5a-c for single cell examples). Furthermore, 2/25 P-cells
with delta epochs did not show any significant modulation in CS
during any of the three times at which we found significant
responses in the majority of P-cells (Supplementary Fig. S5d).
This indicates that the time of delta epoch is unrelated to the time
of CS responses during learning!” suggesting a causal dissociation
between the two. That is, the CS activity did not cause the delta
epoch during learning.

Second, during certain types of motor learning, for instance,
smooth pursuit learning, CS activity has a profound effect on SS
activity in on the next trial?). When non-human primates learn to
predict a smooth pursuit direction change, the presence of a CS in
the prior trial is associated with a decrease of SS activity in the
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Fig. 4 CS responded to the stimulus that signaled the beginning of the trial but not to a second, temporally paired stimulus. a Trial structure with a
schematic of event prediction. b Left: CS activity for cuel and cue2 for cP-cells (left; blue) and wP-cells (right; red). Right: quantitation from left panel.

***P<0.001, two-tailed Wilcoxon ranksum test. ¢ Top panel: CS spike density functions in cuel epoch for wP-cells in the OT condition. Bottom panel: same
for wP-cells in Lpeg, Lmia, and Leng. 1 =11 wP-cells. d Peak firing rate of wP-cells in OT, Lyeg, Lmia, and Lenq conditions for cuel epoch. n =11 wP-cells. e

Temporal dispersion of CS activity for wP-cells (estimated as the full width at half maximum firing rate) in OT, Lyeg, Lmia, and Leng conditions in the reward
epoch. n =11 wP-cells. f Same as ¢ but for cP-cells. n =14 cP-cells. g Same as d but for cP-cells. n =14 cP-cells. h Same as e but for cP-cells. n =14 cP-cells.
i Left: duration of CS waveforms in OT, Lyeg, Lmid, and Leng conditions for wP-cells (left, n =11 wP-cells) and for cP-cells (right, n =14 cP-cells). Histograms
were normalized on the maximum frequency among all epochs. j From top to bottom: mean horizontal (H) and vertical (V) hand positions of the hand that
was associated with the symbol presented, mean H and V hand positions of the hand that was not associated with the symbol presented, mean probability
of licking, mean H and V eye position for correct (blue) and wrong (red) trials. n = 25 sessions. k Top: CS activity during Lyeg for correct (blue) and wrong
(red) trials for wP-cells (left) and cP-cells (right). Bottom: scatter plot of peak neural activity for correct and wrong trials for individual wP-cells (left) and

cP-cells (right). Data shown as mean + s.e.m. Source data are provided as a Source Data file.

current trial, which occurs 175-50 ms before the time at which
the CS occurred in the prior trial, as if the presence of the CS
depressed the response of the P-cell to the parallel fiber activity
that had occurred during learning?’. However, in our reinforce-
ment learning task, if CS were present in the previous trial during
learning, the SS activity in the next trial 175-50 ms before the CS
was not different from the SS activity in the same epoch for which
CS was absent on the previous trial. This was true both across
trial type and cell type (Fig. 5b; correct trials: cP-cells: P=0.89,
wP-cells: P =0.80, two-tailed Wilcoxon ranksum test, Pearson
r=091, P<0.001; wrong trials: cP-cells: P=0.51, wP-cells:
P=0.65, two-tailed Wilcoxon ranksum test, Pearson r=0.69,
P<0.001).

Third, also in smooth pursuit learning, the duration of CS is
longer during the instruction epoch compared to the fixation
epoch (a task irrelevant epoch)?!l. In contrast, in our task, we
found no changes in CS waveform duration (Fig. 5c) at the
beginning, during, or end of delta epoch for either type of cells
during learning.

Although CS activity is frequently correlated with some aspect
of the non-human primate’s behavior, we have two lines of
evidence that this is not the case in reward-based visuomotor
association learning. First, the CS activity in the prior trial could
affect the behavioral performance of the non-human primate in
the next trial during motor learning. For example, during smooth
pursuit learning, the presence of a CS in a given trial was
associated with a change of pursuit velocity in the next trial2021,
Similarly, during a saccade adaptation task, the CS encoded the
error in saccade amplitude and direction that allowed for
correction of that error in the text trial, improving the behavioral

performance. However, in our reinforcement learning task, if CS
were present in the previous trial during learning, the probability
that the next trial would be correct was not significantly higher
than chance level (cP-cells: P=0.42, wP-cells: P=0.33, one
sample f-test; Fig. 5d). This means that CS responses did not
affect behavior through an error-based learning mechanism.

Second, the CS had no information about the outcome of the
prior trial during learning, even at a time in the trial when the SS
reported the outcome of the prior trial'”. The CS activity at the
beginning, during, or end of delta epoch during learning did not
carry information about the prior trial outcome (Fig. 5e start of
the delta epoch: cP-cells: P=0.29, wP-cells: P =0.81, two-tailed
Wilcoxon signed rank test; middle of delta epoch: cP-cells:
P=0.75, wP-cells: P=0.80, two-tailed Wilcoxon signed rank
test; end of delta epoch cP-cells: P = 0.23, wP-cells: P = 0.75, two-
tailed Wilcoxon signed rank test).

All these provide strong converging evidence that CS were
unlikely to instruct a change in SS activity through the classical
error-based learning framework!422, This furthermore suggests
that the CS neural activity is entirely unrelated to SS activity.

Discussion

A comprehensive role for the cerebellum in reinforcement learning
is not well understood. Several recent studies show cerebellar
activity correlated with reward-based paradigms!?-1>17. However,
all these reinforcement learning-based studies have focused pri-
marily on only one aspect of neural encoding in the cerebellum
(either SS or CS). In this study, we show that when a non-human
primate learns a new visuomotor association (Fig. 1), classifying CS
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responses based on their SS properties (depending on whether the
SS preferentially encoded success on the prior trial, cP-cells, or
failure, wP-cells)!” revealed distinct cell type-specific encoding of
the probability of failure after the symbol onset (Fig. 2) and the
animal’s decision (Fig. 3), but not the decision’s outcome (which is
encoded by SS). CS from both cell types, from the same cerebellar
area also responded to the symbol that signaled the beginning of the
trial (Fig. 4). Importantly, all these CS signals were independent of
changes in any motor kinematics (Figs. 2-4). The CS did not
instruct changes in concurrent SS activity during reinforcement
learning (Fig. 5), nor was CS activity related to the outcome of the
prior or current trial.

Multiple channels of information encoding in the cerebellum
during reinforcement learning. Unlike studies of motor
learning?%23 and in contrast to the classic Marr-Albus model of
the cerebellum, we did not find any relationship between the
learning properties of CS activity and that of SS activity. One
might have expected that a CS signal could have served as a
teaching signal for the delta epoch of SS during learning if the
classical error correcting framework were to apply to non-motor
learning3. This was not at all the case (Fig. 5). There are several
reasons why CS signals are unlikely to play the role of a teaching
signal in our experiment. First, at the symbol switch between the
OT and learning conditions, the SS suddenly express large dif-
ferences in activity in the delta epoch (~30 sp/s). It is unlikely that
this difference in the SS rate could have been caused solely by
synaptic depression elicited by CS that has only been shown to
cause a maximum of 8-10sp/s changes in SS activity (with the
longest CS waveforms)2%21. In addition, if the CS were causing
the delta epochs, we should have seen a tight temporal relation-
ship between the two, but we did not. It may be that CS only
provide error signals during certain types of motor learning, and
not for other types of learning. For example, the CS in the

flocculus signal both the expected amount of reward and the
motor propertiesl4,

During our reinforcement learning task, SS encode the
magnitude of the reinforcement learning error, reporting the
result of the most recent decision, while CS encode the probability
of failure without having information about the result of the most
recent decision. Both these signals disappear with learning (Figs. 2
and 3). This is in contrast with the recent reports in mice where
the CS activity persists after learning, either reporting the trial
outcome!>1> or predicting the reward!2. The role of concurrent
SS in these studies is unclear. Furthermore, in our task, the SS and
CS signals form two distinct channels of neural information
encoding during reinforcement learning as they do not seem to
interact at the level of the cerebellar cortex (Fig. 5). However, they
could impact downstream processing at the level of deep
cerebellar nuclear (DCN) neurons (Supplementary Fig. S6).

Apart from the reward-based, learning-dependent, and cell
type-dependent signals encoded by CS after symbol and the
animal’s decision, the CS also encoded a learning- and cell type-
invariant response to the cuel that signaled the beginning of the
trial that was also the first of a series of temporally paired stimuli
(Fig. 4). Cuel occurred at the beginning of the trial. After its
presentation, the animal’s prediction that it would get a chance to
earn a reward would change. However, after the presentation of
cue2, the animal does not update its prediction since cue2 occurs
after a fixed interval after cuel. Keeping with this, both types of
P-cells only fired for cuel but not for cue2. Because cuel occurred
at different times after correct or wrong trials (due to an
additional timeout of 2200 ms after wrong trials, see Methods), it
could have not been a late response to the termination of the
hand movement in the prior trial?4. The response was unlikely to
be just a visual response to cuel: the same stimulus (as cuel)
reappeared along with cue2, but the P-cells did not respond to it.
Every cell that responded to cuel also responded to the symbol
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and/or after the animal’s decision. The stimulus evoking the cuel
response appeared after the symbol but not after the decision,
which shows that the stimulus per se was not necessary for the
response. Because of the fixed timing between cuel and the
symbol appearance, it is possible that this was a learned response
to a stimulus, which was similar to the conditioned stimulus of a
classical Pavlovian association, in this case the appearance of the
symbols. This is consistent with a temporal difference error
signal!l, although the signal was not linked to the presence of
reward, but rather to the possibility of performing a task to earn a
reward. Since we performed electrophysiological recordings
months after training both non-human primates with repeated
presentation of temporally paired stimuli, we could not confirm if
both the cues originally evoked a CS response that migrated
eventually to cuel. Nevertheless, since the appearance of cuel
always preceded the symbols (that instructed the hand move-
ment), it could also serve as an alerting response preparing the
animal for the trial.

Together, these results show that individual CS in the same
cerebellar area are flexible in that they can encode very different
non-motor signals, depending on the context—a reinforcement
learning-dependent and cell type-dependent signal when the
animal learns to make a decision, and a reinforcement learning-
independent and cell type-independent response to the stimulus
that signaled the beginning of the trial, consistent with a temporal
difference error during classical conditioning. This mixed
selectivity suggests new and general roles for CS signals that are
disparate from classical error-based supervised learning.

A cerebellar circuit that contributes to reinforcement learning.
The reinforcement learning signal encoded by the SS could be a
transformation of the reward signals provided by the granule cells?®,
which in turn receive convergent reward and sensory input from
diverse brain areas. However, if the CS also carry reward-related
information, where could this information come from? One such
key source of input to the IO is the meso-diencephalic junction
(MDJ)?6, a midbrain region composed of multiple nuclei, some of
which integrate DCN output and project to either downstream
neurons in the [0?”. The MDJ also integrates descending input from
cortical pyramidal tract neurons8, thus allowing the IO to represent
higher order cortical computations. This is a good candidate to
transmit the types of reward-related information.

While CS activity in cP-cells showed both activity related to the
probability of failure after both the symbol onset and decision, CS
activity in wP-cells only showed the latter (Figs. 2 and 3). The
waveform duration of CS also mirrored these changes. If different
types of P-cells (cP-cells and wP-cells) projected to different types
of DCN cells, and this segregation were maintained in the
projection from the DCN to the IO, the IO neurons could
maintain this functional difference as well. Therefore, just like
there are cP-cells and wP-cells, we suggest that there may be cIO-
cells and wlIO-cells that project to these respective P-cell
populations (Supplementary Fig. S6 shows schematics of the
circuits by which P-cells with the two different types of CS could
contribute to visuomotor association learning). However, unlike
SS, the climbing fiber activity did not carry information about the
most recent decision during learning. Extracellular recording in
the non-human primates cannot provide information about
functional or molecular segregation of P-cells. This is unlike the
mouse, where functional differences in P-cells could be reflected
in molecular expression of different proteins (Adolase or antigen,
Zebrin)?® or differences in anatomical location (microzones)!3.
However, the neural basis of this functional differences in IO cells
is yet unknown. Interestingly, although both these cell types
responded to the stimulus that signaled the beginning of the trial

in the same way in both the OT and learning contexts, they
encoded different information during learning, suggesting that
the information about the trial-beginning stimulus could be
projected onto both cell types from an upstream to the IO.

Both the climbing fiber and ~50 P-cells*® project to a single
DCN neuron. The two information channels (SS and CS)
carrying different information (as discussed above) could sculpt
the information encoded in the DCN (Supplementary Fig. S6).
The DCN is connected to the striatum3! and the PFC3? through
the thalamus and is monosynaptically connected to the ventral
tegmental area (VTA)33. Optogenetic stimulation of the DCN
reliably evokes postsynaptic responses in both GABAergic as well
as dopaminergic VTA neurons, contributing to reward-related
behavior and social behavior**. Suppressing this connection is
sufficient to abolish social behavior in mice34. VTA dopaminergic
neurons have two key downstream targets: the ventral striatum??
and the prefrontal cortex3® both of which have been shown to be
critically involved in reward processing®/-33.

Although it is clear from our results that the CS do not inform
the SS about the results of the prior trial, other cerebellar
structures might. The SS synapse, affected by the CS in motor
learning, is not the only modifiable synapse in the cerebellum.
For example, the calcium responses of molecular layer inter-
neurons become selective for the rewarded odorant as mice learn
which of a pair of odorants is associated with a reward, and which
with a punishment (a brief timeout) and an optogenetic
inactivation of these cells slows the learning process#0.

The question then arises whether the different signals encoded
by the CS, at the beginning of the trial and the probability of
failure, which have no relationship to trial-by-trial error or
reward, could also contribute to the process of visuomotor
association learning. One mechanism by which they could is to
provide a parallel motivational signal through the cerebellar
projections to the dopaminergic system via the DCN. The DCN
neurons project to several dopaminergic areas, including the
VTA3* and the substantia nigra pars compacta®!. Dopamine
neurons are not exclusively related to reward. Different dopamine
neurons respond to alerting and motivating signals as well as
reward*2. The CS responses that we have discovered could, via
the direct projection of the climbing fibers to the DCN, excite the
midbrain dopamine system, providing a cerebellar contribution
to behavior entirely independent from associative learning. A lack
of this signal to the basal ganglia could contribute to the learning
deficit caused by mid-lateral cerebellar inactivation. Our results
suggest that the SS and CS in the cerebellum have signals that
could be useful for two different networks in the brain, a
traditional error signal in the SS that project to the sensorimotor
network, and, possibly, a motivational or arousing signal from the
CS, which projects to the dopaminergic system. This synergy
between the sensorimotor and motivational contributions of
cerebellar processes may provide the flexibility necessary for
sophisticated cognitive functions.

Methods

Experimental model and subject details. We performed all experiments on two
adult male non-human primates (Macaca mulatta), B (age: 14 years) and S (age: 7
years), weighing 10-11 kg each, for the experiments. All experimental protocols were
approved by the Animal Care and Use Committees at Columbia University and the
New York State Psychiatric Institute, and complied with the guidelines established by
the Public Health Service Guide for the Care and Use of Laboratory Animals.

Method details

Behavioral task. We used the NIH REX-VEX system for behavioral control. The

non-human primates sat inside a dimly lit recording booth, with its head firmly

fixed, in front of a back-projection screen upon which visual images were projected.
The two-alternative forced-choice discrimination task began with the non-

human primates grasping two bar-manipulanda, one with each hand, after which

two cues (white square) appeared sequentially. The first one was briefly flashed on
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the top-left corner of the screen to signal a photocell that there was a programming
change in the VEX display system. This square appeared at every subsequent
change in the video display. The computer began to monitor whether the non-
human primates had pressed the bars 20 ms after this cue. On 97% of the trials, the
non-human primates had pressed both bars during the inter-trial interval (ITI) and
on those after a fixed interval of 525 ms, the second one was flashed at the center of
the screen for 800 ms. On the remaining 3% of the trials, the non-human primates
waited until after cuel to press the bar, so there was a variable time between the
two cues. Then one of a pair of fractal symbols, that the non-human primate had
never seen before, appeared briefly for 100 ms, at the center of gaze. There was no
jitter in time between the time of cue onset and the time of symbol onset. One
symbol signaled the non-human primate to release the left bar and the other to
release the right bar. We rewarded the non-human primates with a drop of liquid
juice reward for releasing the hand associated with that symbol as soon as possible.
From the initiation of the hand movement, there was an 800 ms delay (ITI) until
the next trial started. On wrong trials, we increased this ITI from 800 ms to (800 ms
ITI + 2200 ms timeout) 3000 ms, to increase the non-human primates’ motivation
to perform the task. The non-human primates were free to move their eyes and
make any hand movement as long as they released the correct bar associated with
the presented symbol. Although this was the case, non-human primates made very
stereotypic hand movements that did not change across trials.

In the OT condition, the non-human primates were repeatedly presented with
the same familiar pair of symbols for which the non-human primates have learned
the associations over 4-6 months. In the novel condition, the non-human primates
were presented with a different pair of novel symbols that they have never seen
before. They learned the association between these novel symbols and left- or right-
hand release through trial and error. On every recording session, we started with
the OT condition and after ~30 trials, switched to the learning condition.

A correct trial was defined as the trial in which the non-human primate released
only the one correct hand associated with the symbol. The non-human primates
received reward only for correct trials. We defined a wrong trial as the trial in which the
non-human primate released the hand not associated with the symbol. Trials where the
non-human primates released both hands anytime during the trial, or released the
hand(s) before the symbol onset or released the hand(s) after 2800 ms from symbol
onset were considered abort trials and were neither rewarded nor analyzed.

We constructed the learning curve for every session by calculating the percent
correct trials in a sliding window of 10 trials shifted by 5 trials. If the non-human
primates reached >90% correct through the above method and remained above
80% for at least the next 20 trials, the associations were considered “learned.”

Single unit recording. Here, we analyzed CS and SS activity from a previous study!”.
Briefly, we used two recording cylinders, on the left hemisphere of each non-
human primate. We introduced glass-coated tungsten electrodes with an impe-
dance of 0.8-1.2 MOhms (FHC) into the left mid-lateral cerebellum of non-human
primates every day that we recorded using a Hitachi microdrive. We passed the raw
electrode signal through a FHC Neurocraft head stage, and amplifier, and filtered
through a Krohn-Hite filter (bandpass: lowpass 300 Hz to highpass 10 kHz But-
terworth), then through a Micro 1401 system, CED electronics. We used the NEI
REX-VEX system coupled with Spike2 (CED electronics) for event and neural data
acquisition. We verified all recordings offline to ensure that we had isolated P-cells
and that the spike waveforms had not changed throughout the course of each
experiment. To do this, we correlated the spikes from the beginning and the end of
a recording session and used only those sessions that had at least a correlation of
0.85 (Fig. 1h, i). The CS of 25 cells satisfied this criterion.

Hand tracking. We painted a spot on the non-human primates’ right hand with a
UV-blacklight reactive paint (Neon Glow Blacklight Body Paint) prior to every
session. We used a 5 W DC converted UV blacklight illuminator to shine light on
the spot. Then we used a high speed (250 fps) camera (Edmund Optics),
mechanically fixed to the primate chair, to capture a video sequence of the hand
movement while the non-human primates performed the tasks. We used the track
mate Image J4344 and custom written software in MATLAB to semi-manually
track the fluorescent paint spot painted on the non-human primate’s hand.

Licking. We recorded licking at a sampling rate of 1000 Hz using a capacitive touch
sensor coupled to the metal water spout that delivered liquid water reward near the
non-human primate’s mouth. Raw binary lick traces were used to generate
instantaneous lick rate by trial averaging and smoothing it with a Gaussian kernel
of sigma = 20.

Eye movements. We tracked the non-human primate’s left eye positions at 240 Hz
sampling rate with an infrared pupil tracker (ISCAN, Woburn, MA USA) inter-
faced with Spike2 (CED electronics) where it was upsampled to 1000 Hz and
synced with the event markers from NEI REX-VEX system.

Quantification and statistical analysis

Quantitation of CS activity. To study the event related CS activity, for each cell, we
first aligned the CS responses to cuel, cue2, symbol, and reward onset. Then, for
each condition, we binned the CS responses in 1 ms bins and convolved the

resulting function with a Gaussian kernel of sigma = 20 ms to obtain spike density
functions, for each cell. Then, we quantified the firing rate and the temporal
dispersion (estimated as the full width at half maximum firing rate, fwhm) in a
100 ms window (50-150 ms after respective event onset) for each condition, and
averaged across single cell results to provide our final estimates. We confirmed the
independence of these two measures through a lack of significant correlation.

Epochs of significant CS activity. We estimated the epochs where the CS had
significant activity by performing a two-tailed -test between the population CS
activity (across all cells and all trials) in every 100 ms bins and a baseline activity
(~100 to 0 ms aligned to cue2 onset). Then, we corrected for multiple compar-
isons using the Benjamini and Hochberg/Yekutieli false discovery rate method.
Through this method, we found three epochs with significant CS activity: after
cuel, symbol, and reward epochs (Supplementary Fig. S1). However, to be
consistent in our analysis, we only analyzed data in 100 ms bins in all three
epochs. Therefore, we analyzed the CS responses 50-150 ms after symbol onset,
reward onset, and cuel onset. Furthermore, we analyzed the data from a con-
dition of a cell only if it had at least one CS across trials in that condition’s
interval.

Measurements of CS morphology. The validity of the data presented in Figs. 2g, 3g,
4g, and 5c depends on the accuracy of our CS duration measurements. One of the
authors manually made all these measurements while being blind to the type of cell
or the epoch in which the CS was present. We measured each CS duration from the
beginning of the first deflection of the extracellular potential to the time of the
return to baseline potential (as indicated above panel Supplementary Fig. S1b). To
reduce the bias in measurements, another author randomly verified the measure-
ments and made independent measurements of randomly selected CS spikes, to
crosscheck the results, while also being blind to the type of cell or the epoch in
which the CS was present. Furthermore, random errors in measurements should
not be prominent in a population study.

CS tuning to symbol and choice of hand. The CS responses in the symbol epoch
and during movement were not selective for symbol or choice of hand respec-
tively. To show this, we first calculated the contrast function (A -B) /(A + B) in
the symbol epoch (50-250 ms after symbol onset) for preferences between the
two symbols and in the movement epoch (50 ms before to 250 ms after the
movement onset) for preferences between the hand movements and the symbols.
To verify if this tuning were meaningful and not just due to extreme differences
in sampling number and noise (due to sparseness in firing rate and low trial
number), we generated a null distribution of spike times through a gamma
distribution®’ that was matched with the parameters of the experimental data
(we obtained the shape parameter, k, the ISI distribution fit and took the scale
parameter, 6, as the inverse of firing rate) and calculated a similar tuning
function on this null distribution. We found that the CS responses during the
symbol (Supplementary Fig. S2a) or the movement epochs (Supplementary
Fig. S2b) were not statistically different from a null distribution (symbol selec-
tivity: P = 0.51; t-test; choice selectivity: P = 0.48; t-test).

Statistics and reproducibility. All the experimental analyses were performed on
CS from 25 P-cells, collected from two non-human primates.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All the relevant data that support the findings of this study are available at https://
github.com/naveen-7/Cerebellum_reward. A reporting summary for this article is
available as a Supplementary Information file. Source data are provided with this paper.

Code availability
The codes used for the analyses that support the findings of this study are available from
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