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Purpose: To investigate the consequence of a major intrinsic protein MIP splice-site mutation (c.607–1G>A) in a four-
generation Chinese pedigree afflicted with autosomal dominant congenital cataracts (ADCC).
Methods: Both a mutated minigene with c.607–1G>A, and a wild-type minigene were constructed using the
pTARGETTM mammalian expression vector. They were transiently transfected into HeLa cells and human lens epithelial
cells, respectively. After 48 h incubation, RNA extraction and RT–PCR analysis were performed and PCR products were
separated and confirmed by sequencing. Structural models of the wild-type and the mutant aquaporin 0 (AQP0) were
generated and analyzed using SWISS-MODEL.
Results: The G>A transition activated a cryptic acceptor splice site (c.965–966) in the 3′ untranslated region (3′ UTR),
resulting in the absence of the coding region and most of the 3′UTR in exon 4 of the mature mRNA. Moreover, homology
modeling of the mutant protein suggested that the sixth transmembrane helix and carboxyl terminus were replaced with
the Leu-His-Ser tripeptide (AQP0-LHS).
Conclusions: The MIP splice-site mutation (c.607–1G>A) activates a cryptic acceptor splice site in the 3′ UTR, which
may result in substitution of the sixth transmembrane helix and carboxyl terminus for AQP0-LHS. To our knowledge,
this is the first report of activation of a cryptic splice site in the 3′ UTR in a human disease gene.

Hereditary congenital cataract (OMIM 604307) is an
opacification of the eye lens which presents at birth or shortly
thereafter. Despite the great advances in understanding of lens
structure and function, the relationships among cataract
morphology, etiology, and pathologic mechanisms are still
unclear. Congenital cataracts remain the leading cause of
visual disability in children worldwide [1-4]. In 2000, the
major intrinsic protein (MIP, MP26, AQP0) was reported to
be associated with autosomal dominant congenital cataract
(ADCC) [5]. To date, seven mutations in the MIP gene have
been identified from seven unrelated human families; five
missense mutations (T138R, E134G, R33C, R233K, and
V107I) [5-8], one deletion mutation causing a frameshift that
alters 41 of 45 subsequent amino acids and creates a premature
stop codon (G213VfsX45) [9], and one splice-site mutation
causing autosomal dominant congenital cataract (ADCC)
with “snail-like” phenotype in a large Chinese family (our
laboratory’s recently reported finding, c.607–1G>A) [10].

The effect of mutations that alter critical amino acids and
generate premature stop codons can be predicted from triplet
codon analysis. However, it is difficult to predict the effects
of changes in intronic sequences. The production of mature
mRNA requires an accurate and efficient removal of introns
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from pre-mRNA by the spliceosome [11]. The regulation of
alternative splicing usually relies on a choice from among
candidate splice sites, either alternative 5′ or alternative 3′
sites. Mutations can disrupt splicing by directly inactivating
or creating an alternative splicing site, by activating a cryptic
splice site or by interfering with splicing regulatory elements.
Although the activation of cryptic splice sites has been
reported as a mechanism in human disease, to the best of our
knowledge currently there is no report of activation of cryptic
splice site in the 3′ untranslated region (3′ UTR, sequences on
the 3′ end of mRNA which are not translated into protein)
[12].

METHODS
Plasmid and minigene constructs: A mutated minigene was
obtained by the insertion of a PCR fragment containing the
genomic MIP sequence from the proband into the
pTARGETTM mammalian expression vector (Promega,
Milan, Italy). It consisted of the 5′ flanking sequence of exon
3, exon 3, intron 3, and exon 4 including the coding and the
3-untranslated region (3′UTR) which was amplified using
primers MIPS (5′-TTG ACC CCA AGG TAG AAA TGA
CG-3′) and MIPAS (5′-ACA ATC AGC ACA CAC GGC
GAA G-3′). PCR was performed on 100 μg genomic DNA in
a standard 50 μl volume, containing 1.25 PrimeSTAR® HS
DNA Polymerase (Takara Bio, Otsu, Japan). The cycling
conditions for PCR were 35 cycles of 98 °C for 10 s, 68 °C
for 4 min, preceded by 30 s at 98 °C and followed by a final
elongation step at 68 °C for 10 min. The PCR product was
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cloned into the vector after the addition of an A-tail (Figure
1). The addition of the A-tail was achieved by incubating
5 μl purified PCR product in a 10 μl volume, containing dATP
(final concentration 0.2 mM) and 5 U Taq DNA Polymerase
(Takara Bio), The temperature condition was at 70 °C for 30
min. Plasmid DNA was isolated using a Miniprep Kit
(Axygene, Union City, CA) and MIP c.607–1G>A was
ascertained by sequencing—pTARGET-mut. A similar
approach was used to obtain the corresponding wild type
minigene by amplifying the genomic DNA from a healthy
individual—pTARGET-wt. Each clone was entirely
sequenced to confirm that no other mutations had been
introduced by the PCR procedure.

Cell culture and transient transfection: HeLa cells and human
lens epithelial cells (LECs, HLE B-3) were cultured in RPMI
1640 supplemented with 10% fetal bovine serum. Cells were
grown in a humidified atmosphere of 5% CO2 and 95% air at
37 °C and cultured according to standard procedures.
Transient transfections were performed in 10-cm dishes
(2×106cells/dish) with Lipofectamine™ 2000 (Invitrogen,
Carlsbad, CA) using 4 µg of total plasmid DNA Endofree
purified (Qiagen, Hilden, Germany) following the
manufacturer’s instructions.

Minigene splicing assay: Both HeLa cell and LECs were
transfected with pTARGET-mut and pTARGET-wt minigene
constructs. The blank minigene construct pTARGET-con was
used as a control. Forty-eight hours after transfection, total
RNA from the cells was extracted with an RNeasy Mini Kit
(Qiagen) and analyzed by RT–PCR. Reverse transcription
was performed using M-MuLV reverse transcriptase
(Fermentas, Vilnius, Lithuania) and oligo (dT) primer in a
20 μl volume according to the protocol of the manufacturer,
and the PCR reaction was performed with a forward primer
(5′-CTT TGC TCC TGC CAT TCT-3′) and a vector-specific
reverse primer (5′-GGC TTT ACA CTT TAT GCT TC-3′).

PCR products were separated by electrophoresis on a 2%
agarose gels and confirmed by sequencing.
Comparative modeling of AQP0: The three-dimensional
structure of AQP0 was modeled on the basis of the crystal
structure of bovine AQP0. The homology model was
generated by SWISS-MODEL and analyzed in the Swiss-
PdbViewer, Version 3.7 [13-15].

RESULTS
Effect of the intronic mutation on the processing of the pre-
mRNA transcript: Figure 2 showed the results when plasmids,
pTARGET-mut, pTARGET-wt, and pTARGET-con were
independently transfected to HeLa cells and LECs (not
expressing AQP0), and total RNA was extracted from
transfected cells and analyzed by RT–PCR followed by
electrophoresis on 2% agarose gels. RT–PCR of the total RNA
obtained from cells transfected by pTARGET-wt yielded a
687 bp band consistent with the correct splicing of pre-
mRNA. This was confirmed by sequencing of the isolated
PCR product (Figure 3A). In contrast, a 327 bp band was
detected in cells transfected with pTARGET-mut (Figure 2)
and the sequencing analysis shown in Figure 3B demonstrated
that a cryptic acceptor splice site was activated at nt359 of
exon 4 (c.965–966) in the 3′UTR of the MIP gene. A summary
of these results was shown in Figure 4.
Comparison of wild-type and mutant AQP0 structural
models: A mutant protein with 205 amino acids was supposed
to be generated when the cryptic splice site in the 3′ UTR was
activated. Wild-type AQP0 structural model contains six
transmembrane α-helical domains with a short 9 amino acid
NH2-terminus and a longer 39 amino acid COOH-terminus
extending into the cytoplasm, whereas the mutant AQP0
structural model showed the loss of the last α-helical domain
as well as the complete COOH-terminus. Instead, the aberrant
AQP0 model (AQP0-LHS) was ended up having the Leu-His-
Ser tripeptide (Figure 5).

Figure 1. Schematic diagram of the
minigene construct. It was obtained by
insertion of a PCR fragment containing
the genomic MIP sequence into the
pTARGET mammalian expression
vector after the A-tail was added. It
consists of the 5′ flanking sequence of
exon 3, exon 3, intron 3, and exon 4
including the coding and the 3-
untranslated region (3′UTR) which was
amplified using primers MIPS and
MIPAS.
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DISCUSSION
It is reported that mutations in acceptor splice sites can result
in exon skipping or activation of cryptic sites, either upstream
or downstream of authentic sites [16]. In the present study,
there was a mutation in the invariant AG dinucleotide of the
last intron, so none of the existing canonical AG sites
downstream are available at the 5′ border of following exon
as an alternative acceptor splice site. According to previous
studies, it is advisable to identify possible splicing defects by
analyzing the mRNA available from the individual patients
[17]. Therefore, we collected blood specimens and the
cataracts from the proband during surgery. However, we
failed to extract MIP mRNA from the blood specimens or the
cataract probably due to the lower mRNA expression levels
in the mutant alleles (unpublished). To confirm the role of this

mutation, we finally made use of a simple minigene splicing
assay [18]. Subsequently, we demonstrated that the acceptor
splice-site mutation (c.607–1G>A) resulted in activation of a
cryptic splice site in the 3′ UTR of the MIP gene. To our
knowledge, cryptic acceptor splice site in the 3′ UTR has not
been reported in human disease genes to date (summery in
Table 1) [12,16]. According to Human Splicing Finder [19],
the natural acceptor splice site is scored 96.46, while the
cryptic acceptor splice site is scored 74.48. Interestingly, there
is a consensus motif (TCTTTC) upstream of the acceptor
splice site. Further study is required to determine whether
there is a role for the TCTTTC motif in the aberrant splicing.

The activation of a cryptic acceptor splice site may lead
to substitution of the distal end of the 6th trans-membrane
domain and the COOH-terminal domain of AQP0 for a Leu-
His-Ser tripeptide (AQP0-LHS). Previous studies have

Figure 2. RT–PCR products obtained
from minigene constructs transient
transfection. The mutated (pTARGET-
mut) and wild-type (pTARGET-wt)
minigene constructs were
independently transfected into HeLa
cells and human lens epithelial cells
(LECs). Forty-eight hours later, total
RNA was extracted from transfected
cells and analyzed by RT–PCR. The
RT–PCR product obtained from
pTARGET-wt and pTARGET-mut
shows a 687 bp band and a 327 bp band,
respectively. The pTARGET-col used
as a control shows a negative band.

Figure 3. Reverse sequence of the wild-
type and the mutant RT–PCR products.
A: Normal splicing shows the exact
excision of intron 3. B: Aberrant
splicing shows the activation of a cryptic
splice acceptor site within the 3′ UTR of
the MIP gene, resulting in the loss of the
coding region and most of the
untranslated region of exon 4.
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demonstrated that the AQP0 COOH-terminus is crucial for
both lens development and transparency because of its
interactions with calmodulin [20], the cytoskeletal proteins
filensin and CP49 [21], and connexin 45.6 [22]. Cleavage of
the intracellular COOH-terminus decreases water
permeability [23] and enhances the adhesive properties of the
extracellular surface of AQP0, indicating a conformational
change in the molecule [24] such that AQP0-LHS may fail to
form a functional channel. As a result, the internal
homeostasis of the lens necessary to maintain transparency is
disrupted, resulting in cataract formation.

In conclusion, analysis using an in vitro minigene system
demonstrates that the MIP c.607–1G>A mutation leads to
aberrant splicing by activation of a cryptic acceptor splice site
in the 3′ UTR of the MIP gene. To our knowledge, this is the
first report of cryptic acceptor splice site in the 3′ UTR of a
human disease gene. The c.607–1G>A mutation creates a de
novo AQP0-LHS, which is predicted to cause congenital
cataracts by disrupting the internal homeostasis of the lens
fiber cells.

Figure 4. Schematic diagram of
comparison between normal splicing
and aberrant splicing. The upper panel
shows the normal splicing of the wild-
type RNA transcript. The lower panel
shows that the G>A mutation (black
triangles) at the acceptor splice site of
intron 3 leads to activation of a cryptic
acceptor splice site within the 3′ UTR of
the MIP gene, resulting in the loss of the
coding region and most of the
untranslated region of exon 4. The
underlining codon (UAG and uga)
denote the wild type and de novo
terminal codon, respectively. The 61
amino acids encoded by exon 4 are
replaced by a Leu-His-Ser tripeptide.

Figure 5. Comparison of wild-type and
mutant AQP0 structural models by
SWISS-MODEL. A: The wild-type
AQP0 structural model contains six
transmembrane α-helical domains with
a short 9 amino acid NH2-terminus and
a longer 39 amino acid COOH-terminus
extending into the cytoplasm. B: The
mutant AQP0 structural model shows
the absence of the last α-helical domain
as well as the complete COOH-
terminus.
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