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Education competitiveness is a key feature of national competitiveness. It is crucial for nations to develop and enhance student and
teacher potential to increase national competitiveness. The decreasing population of children has caused a series of social problems in
many developed countries, directly affecting education and com.petitiveness in an international environment. In Taiwan, a low birthrate
has had a large impact on schools at every level because of a substantial decrease in enrollment and a surplus of teachers.Therefore, close
attention must be paid to these trends. In this study, combining a whale optimization algorithm (WOA) and support vector regression
(WOASVR) was proposed to determine trends of student and teacher numbers in Taiwan for higher accuracy in time-series forecasting
analysis. To select the most suitable support vector kernel parameters, WOAwas applied. Data collected from theMinistry of Education
datasets of student and teacher numbers between 1991 and 2018 were used to examine the proposed method. Analysis revealed that the
numbers of students and teachers decreased annually except in private primary schools. A comparison of the forecasting results obtained
fromWOASVR and other commonmodels indicated thatWOASVR provided the lowest mean absolute percentage error (MAPE) and
root mean square error (RMSE) for all analyzed datasets. Forecasting performed using theWOASVRmethod can provide accurate data
for use in developing education policies and responses.

1. Introduction

For decades, the near-global decline in fertility has led to
considerable socioeconomic changes. The low fertility rate
observed in many countries is likely the result of economic,
social, cultural, and institutional transformations [1]. Some
theories linking broad social changes to fertility decline may be
relevant to all countries. Common trends for fertility patterns
are also present in many regions. Other theories discuss the
situation unique to a particular country. Although the fertility
transition has taken place globally, the rate of fertility decline,
levels that have been hit, and current fertility rates differ by

country.The decline in fertility rates in certain societies is likely
to result from an interplay of global phenomena, regional
policies, and local forces. Weakening economic and global
competitiveness and decreasing birthrates will challenge the
competitiveness of a nation by leaving it with a labor shortage.

Although demographic change is considered a constant
force, educational institutions are pioneers in each generation’s
shifting composition. Demographers have predicted that
schools will change significantly, which will have an impact on
the general public as well. The number of students attending
school in Taiwan has decreased, which inevitably has an effect
on teacher training programs. Given the difference between the
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teachers’ supply and demand, the cultivation of teachers is
ultimately affected. The out-of-balance teaching market in
Taiwan is a problem that demands attention from the gov-
ernment, educational administrators, and educators, all of
whom are responsible for implementing new strategies to
rebalance the teaching market.

Current education sustainability heavily depends on the
strategic and budgetary planning of each institution, par-
ticularly for student enrollment and teacher recruitment. For
instance, colleges and universities must achieve enrollment
goals annually to achieve the institutional mission and
maintain economic vitality. Teacher statistics also require
considerable attention to understand the retirement wave
and status of the current teaching market. With a view to
proposing the most suitable strategies, administrators turn
to enrollment professionals to forecast prospective numbers
of students and teachers, built on their area of interest. Using
this information will assist administrations in accurately
distributing resources and constructing future decisions.The
forecast presented in this paper can be adapted to project
new enrollment or recruitment goals for any given term,
regardless of institution type.

Time-series analysis can be used for the trend analysis of
time-series data. Time-series data refer to data that are
arranged according to a series of time periods or intervals.
Time-series analysis involves testing linear or nonlinear
relationships among dependent variables. Many linear and
nonlinear approaches have been proposed for forecasting in
various time-series studies [2, 3]. Linear approaches include
exponential smoothing (ETS) [4] and regression-based
models, such as autoregressive integrated moving average
(ARIMA) [5] and Trigonometric Seasonal Box–Cox
Transformation with ARMA residuals Trend and Seasonal
Components (TBATS) [6]. The ETS method, which was
proposed in 1963 by Brown [4], is a data averaging approach
that considers three factors: the error, trend, and season.The
maximum likelihood estimation is used in ETS to optimize
initial values and parameters, and the optimal ETS model is
selected. Moreover, the weight of ETS data decays expo-
nentially. The ARIMA model, which is a well-known time-
series prediction method, was proposed by Box and Jenkins
[5]. In the ARIMAmethod, several fragments formed after a
time series that has passed are used as input. Moreover,
regression analysis is performed to establish a mathematical
prediction model, which is often used for the prediction of
short-term economic trends. TBATS, which was proposed
by Livera in 2011 [6], is a novel method that integrates
trigonometric seasonality, Box–Cox transformation,
ARIMA error trends, and seasonal components. The TBATS
model is an extension of ETS. The TBATS model can
forecast whether seasonal data exist and can analyze the data.
These methods, which are heavily dependent on linear as-
sumptions, involve using historical datasets to forecast fu-
ture flow through a univariate or multivariate mathematical
function. However, these models are theoretically linear and
can be hindered by their weak nonlinear fitting capabilities.
The linear assumption makes it difficult for the aforemen-
tioned models to process complex nonlinear problems and
obtain ideal prediction results.

The spatiotemporal pattern mining method is applied to
track the sequence of frequently occurring events in spatio-
temporal datasets. Many spatiotemporal pattern-based fore-
casting and detection methods have been proposed to the
prediction accuracy of the sequence of frequently occurring
events. For instance, Dubey et al. used a fast and accurate wide-
area backup protection scheme for transmission lines based on
the synchronized phasor measurement [7]. Cui et al. integrated
the spatiotemporal model of system measurement into a
flexible Bayes classifier for network attack detection [8]. Sun
et al. also used an optimized temporal-spatial scheduling
strategy, in the presence of distributed generators, to schedule
appropriate charging requirements of plug-in electric vehicles
[9]. Furthermore, Cui et al. used the generalized graph Lap-
lacian matrix to visualize the spatiotemporal relationship of the
distributed layer phasor measurement unit data [10]. Rein-
forcement learning (RL) is a powerful technique in machine
learning that helps generalization because it enables the design
of model-free methods. In recent years, various studies have
been conducted using RL. Oh and Wang proposed an RL-
based energy storage systems operation strategy which was
used to investigate the wind power generation forecast un-
certainty [11]. Chen et al. proposed an offline predetermina-
tion-online-practice mode and embodied it as model-free
control based on RL [12]. Another type of powerful machine
learning technique is extreme learning (EL). The calculation is
based on a single hidden layer feedforward neural network,
which calculates the random weight between the input layer
and the hidden layer. By using the EL method and error
correction technique, Li et al. proposed a combined statistical
method for wind power forecasting [13]. Nonlinear approaches
such as radial basis function (RBF) neural networks, multilayer
perceptron (MLP) neural networks [14, 15], SVR [16], bagging
predictors [17], and regression-based trees [18] have attracted
considerable research interest. These approaches have dem-
onstrated sufficient nonlinear fitting capabilities for forecasting
demand. The SVM method, which was proposed by Valdimir
and Vapnik in 1995 [2], maps all data points into a high-di-
mensional space and then generates a hyperplane to maximize
the boundary between two classes and separate them. SVR was
proposed by Vapnik et al. in 1997 [19]. Compared with SVM
[3], SVR comprises loss functions, penalty factors, and other
elements for improving the robustness of the model. In the
SVRmethod, the total distance from each point to a hyperplane
is calculated after mapping data points to a high-dimensional
hyperplane. The hyperplane with the smallest total distance is
the best solution. SVR has been used successfully to solve
various problems in numerous fields, such as medicine [20],
and has been proven to be a superior prediction model for
time-series analysis [21] and regression analysis [22]. Research
based on ANNs and SVR, which have promising nonlinear
adaptability, has widened the application of nonlinearmethods.
Cang et al. proposed a nonlinear combination method that
involves the use of MLP neural networks to map the nonlinear
relationship between inputs and outputs [23]. Oliveira sug-
gested that SVR can be used to estimate the software project
effort.The findings of Oliveira indicate that the performance of
SVR is superior to that of RBF neural networks [24]. However,
the use of inappropriate parameter settings influences the
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implementation of ANN and SVR methods. Studies have
indicated that the accuracy of the aforementioned methods
strongly depends on the values of their hyperparameters.
Therefore, thorough guidelines must be developed [25, 26].

Hyperparameter optimization methods have attracted
considerable research attention and have been applied in
various areas. Many machine learning algorithms, such as
the genetic algorithm (GA) [27], particle swarm optimiza-
tion (PSO) [28], and differential evolution (DE) algorithm
[29], have been proposed for optimizing SVM hyper-
parameters. Luo introduced a novel artificial intelligence
approach for predicting the vertical load capacity of driven
piles in cohesionless soils through SVR optimized by the GA
[30]. Huang et al. combined the PSO algorithm with a
backpropagation neural network to establish a demand
estimation model [31]. Furthermore, Hasanipanah et al.
proposed a new hybrid PSO-SVR model for predicting air
overpressure caused by mine blasting [32]. Kuo and Li
presented a three-stage method that integrates wavelet
transforms, firefly algorithm-based K-means algorithms,
and firefly algorithm-based SVR for forecasting Taiwanese
exports [33]. Seyedpoor proposed a combination of SVR and
the DE algorithm for identifying damage in moment frame
connections [34]. Support vector regression (SVR) was
proposed by Vapnik et al. in 1997 [19]. The SVR algorithm
includes the insensitive loss and penalty factor functions;
thus, it has higher robustness than the support vector
machine (SVM) algorithm [2, 3]. SVR has been proven to be
a superior forecasting model for time series [21] and re-
gression analysis [22]. It has three hyperparameters: the
regularization parameter (C), bandwidth of the kernel
function (σ), and tube size of the ε-insensitive loss function
(ε). These hyperparameters considerably affect the accuracy
of SVR forecasting. However, automatic adjustment of the
aforementioned three hyperparameters in SVR remains a
prominent challenge for improving the accuracy of SVR
forecasting. The whale optimization algorithm (WOA) ex-
hibits a superior performance to other well-known heuristic
methods in solving global optimization problems [35] be-
cause it can strike a balance between exploitation and ex-
ploration during iterations [36]. The WOA can effectively
avoid the problem of local optima and maintain rapid
convergence. The WOA can be used with an optimization
algorithm to avoid the selection of unsuitable hyper-
parameters, which can result in overfitting or underfitting
[37]. Furthermore, the WOA has the advantages of global
optimization capabilities, few control hyperparameters, and
easy implementation. The WOA has been successfully ap-
plied in various optimization problems, such as photovoltaic
cell parameter estimation [38], wind speed prediction [39],
and energy-related carbon dioxide emission prediction [40].
In this study, we propose the WOASVR algorithm, which is
a combination of theWOA and SVR algorithm, for the high-
accuracy time-series forecasting analysis of student enroll-
ment and teacher statistics in Taiwan.TheWOA was used to
obtain suitable hyperparameters for SVR. Experimental
results indicated that theWOA outperformed the GRID and
PSO algorithms in terms of reducing regression errors in
SVR parameter estimation.

2. Related Works

Fertility rates are decreasing worldwide. The world’s total
fertility rate dropped from 5.0 children per woman in 1960
to 2.5 children per woman in 2014 [41]. In the early 1970s,
about 43% of the world’s population lived in high-fertility
countries where women on average had five or more chil-
dren over their reproductive years and about 18% lived in
countries with fertility rates below the replacement level (i.e.,
2.1 children per woman) [42]. At present, approximately
46% of the world’s population live in countries with sub-
replacement fertility and only 8% live in high-fertility
countries [42]. As a country enters into demographic
transition, its fertility may decline. What was probably
unexpected was the enormous population affected by the
decline in this short period of time [43–45], which is as
Caldwell [46] described “unpredicted and unprecedented.”

If the fertility rate continues to remain at such an ultralow
level, high-incomeAsian economies will face serious challenges
resulting from depopulation and rapid aging. The shrinking
labor force and increasing economic burden of supporting
elderly people will pose serious threats to their socioeconomic
development and sustainability. At present, governments in
Asian societies with ultralow fertility recognize the need to raise
fertility, but “exactly what should be done remains elusive”
[47, 48]. Formulation of effective population and fertility
policies entails a good understanding of the commonalities and
uniqueness of the situation in East and Southeast Asia, in
comparison with Western countries.

McDonald [49] has pointed out that low fertility rates in
Asian societies are related to (1) rising economic risk and
insecurity (particularly after the 1997 Asian financial crisis);
(2) the difference in gender equality at home and at work;
and (3) the lack of support from governments, employers,
and society for family needs of young adults [49]. In Asian
countries, marriage is often seen as a package of child-
rearing and bearing, caring for seniors, and other family
obligations, which puts a much heavier burden on women
than on men [45]. Furthermore, these societies place high
societal expectations on children’s education and career
achievements, which places great pressure on parents,
particularly mothers [50].

As the country with the lowest birthrate [51], the
birthrate of the Taiwanese has become the primary problem
of population change. Taking a long view, the low birthrate
will not be a short-term problem for Taiwan, but a wave of
shocks to the future. In education, primary, secondary, and
tertiary education institutions are facing challenges that they
have not seen in the past. The education problems faced by
the younger generation include a decrease in the number of
students enrolled and a surplus of teachers [52]. As a result
of the low birthrate, primary schools have reported that the
wave of decline has affected heavily [48], and with the in-
stability of the retirement system resulting from previously
announced adjusted pension policies, the older group of
school teachers retired several years ago [53]. Therefore, the
faculty in primary schools represents a younger population,
and more teachers are available than are required; this has
resulted in a wide range of “stray” teachers, and those with a
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teaching license are yet unable to obtain a formal position
due to a lack of vacancies [52]. Without new vacancies
opening in the near future and with birthrates continuing to
decline, the problem of surplus education graduates and
excess of existing teachers demands immediate attention
from authorities. In the aspect of the reduction of student
enrollment, schools must face the phenomenon of reducing
the number of classes year by year, which also implies that
school funding cuts are likely to occur [54]. This is hap-
pening not only in urban schools; schools in rural areas are
battling the crisis more intensively. Many more agricultural
counties, such as Kaohsiung, Pingtung, and Tainan counties,
have faced a tendency of combining multiple smaller schools
as a type of policy adjustment [55]. With the survival of
many schools at risk, the politics of education reform will
without doubt become significantly more difficult for the
Taiwan government.

3. Proposed Framework

3.1. SVR. SVM is a machine learning method based on
statistical learning theory (Vapnik–Chervonenkis theory)
and structural risk minimization [56]. The concept aims to
find the support vector in the data space to distinguish two
different categories to construct a hyperplane in the high-
dimensional feature space. This hyperplane can maximize
the boundary distance between the two categories and
distinguish the two categories of data correctly to obtain
high classification accuracy.

In 1997, the introduction of Vapnik’s insensitive loss
function ε [57] was extended to solve nonlinear regression
estimation and time-series prediction. The basic idea is to
give a set of data (xi, yi), ..., (xn, yn), where xi ∈Rd and yi ∈R, xi
is the input vector, yi is the target value, i� 1, 2, . . ., n, where
n is the sample size of the training data, the x is transformed
into a high-dimensional feature space F mapping through a
nonlinear mapping ϕ(x), and linear regression is performed
in the high-dimensional feature space. The SVR linear
function is as follows:

f(x) � w · ϕ(x) + b, (1)

where w is a weight vector, which represents the flatness of
f(x) in a high-dimensional space, and b is a deviation value;
ϕ represents a high-dimensional feature space, which is a

nonlinear mapping of the input space x. The coefficients of
the parameters w and b can be estimated by minimizing the
structural risk. The formula is as follows:

Rreg(C) � Remp(C) +
1
2

w
2

�
C

n
 n

i�1 yi − f(x)


ε +
1
2
w

2
,

(2)

|y − f(x)|ε �
0, |y − f(x)|≤ ε,
|y − f(x)| − ε, otherwise,

 (3)

where Rreg(C) andRemp(C) represent the regression error
and empirical error, respectively, which are calculated by the
ε-insensitive loss function as equation (3). (1/2)w2 is the
penalty term; C is the penalty constant, which is used to
control the degree of error penalty. The penalty term is
traded off from the empirical error. To obtain w and b, a
relaxation variable is added to equation (4).The formula is as
follows:

minimize Rreg w, ξ, ξ∗(  � C 

n

i�1
ξi + ξ ∗i(  +

1
2

w
2
,

subject to

−f xi(  + wϕ xi(  + bi ≤ ε + ξ ∗i ,

f xi(  − wϕ xi(  − bi ≤ ε + ξi,

ξi, ξ
∗
i ≥ 0, (i � 1, 2, . . . , n),

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where ξi and ξ ∗i are imported to measure all training data
that fall outside the ε-insensitive loss interval. With Lagrange
multipliers, satisfy αi × α∗i � 0, αi ≥ 0, α∗i ≥ 0, and include
them into equation (1), as in the following equation:

f(x) � 
n

i�1
αi − α∗i(  ϕ xi(  · ϕ(x)(  + b

� 
n

i�1
αi − α∗i( K xi, x(  + b,

(5)

with the Lagrange multiplier brought into equation (4) to
obtain the maximal dual equation. The formula is as follows:
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n

i�1
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0≤ αi ≤C, (i � 1, 2, . . . , n),

0≤ α∗i ≤C, (i � 1, 2, . . . , n),

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(6)

4 Computational Intelligence and Neuroscience



where K(xi, xj) is defined as the kernel function, and its
value is the inner product of two vectors in the feature space
ϕ(xi) and ϕ(xj). The kernel function can avoid complex
calculations in high-dimensional spaces. In this study, a
Gaussian radial basis kernel function (RBF) is used:

K xi, xj  � exp
xi − xj

�����

�����
2

2σ2
⎛⎜⎜⎝ ⎞⎟⎟⎠, (7)

where σ is the bandwidth of the RBF kernel function.

3.2. WOA. WOA was proposed by Mirjalili and Lewis [58].
It was inspired by whales’ upward spiral bubble-net hunting
behavior. In WOA, every humpback whale in the search
space is the candidate solution of the optimization problem.
The search whale is used to determine the global optimal
solution. Given the initial random candidate solution, WOA
updates the candidate solution until the end condition is
met. A humpback whale randomly swims to search for prey,
and spiral bubble-net predation establishes a mathematical
model. The WOA has three different behavior patterns:
encircling prey, bubble-net attack method, and search for
prey. The details of the three behavior patterns are intro-
duced subsequently.

3.2.1. Encircling Prey. The humpback whales identify the
prey position and surround the prey. It is assumed that the
current position of the best individual whale is the position
of target prey or closest to the target prey. Other whales in
the population update their positions according to the
current position of the prey. The updating function can be
formulated by

D
�→

� C
→

· X
∗��→
(t) − X

�→
(t)



, (8)

X
�→

(t + 1) � X
∗��→
(t) − A

→
· D
→

, (9)

where t is the current iterations, A
→

and C
→

are coefficient
vectors, X

∗��→
is the current best solution position vector, and

X
�→

is the current solution position vector. The coefficient
vectors A

→
and C

→
are as follows:

A
→

� 2a
→

· r
→

− a
→

, (10)

C
→

� 2 · r
→

, (11)

a
→

� 2 −
2t

Max t
 , (12)

where r
→ is a random vector between [0, 1], a

→ is linearly
reduced from 2 to 0 during the iteration, and Maxt is the
maximum iterations.

3.2.2. Bubble-Net Attacking Method. According to the
foraging behavior of humpback whales using a bubble net,
two kinds of behavior mechanisms exist: a shrinking
encircling mechanism and a spiral updating position. The

positions of contraction encirclement and spiral renewal are
as follows:

(1) Shrinking encircling mechanism: when a
→ decreases

linearly from 2 to 0 during the iteration process, this
behavior reduces A

→
in equation (10) by equation (12)

to achieve contraction envelopment, in which A
→

is
[−a, a] random value within the interval. Therefore,
by setting the random value A

→
between [−1, 1], the

position of the individual whale group appears at any
position between the current position and the cur-
rent position of the best solution.

(2) Spiral updating position: this stage calculates the
distance between the individual whale group and its
prey and then creates a spiral model between the
individual whale group and its prey position to
simulate the spiral swimming behavior of the
humpback whale. The model can be formulated by

X
�→

(t + 1) � D′
�→

· e
bl

· cos(2πl) + X
∗��→
(t), (13)

D′
�→

� X
∗��→
(t) − X

�→
(t)



, (14)

where D′
�→

is the distance between the current best position of
the individual whale and its prey, b is a constant defining the
spiral shape, and l is a random value between [−1, 1].

When humpback whales shrink around prey and move
to feed along the spiral shape path at the same time, it is
assumed that the probability of two behavior mechanisms
selected in the process of updating the individual position of
the whale group is 0.5. The position updating can be for-
mulated by

X
�→

(t + 1) �
X
∗��→
(t) − A

→
· D
�→

,

D′
�→

· e
bl

· cos(2πl) + X
∗��→
(t).

⎧⎪⎨

⎪⎩
(15)

3.2.3. Search for Prey. When |A|≥ 1, in the stage of searching
for prey, individuals of the whale group randomly search for
prey according to each other’s position. A

→
takes a random

value; when it is greater than 1 or less than −1, it forces the
whale group to deviate from the prey’s location to search for
other more suitable prey, so that WOA has the best global
search ability. The mathematical model is as follows:

D
�→

� C
→

· Xrand
�����→

− X
�→

, (16)

X
�→

(t + 1) � Xrand
�����→

− A
→

· D
�→

, (17)

where Xrand
�����→

is a randomly selected position from the current
whale group.

3.3. Selecting SVR Parameters Using WOA. The SVR pa-
rameters are selected using WOA, as presented in Figure 1
and Algorithm 1. When setting up the SVR model, the
parameters can influence the prediction effect. SVR includes
three parameters: the C penalty constant, the ε-insensitive
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Dataset

Training data

Testing data

Initialize (C, σ, ε) and
WOA parameters

Optimal SVR
parameters (C, σ, ε)

Train SVR model

Calculate the fitness
value

Satisfy
stopping
criteria

Yes No

Train optimal SVR
model

Test SVR model

The results of the 
WOASVR forecast

Bubble-net
attacking update
object position

Search for prey
update object

position

Encircling
prey update

object positon

Yes

No

No Yes

Select a
random search

agent Xrand
|A| < 1

P < 0.5

Generate a random number p in [0,1]

WOA
Calculate the value of a and update

the parameters of A and C

Update X∗ if there is a better
solution

Figure 1: WOASVR flowchart.

Initialize the whale population Xi(i � 1, 2, 3, . . . , n)

Initialize a, A, and C
Calculate the fitness value of each whale
X∗ � the best whale
(1) t� 0
(2) while (t<Max_iter)
(3) for each search whale
(4) Update a, A, C, l, and p
(5) if (p< 0.5)
(6) if |A|< 1
(7) Update the position of the current whale by Encircling prey
(8) else
(9) if |A|≥ 1
(10) Select a random whale (Xrand)

Update the position of the current whale by search for prey
(11) end
(12) end
(13) else
(14) if (p≥ 0.5)
(15) Update the position of the current whale by bubble-net attacking method
(16) end
(17) end
(18) end for
(19) Check if any whale goes beyond the search space and amend it
(20) Calculate the fitness value of each whale
(21) Update X∗ if there is a better solution
(22) t � t + 1
(23) end while
(24) return X∗

ALGORITHM 1: Whale optimization algorithm.
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loss function, and the bandwidth of the σ kernel function.
An improper approach could cause the overfitting or
underfitting of parameter selections. In this study, the WOA
algorithm was used to select the parameters of the SVR
model. Figure 1 illustrates a flowchart of WOASVR. The
process is as follows:

Step 1: the WOA parameters are initialized, and then a
whale is randomly generated in the search space. Each
whale i is represented by xi � {C, ε, σ}.
Step 2: to evaluate fitness value, put the three pa-
rameters C, ε, and σ into the SVR model to predict the
problem, and use k-fold cross-validation (CV) during
the training phase to avoid overfitting and calculate
the validation error value, divide the data randomly
into k sets, then use one set as testing data and the
remaining k − 1 sets as training data; repeat until each
set has been used as test data. The final prediction
result is compared with the actual result. The mean
absolute percentage error (MAPE) is used as the
adaptation function, and the kMAPEs are averaged to
obtain the final MAPEcv. The value of k is set to 4,
which is calculated as follows:

MAPECV �
1
n



n

i�1

yi − fi

yi




× 100%, (18)

where yi is the actual value, fi is the predicted value,
and n is the sample size of the test data.
Step 3: use the fitness function of equation (18) to
calculate the fitness value of the individual whale group.
The best individual whale group with the best fitness
value is saved as X∗.
Step 4: if the current number of iterations (t)≤ the max-
imum number of iterations (Maxt), update a, A, C, l, and p.
Step 5: when p< 0.5, A< 1 uses equation (9) to update
the current position of the individual whale group. If
A≥ 1, randomly select the individual whale group
position Xrand from the current whale group and use
equation (17) to update the current individual whale
herd position.
Step 6: when p≥ 0.5, use equation (13) to update the
current position of the individual whale group.
Step 7: use the fitness function of equation (18) to
calculate the fitness value of the individual whale group,
and find and save the best individual whale group in the
current group (X∗).
Step 8: determine whether the termination condition is
met. If the condition is met, output the adaptive value
position X∗ of the individual whale group; otherwise
t� t+ 1, repeat steps (4) to (7), and X∗ is the SVR
model’s optimal parameters.
Step 9: use the optimal parameters to train the SVR
model.
Step 10: use the best trained SVR model to predict the
result.

3.4. Performance Criteria. To evaluate the forecast perfor-
mance of the WOASVR model, two common statistical
measures were used in this study, namely, the root mean
square error (RMSE) and MAPE, for comparing the devi-
ation of the actual and predicted values. The RMSE and
MAPE metrics are expressed in (19) and (20), respectively.

RMSE �

�������������

1
n



n

i�1
yi − fi( 

2




, (19)

MAPE �
1
n



n

i�1

yi − fi

yi




× 100%, (20)

where yi is the actual value, fi is the predicted value, and n is
the sample size of the test data.

4. Experimental Results

4.1. Datasets and Preprocessing. A hybrid model, combi-
nation of WOA and SVR (WOASVR), is presented to
forecast student enrollment and teacher statistics in Taiwan.
To evaluate the proposed approach, we applied it to data on
student enrollment and teacher statistics as a case study.
From 1999 to 2018, data were collected in a Ministry of
Education database, and demographics were categorized for
public and private schools [59]. The training data used to
train the algorithms consisted of the annual data for
1999–2012. The forecast accuracy was evaluated using the
testing data, which consisted of the annual student enroll-
ment and teacher statistics data for 2013–2018.

4.2. SVR Parameter Settings. SVR has three hyper-
parameters: the regularization parameter (C), bandwidth of
the kernel function (σ), and tube size of the ε-insensitive loss
function (ε). These hyperparameters considerably affect the
accuracy of SVR forecasting.The traditional SVRmodel uses
a grid search method (GRIDSVR) to determine optimal
hyperparameters. GRIDSVR increases the hyperparameters
exponentially [60]. Therefore, the search parameters of
GRIDSVR were set as follows: C� [20, 21, 22, . . ., 222],
σ � [2−10, 2−9, 2−8, . . ., 20], and ε� [2−10, 2−9, 2−8, . . ., 20]. In
this study, two popular machine learning algorithms,
namely, PSO and WOA, are proposed to optimize SVR
hyperparameters. The population size in PSO was set as 50,
the acceleration factors c1 and c2 were set as 2.0, and the
maximum number of iterations was set as 100. The afore-
mentioned hyperparameters were selected in accordance
with the study of Bratton and Kennedy [61]. The population
size in WOA was set as 20, and the maximum number of
iterations was set at 100. The training results obtained from
GRIDSVR, PSOSVR, and WOASVR methods with the se-
lected hyperparameters for student and teacher forecasting
are presented in Tables 1 and 2, respectively.

4.3. Comparison of the ETS, ARIMA, TBATS, GRIDSVR,
PSOSVR, and WOASVR. In this study, a WOASVR model
which combined WOA with SVR algorithms was proposed.
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TheWOAmethod was used to optimize the SVR parameters
and enhanced the performance of SVRmodel. The proposed
model was applied to number forecasting of student en-
rollment and teachers to obtainminimal prediction error. To
evaluate the performance of time-series forecast, the pro-
posed model (WOASVR) was compared with an SVRmodel
optimized by PSO or a grid search algorithm and the sta-
tistical models included ARIMA [5], ETS [4], and TBATS
[6]. Mean absolute percentage error (MAPE) and root mean
square error (RMSE) were used as a performance inter-
pretation metric. In a practical time-series forecasting ex-
perience, a limited dataset is a frequent drawback for
statistical models; it can be quite challenging to achieve the
desired results with limited samples. The SVR approach with
its strong generalization capability can effectively overcome
technical challenges such as minimal datasets and nonlinear,
high-dimensional, and local minimum values. Tables 3 and 4
present the average MAPE values of the forecasts obtained
using ARIMA, ETS, SVR, PSOSVR, and WOASVR for both
datasets (public school and private school). As shown in
Table 3, for the public school, the MAPE values of ARIMA,
ETS, TBATS, GRIDSVR, PSOSVR, and WOASVR were
3.00, 7.98, 5.65, 5.45, 2.45, and 2.09, respectively.That means
the student enrollment forecasting accuracies of the pro-
posed method WOASVR were superior to the other models.
For the private school, the student enrollment forecasting
accuracies of the proposed method WOASVR (2.11) were
also superior to the other models, including ARIMA, ETS,
TBATS, GRIDSVR, and PSOSVR, with the MAPE values of
4.50, 5.41, 7.16, 5.53, and 3.62, respectively. For the teacher

forecasting accuracies of public school, shown in Table 4,
WOASVR (1.39) also revealed a lowest MAPE value com-
pared with ARIMA (1.65), ETS (1.67), TBATS (2.75),
GRIDSVR (2.12), and PSOSVR (1.46). The same finding was
obtained for the private school, and the MAPE value of
WOASVR (2.86) was lower than those of ARIMA (3.77),
ETS (5.43), TBATS (11.59), GRIDSVR (7.00), and PSOSVR
(3.38). The results suggest that the WOASVR model is the
most effective in parameter optimization and is feasible for
predicting student enrollment and teacher numbers. Fig-
ures 2 and 3 describe the differences between the actual data
and the prediction results.

5. Discussion

5.1. Model Performance. To achieve high efficiency, pre-
diction accuracy, and stability, optimal hyperparameters
must be determined for the SVM algorithm. However, the
selection of appropriate SVR hyperparameters is a vital
challenge. In this study, we proposed the WOASVR algo-
rithm, which is a combination ofWOA and SVR algorithms,
for the high-accuracy time-series forecasting analysis of the
student enrollment and teacher statistics in Taiwan. The
algorithm WOA was used to determine suitable hyper-
parameters for SVR. The predictive power of the WOASVR
approach was compared with those of five well-known al-
gorithms: ARIMA, ETS, TBATS, GRIDSVR, and PSOSVR.
The datasets of student and teacher numbers between 1991
and 2018 were used to compare the performance of the
proposed algorithm with that of the aforementioned five

Table 1: Training results of GRIDSVR, PSOSVR, and WOASVR under selected parameters (students).

Number of students
C ε σ

GRIDSVR PSOSVR WOASVR GRIDSVR PSOVR WOASVR GRIDSVR PSOSVR WOASVR
Primary school-public 512.00 629793.30 1825063.86 0.0312 0.0261 0.0383 0.0156 0.0047 0.0538
Primary school-private 128.00 93053.61 135594.15 0.1250 0.0227 0.0120 0.0156 0.0254 0.0372
Secondary school-public 256.00 2605425.88 2203505.62 0.0039 0.2257 0.2134 0.0039 0.0157 0.0005
Secondary school-private 2.00 64931.66 55942.95 0.0039 0.0079 0.1100 0.0312 0.0604 0.0345
High school-public 64.00 122065.09 161139.26 0.2500 0.0214 0.0161 0.0039 0.0100 0.0026
High school-private 512.00 1573376.00 66764.71 0.0625 0.6250 0.0952 0.0078 0.0020 0.7245
University-public 512.00 232923.95 67587.11 0.0312 0.1108 0.0878 0.0039 0.0035 0.0059
University-private 512.00 74970.22 24053.28 0.2500 0.1617 0.0227 0.0039 0.0062 0.0157
GRIDSVR, grid search support vector regression; PSOSVR, particle swarm optimization support vector regression; WOASVR, whale optimization algorithm
support vector regression; C, penalty factor; ε, epsilon; σ, sigma.

Table 2: Training results of GRIDSVR, PSOSVR, and WOASVR under selected parameters (teachers).

Number of teachers
C ε σ

GRIDSVR PSOSVR WOASVR GRIDSVR PSOVR WOASVR GRIDSVR PSOSVR WOASVR
Primary school-public 1024.00 1585.32 4096.00 0.0156 0.2352 0.1458 0.0313 0.0012 0.0111
Primary school-private 512.00 11688.09 388640.22 0.1250 0.0089 0.1053 0.0156 0.0432 0.0056
Secondary school-public 1024.00 39199.21 241867.33 0.0078 0.0273 0.0111 0.0078 0.3034 0.0768
Secondary school-private 16.00 69.35 62.58 1.0000 0.3033 0.2433 0.0313 0.3931 0.1938
High school-public 256.00 97122.75 94308.38 0.0313 0.0079 0.0083 0.0039 0.1453 0.1694
High school-private 1024.00 8192.00 8183.06 0.0156 0.0125 0.0185 0.0039 0.0111 0.0253
University-public 16.00 8447.03 7563.32 0.2500 0.3330 0.1712 0.0156 0.0042 0.8350
University-private 4.00 2072.83 1955.08 1.0000 0.8612 0.6734 0.0039 0.0137 0.0132
GRIDSVR, grid search support vector regression; PSOSVR, particle swarm optimization support vector regression; WOASVR, whale optimization algorithm
support vector regression; C, penalty factor; ε, epsilon; σ, sigma.
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methods. The hyperparameters acquired using the
WOASVR model were more accurate than those acquired
using the GRIDSVR and PSOVR models; thus, the
WOASVR algorithm was more effective on the optimization
of SVR hyperparameters than the GRIDSVR and PSOSVR
algorithms. The WOA algorithm can provide high local
optima avoidance and convergence speed during the course

of iteration. Moreover, the WOASVR algorithm achieved
higher forecasting accuracy than the other methods. The
results indicate that the WOASVR model is a superior
method for forecasting student enrollment and teacher
statistics.

Only two parameters were considered during the
implementation of the WOASVR method: namely, the size

Table 4: Performance comparison of different forecasting models for teacher dataset.

Number of teachers Criteria ARIMA ETS TBATS GRIDSVR PSOSVR WOASVR

Primary school
Public MAPE (%) 1.65 1.67 2.75 2.12 1.46 1. 9

RMSE 1835.08 1915.49 3259.28 2522.98 1769.12 1702.2 

Private MAPE (%) 3.83 8.15 10.88 6.92 3.44 2.86
RMSE 84.62 159.46 236.42 158.92 77.21 61.8

Secondary school
Public MAPE (%) 2.50 4.27 6.54 4.60 2.25 2.04

RMSE 1427.81 2348.59 3901.30 2665.91 1340.90 1 06.95

Private MAPE (%) 5.57 6.26 13.03 12.42 4.61  .9 
RMSE 39.06 41.06 68.30 87.88 38.59  2.67

High school
Public MAPE (%) 1.13 2.48 1.40 2.55 0.7 0.69

RMSE 474.53 1058.47 675.91 953.11 292.2 288.08

Private MAPE (%) 3.27 4.10 4.38 3.91 3.09  .07
RMSE 757.49 906.79 1094.97 815.19 712.99 702.78

University
Public MAPE (%) 2.45 1.54 2.65 1.59 1.31 1.21

RMSE 931.06 600.89 999.42 715.22 527.44 471.26

Private MAPE (%) 2.42 3.22 18.08 4.76 2.36 1.58
RMSE 1614.25 2379.39 11928.49 3482.68 1773.46 1 76.06

Average
Public MAPE (%) 1.93 2.49 3.34 2.72 1.43 1.  

RMSE 1167.12 1480.86 2208.98 1714.31 982.42 942.1 

Private MAPE (%) 3.77 5.43 11.59 7.00 3.38 2.86
RMSE 623.86 871.68 3332.05 1136.17 650.56 54 .  

ARIMA, autoregressive integrated moving average; ETS, exponential smoothing; TBATS, Trigonometric Seasonal Box–Cox Transformation with ARMA
residuals Trend and Seasonal Components; GRIDSVR, grid search support vector regression; PSOSVR, particle swarm optimization support vector re-
gression; WOASVR, whale optimization algorithm support vector regression; boldface, the best values in each row.

Table 3: Performance comparison of different forecasting models for student enrollment dataset.

Number of students Criteria ARIMA ETS TBATS GRIDSVR PSOSVR WOASVR

Primary school
Public MAPE (%) 3.57 12.89 3.11 6.65 1.61 0.86

RMSE 47989.51 159243.65 40320.54 86053.33 21606.28 12787.62

Private MAPE (%) 3.12 7.16 7.95 6.06 1.46 1.07
RMSE 1243.26 2626.75 3439.16 2761.55 739.57 528.48

Secondary school
Public MAPE (%) 6.03 15.59 16.53 8.74 6.00 5.57

RMSE 40912.00 98097.44 116066.74 74626.56 40615.21  9029.75

Private MAPE (%) 2.14 3.40 3.72 3.61 2.46 1.85
RMSE 2233.16 3421.01 4051.42 3522.10 2418.49 2049.95

High school
Public MAPE (%) 2.15 2.55 2.03 4.80 1.95 1.71

RMSE 12232.91 14061.67 11797.81 22763.48 12199.88 11762.71

Private MAPE (%) 7.68 7.51 7.55 7.56 6.75 4.16
RMSE 33472.75 30483.37 32005.37 32036.26 30279.43 17782. 2

University
Public MAPE (%) 0.24 0.89 0.91 1.61 0.22 0.2

RMSE 1181.90 4188.08 4933.25 7319.07 1208.03 1105.6

Private MAPE (%) 5.06 3.56 9.43 4.87 3.80 1. 6
RMSE 50997.54 39093.13 95690.97 56050.40 48495.19 15621.16

Average
Public MAPE (%) 3.00 7.98 5.65 5.45 2.45 2.09

RMSE 25579.08 68897.71 43279.59 47690.61 18907.35 16171.42

Private MAPE (%) 4.50 5.41 7.16 5.53 3.62 2.11
RMSE 21986.68 18906.07 33796.73 23592.58 20483.17 8995.48

ARIMA, autoregressive integrated moving average; ETS, exponential smoothing; TBATS, Trigonometric Seasonal Box–Cox Transformation with ARMA
residuals Trend and Seasonal Components; GRIDSVR, grid search support vector regression; PSOSVR, particle swarm optimization support vector re-
gression; WOASVR, whale optimization algorithm support vector regression; boldface, the best values in each row.
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Figure 2: Illustrations of forecast results for student enrollment datasets: (a) primary school-public; (b) primary school-private; (c) middle
school-public; (d) middle school-private; (e) high school-public; (f ) high school-private; (g) university-public; (h) university-private.
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Figure 3: Illustrations of forecast results for teacher datasets: (a) primary school-public; (b) primary school-private; (c) middle school-
public; (d) middle school-private; (e) high school-public; (f ) high school-private; (g) university-public; (h) university-private.
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of the population in WOA and the maximum number of
iterations. A large population size and number of iterations
enhanced the searching ability for determining the trends of
student and teacher numbers in Taiwan. However, the
computational time also increased with the population size
and number of iterations. In this study, the WOASVR
method required a population size of only 20, whereas the
PSOSVR method required a population size of 50. Using the
common PSO parameter optimization approaches, the
overall performance revealed that WOA achieved a better
result and reduced operating costs in fewer iteration. Thus,
the parameter-optimizing ability of WOASVR was superior
to that of PSOSVR [58]. The high search capability of WOA
was due to the population location update mechanism,
which is presented in equation (17). Equation (17) requires
population to move randomly in the initial steps of the
iterative operation. However, in the remainder of the iter-
ative operation, the high development and convergence
derived from equation (15) are emphasized. In accordance
with equation (15), the population repositions itself around
the current best solution or moves in a spiral path to seek the
new best solution. Because the aforementioned two stages
were conducted separately and each stage only required
approximately half number of the iterations for parameter
optimization, WOASVR exhibited a better local optimal
avoidance and convergence speed than the other methods
[58].

5.2. Trend Evaluation. In the early 2000s, new education
institutions were still opening in Asia to cater to the in-
creasing number of children, particularly the large numbers
of babies born in the dragon years 1988 and 2000. Two
decades later, many schools are closing. Ministry of edu-
cation in various countries is left with reluctant decisions
regarding shrinking school cohorts and is either closing or
merging schools. The considerable decline of birthrates has
evidently made an impact on student enrollment, with el-
ementary schools first pushed to the edge. In this study,
accurate forecasts from the proposed methodology offer
findings that are capable of providing the government,
administrators, and educators a picture of future school
attendance trends and what these trends mean for the de-
mand for education. Applicable strategies are also provided
to accommodate the found trends.

Numerous trends are worth noting. First, as shown in
Figures 2(a) and 2(b), the trends for public and private
primary student enrollment were in opposite directions.
Whereas public school student enrollment is declining,
private schools are surprisingly gaining students. This
finding can be explained by the emergence of the quantity-
quality trade-off theory developed by Becker and associates
[62–67]. According to their model, the increasing marginal
cost of quality (child output) in terms of quantity (number of
children) leads to a trade-off between quantity and quality.
Countries with a low fertility rate tend to be wealthier, with
higher per capita incomes [67]. Smaller families could invest
more in each child, thus improving education, health, and
cognitive ability. Compulsory education provided by the

Taiwanese state was meant to enable all citizens to receive
basic education by providing education based on a standard
academic curriculum. Private schools charge parents higher
cost tuition than the norm claim to provide students ad-
ditional assistance in academic training or opportunities to
participate in additional extracurricular activities to cultivate
additional “talents”. Additional tuition is also often used to
provide students better facilities and amenities than those
provided to their public counterparts. Our results suggest
that with the low fertility rate in Taiwan [51], current
Taiwanese parents are willing to invest a relatively large
amount of money in their children’s education; therefore,
they select private schools over public schools for their
children’s education. The trend of our forecast is consistent
with the quantity-quality trade-off theory of Becker et al.
[62–67]. Small Taiwanese families, which have strong fi-
nancial capability, are willing to invest considerable money
for their children’s education, health, and cognitive skill
cultivation.

The numbers of student enrollment and teachers also
caught our attention. As shown in Figures 2(c) and 2(d), a
quite considerable increase of student enrollment occurred
in 2014. Students who were enrolled as freshmen that year
were mostly born in 2000, the year of the dragon. There is
typically a bump in the number of children born in the
dragon year, considered in Chinese culture to be auspicious,
which demands that school administrations and govern-
ments cater to this projected population. Lastly, another
trend (presented in Figure 3) was a major drop in the
number of teachers in 2015, possibly the result of retirement
waves among public school teachers. In 2013, with the aim to
prevent the existing pension system from going bankrupt,
new pension policies were introduced by the Taiwanese
government, which delayed the official retirement age.
Around the same time, in hopes to foster future generations’
key competency and the nation’s economic competency, a
new law named 12-year Curriculum for Basic Education was
approved [68]. The law readjusted the Taiwan’s education
system to align with demographic changes and current
problems the island was facing, and many changes were
unfamiliar to teachers. Many teachers, under the pressure of
facing foreign curriculums and the extended retirement age
policy, decided to retire before the law was implemented,
hence the considerable drop in the number of teachers. For
the many challenges ahead, the following strategies are
elaborated for future reference.

5.3. Further Strategic Implications. It is inevitable that
schools should be repurposed after a declining fertility trend.
Schools bolster the local community and support residents’
well-being, which contributes to a positive neighborhood
[69]; therefore, to repurpose schools, developing community
hubs on unused school space is essential [70]. A practical
strategy is to place recruitment efforts in searching for new
markets. Elder-friendly community models, as defined by
theWorld Health Organization, are ones that promote active
aging [71], which is a process that enhances life quality while
aging. Engagement inmeaningful activities, such as learning,
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can contribute to good physical and psychological health
[72]. With the extra resources and facilities that were once
used to accommodate the younger population’s education
needs, schools can provide the elder population an op-
portunity to learn as well.

A reform of the higher education system demands at-
tention. Following universal expansion and reform, Taiwan’s
higher education system has received wide recognition and
is considered reputable in Asia. Due to the “410 Demon-
stration for Education Reform” policy, the number of higher
education institutions in Taiwan rapidly increased, from 130
in 1994 to 164 in 2007 [73]. In 2008, the percentage of high
school graduates who entered university hit 95%, and it has
remained this high since. This policy has then caused a
failure of the system to be discriminative, and with the
considerable birthrate decline, the future of Taiwan’s higher
education system is even less positive. Today, facilitating a
university elimination mechanism for endangered schools is
a necessity for Taiwan, by either shutting down those with
poor performance or transforming them into other pur-
poses. A well-thought scanning initiative will decrease
wasteful investments and steer effort toward upgrading
higher education quality, which is an additional imple-
mentation Taiwanese higher education currently needs [74].
Government and school administrators should rethink the
concepts and directions of school management and adjust
administration strategies and policies in response to the
declining birthrate in Taiwan. To increase national com-
petence, accurate forecasting of student enrollment and
teacher statistics is critical for ensuring that human re-
sources can be effectively developed in the future.

6. Conclusion

Inevitable demographic change is a force all nationsmust face
today. With the phenomenon of a declining birthrate, gov-
ernment education departments, schools, and educators
should rethink the concept and direction of school man-
agement and adjust administration strategies and policies in
response to this social trend. To increase national compe-
tence, accurate forecasting of student enrollment and teacher
statistics is critical to ensuring that human resources can be
effectively developed. In this study, we proposed the
WOASVR algorithm which was combined with WOA and
SVR for the forecasting of student enrollment and teacher
statistics. WOA was used to tune the suitable parameters for
SVR. The datasets of student and teacher numbers between
1991 and 2018 were used to evaluate the performance of the
proposed algorithm. The predictive power of the WOASVR
approach was compared with well-known algorithms in five
models: ARIMA, ETS, TBATS, GRIDSVR, and PSOSVR.The
parameters acquired using the WOASVR model were more
accurate than those acquired using GRIDSVR and PSOVR,
which indicates thatWOASVR ismore effective at optimizing
SVR parameters than GRIDSVR or PSOSVR. The results
indicate WOA algorithm has the ability to provide high local
optima avoidance and convergence speed during the course
of iteration. Moreover,WOASVR achieved higher forecasting
accuracy than the other methods, indicating that the

WOASVRmodel is a superior method for forecasting student
enrollment and teacher statistics.
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