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Licorice extract is a Chinese herbal medication most often used as a demulcent or elixir. The extract usually consists of many
components but the key ingredients are glycyrrhizic (GL) and glycyrrhetinic acid (GA). GL and GA function as potent
antioxidants, anti-inflammatory, antiviral, antitumor agents, and immuneregulators. GL and GA have potent activities against
hepatitis A, B, and C viruses, human immunodeficiency virus type 1, vesicular stomatitis virus, herpes simplex virus, influenza
A, severe acute respiratory syndrome-related coronavirus, respiratory syncytial virus, vaccinia virus, and arboviruses. Also, GA
was observed to be of therapeutic valve in human enterovirus 71, which was recognized as the utmost regular virus responsible
for hand, foot, and mouth disease. The anti-inflammatory mechanism of GL and GA is realized via cytokines like interferon-y,
tumor necrotizing factor-a, interleukin- (IL-) 14, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, and IL-17. They also modulate anti-
inflammatory mechanisms like intercellular cell adhesion molecule 1 and P-selectin, enzymes like inducible nitric oxide synthase
(iNOS), and transcription factors such as nuclear factor-kappa B, signal transducer and activator of transcription- (STAT-) 3,
and STAT-6. Furthermore, DCs treated with GL were capable of influencing T-cell differentiation toward Th1 subset. Moreover,
GA is capable of blocking prostaglandin-E2 synthesis via blockade of cyclooxygenase- (COX-) 2 resulting in concurrent
augmentation nitric oxide production through the enhancement of iNOS2 mRNA secretion in Leishmania-infected

macrophages. GA is capable of inhibiting toll-like receptors as well as high-mobility group box 1.

1. Introduction

Licorice extract is a Chinese herbal medication most often
used as a demulcent or elixir [1]. Glycyrrhizin (GL) is one
of the principally effective and efficient ingredients of licorice
extract [1-3]. GL is a triterpene saponin which has aglycone
component known as glycyrrhetinic acid (GA) [1]. GA is a
pentacyclic triterpenoid of oleanene type with a hydroxyl
group at C-3, a carboxyl moiety at C-30 as well as a ketone
functional group at C-11 [2]. GL and GA have been demon-
strated to possess antioxidant properties as well as robust
anti-inflammatory, antiviral, antitumor, and immuneregula-
tory properties [4-6]. GL was capable of triggering the
blockade of receptor-mediated endocytosis resulting in the
inhibition of viral infiltration into the cells [5, 7].

GL triggers biological activities at the cellular level via
novel gbPs, which are responsible for anti-inflammatory
and antiviral effects [5, 8]. GL was capable of triggering the

production of interferons (IFNs), accelerated the activities
of natural killer (NK) cells as well as regulated the growth
response of lymphocytes via the acceleration of interleukins-
(IL-) 2 production [1, 8, 9]. Furthermore, GL has the ability
to modulate the immune response at the initial stage of the
disease process via the dendritic cells (DCs) [10]. GA inhib-
ited anti-FAS antibody-triggered mouse liver injury but did
not facilitate the upregulation of tumor necrotizing factor-«
(TNF-a) messenger RNA (mRNA) secretion in the liver [11].

This review explores the fundamental immune and
inflammatory players regulated by GL and GA. The “boolean
logic” was utilized to search for the article on the subject mat-
ter. Most of the articles were indexed in PubMed with strict
inclusion criteria being in vitro and in vivo up or downregu-
lation of these immune and inflammatory biomarkers in
diverse disease conditions. Inflammation, DCs, cyclooxygen-
ase, and prostaglandins, cytokines like ILs, IFNs, TNF-q,
nuclear factor-«B (NF-«B), mitogen-activated protein kinase
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(MAPK), Toll-like receptors (TLRs), high-mobility group
box 1 (HMGBI1), and chemokines like CCL11 as known as
eotaxin 1 as well as enzymes like nitric oxide were explored.

2. Uses

Glycyrrhizin (GL) obtained from the dried roots of the lico-
rice shrub is very sweet tasting and has been utilized as fla-
vors in diverse food products and treatment of diseases for
over 4000 years [12]. Currently, GL is used to flavor consum-
able products like chocolate, chewing gum, some alcoholic
beverages, and cigarettes [12, 13]. Carbenoxolone (GC), the
derivative of glycyrrhetinic acid (33-11-oxoolean-12-en-30-
oic acid 3-hemisuccinate), was used to treat peptic ulcer
disease, allergic diseases, tumors or cancers, divers’ viral dis-
eases, and premenstrual syndromes [4-6]. They possess anti-
inflammatory, antioxidant, antihyperglycemic, antilipidemic,
and hepatoprotective properties [4-6]. Their key therapeutic
usage of GC is for the treatment of viral diseases [14].
Chronic hepatitis C is the current target for use of GC in
modern medicine [12, 15].

Several in vivo and in vitro studies showed that GL and
GA have potent activities against hepatitis A, B, and C
viruses, human immunodeficiency virus (HIV) type 1,
vesicular stomatitis virus, herpes simplex virus, influenza
A, severe acute respiratory syndrome- (SARS-) related
coronavirus, respiratory syncytial virus, vaccinia virus, and
arboviruses [2, 7, 16-20]. Also, GA was observed to be of
therapeutic valve in human enterovirus 71, which was recog-
nized as the utmost regular virus responsible for the hand,
foot, and mouth diseases [2]. GL and GA demonstrated to
have antibacterial actions against gram-positive bacteria like
Bacillus subtilis and Staphylococcus aureus as well as gram-
negative bacteria like Escherichia coli and Pseudomonas
aeruginosa [2, 21, 22]. Furthermore, GA was capable of
blocking the survival of methicillin-resistant S. aureus via
the attenuation of its virulence gene expression [2, 23]. Also,
GA has demonstrated to have antiparasitic potentials and its
efficacy as an anti-malarial as well as antileishmanial has
been elaborated in experimental studies [2, 24, 25].

3. Pharmacokinetics

GA is rapidly absorbed after oral administration, and its
kinetics exhibited a biphasic association with a distribution
phase preceded by a slower elimination phase [12, 26]. The
medication is usually in a capsule form containing 500 mg
of pure GA per capsule [26]. It was established that neither
absorption nor elimination of GA was dose-dependent [26].
Several studies detected GA in both rats as well as human
plasma [12]. On the other hand, GL is metabolized presyste-
mically via commercial bacteria into GA and totally absorbed
into the blood stream after oral intake [12, 27].

Studies have shown that the hydrolysis of GL to GA was
carried out by bacteria strains like Eubacterium sp. (strain
GHL), Ruminococcus sp. (PO1-3), and Clostridium inno-
cuum (ES2406). These commercial bacteria were isolated
from human feces and demonstrated enough hydrolyzing
activity for GL [12, 28, 29]. The bacteria strains capable of
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hydrolyzing GL into GA possess a specific $-glucuronidase,
because common pS-glucuronidases like Escherichia coli
were unable to hydrolyze GL [12, 28]. After hydrolysis of
GL into GA, intestinal bacteria convert GA partially into
3-a-183-GA, through a metabolic intermediary 3-oxo-18§-
GA [12, 27].

Also, the plasma clearance of GL after an intravenous
bolus dose to rats exhibited a biphasic pattern, in which the
distribution phase was preceded by a slower elimination
phase [30, 31]. However, realistic plasma levels of GA were
observed to be approximately 100 mg/ml after intravenous
administration [30, 31]. Also, the distribution of GA to the
body tissues was negligible because tissue-to-blood partition
coeflicients were observed to <1 for all body tissues of rats
[12, 32]. Interestingly, the uptake of GL into rat hepatocytes
was competitively blocked by GA (46). This means that the
plasma to liver transport of GA is facilitated by the same
uptake carrier [31].

Studies have demonstrated that habitual usage of GA in
consumable products may lead to adverse effects [12, 33]. It
was established that capacity-regulated activities facilitate
the metabolism, sinusoidal, and canalicular transport of GL
[12]. Furthermore, GL was hydrolyzed by glucuronidases
into 18-B-GA monoglucuronide in lysozymes of both
rodents and humans [12]. This process may ultimately lead
to edema, hypertension, and symptoms associated with
electrolyte imbalances [12, 34].

4. Inflammation

The fundamental processes involved in the eradication of
threats posed to the host to organisms like bacterial and viral
infections are the triggering of an acute inflammatory
response [35]. Studies have shown that GL was capable of
binding directly to lipoxygenase resulting in the generation
of inflammatory mediators [36-38]. Also, GL selectively
blocked the triggering of phosphorylation of these inflamma-
tory mediators, which are mainly enzymes [36-38]. Specifi-
cally, GL as well as its derivatives was capable of blocking
the generation of inflammatory chemokines like IL-8 and
eotaxin 1, which are both powerful chemo-attractants to
leukocytes during inflammation (Figure 1) [36, 39]. GL as
well as its derivatives was also capable of neutralizing the
secretion of these proinflammatory chemokines [36, 39].
On the other hand, GA was capable of decreasing the
secretion of vascular endothelial growth factor (VEGF), inter-
cellular cell adhesion molecule 1 (ICAM-1), granulocyte-
macrophage colony-stimulating factor (GM-CSF), and human
growth-regulated oncogene/keratinocyte chemoattractant
(GRO/KC) in alcoholic hepatitis rats’ models (Figure 1 and
Table 1) [40]. GA was also capable of inhibiting phospholi-
pase A2/arachidonic acid (PLA2/ARA) (Table 1) pathway
metabolites, like prostaglandin-E 2 (PGE2) or prostacyclin
2, thromboxane 2 (TXA,), and leukotriene B4 (LTB4)
(Figure 1) [41, 42]. It was stipulated that the anti-
inflammatory response to GL and GA was a result of direct
binding the molecules to cell membrane constituents like
lipocortin I (LC-1) or to enzymes such as PLA2 (Table 1),
which is the prime enzyme in the arachidonic acid metabolic
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FIGURE 1: Shows a comprehensive down and upregulatory pathways via which GL and GA elicits anti-inflammation.

pathway (Figure 1) [36]. GA ominously decreased the con-
centration of ICAM-1 as well as matrix metalloproteinase-9
(MMP-9) (Figure 1) [41, 43]. Furthermore, it augmented
the actions of Superoxide dismutase (SOD) and glutathione
peroxidase (GSH-Px), as well as the secretion of p-Akt and
p-ERK (Figure 1) [41, 44].

GL and GA efficiently blocked the generation of free rad-
icals in LPS-treated Raw264.7 macrophage models [41]. They
also decreased the configuration of the LPS-TLR-4/MD-2
complexes, leading to the blockade of homodimerization of
TLR-4 (Figure 1) [45, 46]. Thus, GA was able to regulate
the TLR-4/MD-2 complex at the receptor level, resulting in
the inhibition of LPS-induced triggering of signaling cascades
as well as cytokine generation [45]. This signifies that GA
blocked inflammatory responses as well as regulated innate
immune responses [45, 47].

Furthermore, GA inhibited the stimulation of signal
transducers and activators of transcription-3 (STAT-3),
decreased the upregulation of ICAM-1 as well as P-
selectin secretion, decreased the configuration of poly-
adenosine diphosphate-ribose (pADR) and nitrotyrosine
(NTS), and decreased polymorphonuclear neutrophil infil-
tration (PMN) (Figure 1 and Table 1) [45-47]. Moreover,
GA elicited broad anti-inflammatory actions via its interac-
tion with the lipid bilayer resulting in the decrease of
receptor-mediated signaling [45, 46]. GA was capable of
blocking the lytic pathway of the complement system as well
as averted tissue injury triggered by membrane attack
complexes [45].

5. Dendritic Cells

Dendritic cells (DCs) are a group of bone-marrow-derived
cells found in blood, tissues, and lymphoid organs [48-50].
These cells initiate and control immune responses that are
affected by numerous factors like origin, phenotype, and

maturation status [48-50]. Their prime function is to bridge
the innate as well as adaptive immune systems [48-50]. DCs
were able to accelerate allogeneic T-cell proliferation in vitro
[4]. A study revealed that only a minute quantity of DCs was
enough to trigger an allogeneic mixed lymphocyte reaction
(MLR) [4, 48]. Studies have demonstrated that DCs are the
most crucial antigen-presenting cells (APCs) associated with
the uptake, processing, transport, and presentation of
antigens to CD4" and CD8" T-cells [4, 49, 51].

Also, DC subsets are capable of triggering or inhibiting
immune responses via the secretion of different costimula-
tory molecules and cytokines [4, 52]. DCs were able to trigger
as well as target naive T-cells to differentiate into T-helper
(Th)1 or T-helper (Th)2 cells [4, 53]. Thus, DCs have
potential immunomodulatory therapeutic targets for some
pharmacological compounds [4, 10]. Bordbar et al. demon-
strated that DCs treated with GL were capable of influencing
T-cell differentiation toward Th1 subset (Figure 2) (Table 1)
[4]. Abe et al. also observed the upregulation of IL-10 expres-
sion by liver DCs [54]. Hua et al. established that GL was
capable of augmenting IL-10 production in DC2.4 cell line
(Figure 2) [55]. A current study demonstrated that GL was
capable of augmenting IL-10 production along with IFN-y
in MLR [4]. On the other hand, Bhattacharjee et al. exhibited
that GA was capable of blocking the expression of the Th2,
IL-10, and TGF-B from the splenocytes of infected mice
(Figure 2) [25].

6. Nuclear Factor-«B

The nuclear factor-«B (NF-xB) family is made up of five
groups such as NF-xB1, which comprise of p50/p105 with
p50 as the precursor, NF-«B2 which comprise of p52/p100
with p52 as the precursor, Rel A with p65 as the precursor,
Rel B with p68 as the precursor, and c-Rel with p75 as the
precursor [56, 57]. Almost all the groupings are capable of
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TaBLE 1: Shows the explicit effect of GL or GA on various immune/inflammatory factors.

Immune/inflammatory factors Type Effect of GL/GA Citations
Inflammation VEGF Inhibitory [40]
ICAM-1 Inhibitory [40]
GM-CSF Inhibitory [40]
GRO/KC Inhibitory [40]
PLA2/ARA Inhibitory [36, 41, 42]
MMP-9 Inhibitory [41, 43]
STAT-3 Inhibitory [45-47]
STAT-6 Inhibitory [45-47]
pADR Inhibitory [45-47]
NTS Inhibitory [45-47]
PMN Inhibitory [45-47]
SOD Facilitatory [41, 44]
GSH-Px Facilitatory [41, 44]
TGF-8 Facilitatory [25]
Dendritic cells (DCs) T-cell Facilitatory [4]
Thi Facilitatory [4]
Th2 Facilitatory [25]
Nuclear factor-xB — Inhibitory [6, 20, 62-65]
IKK Inhibitory [56]
Chemokines CXCL10 Inhibitory [20, 30, 70, 71]
CCL5 Inhibitory [20, 30, 70, 71]
CCL11 Inhibitory [39, 76-78]
Interferons IFN-y Facilitatory [85-89]
Cyclooxygenase COX-1 — —
COX-2 Inhibitory [25, 65, 98]
Interleukins IL-1 Inhibitory (8, 104-106]
1L-2 Facilitatory [4, 9, 106]
IL-3 Inhibitory [8, 104-106]
IL-4 Inhibitory [8, 104-106]
IL-5 Inhibitory [8, 104-106]
IL-6 Inhibitory [8, 104-106]
IL-10 Inhibitory [8, 104-106]
1L-12 Inhibitory [4, 8, 104-106]
IL-13 Inhibitory [8, 104-106]
IL-18 Inhibitory 8, 104-106, 111]
xgt(’egiﬁr’l;l.a::sveated — Inhibitory [6, 115, 116, 141]
p38MAPK Inhibitory [6, 115, 116]
ERK Inhibitory [45]
JNK Inhibitory
Nitric oxide iNOS Inhibitory [45]
eNOS — —
nNOS — —
Toll-like receptors TLR-3 Inhibitory [131-134]
TLR-4 Inhibitory [131-134, 141]
TLR-7 Inhibitory [131-134]
TLR-9 Inhibitory [131-134]
TLR-10 Inhibitory [131-134]

High-mobility group box 1 — Inhibitory [141, 142]




Mediators of Inflammation

Facilitatory pathways

FIGURE 2: Shows the inhibitory and facilitatory pathways via which GL and GA ameliorate disease.

preserving homodimeric as well as heterodimeric complexes
[56]. Nevertheless, the most predominant-stimulated form of
NF-«B is the heterodimer p50-p65, which has the transactiv-
ity territory obligatory for gene modification [58-60]. In
most cells, NF-«B exists as a latent, inactive, IxB bound com-
plex in the cytoplasm [56]. Nevertheless, upon stimulation by
extracellular stimuli, NF-«¥B promptly translocates to the
nucleus and triggers gene release [56, 61].

IxB kinase (IKK) is a large multisubunit protein kinase
active via numerous signal pathways [56]. The IKK complex
when triggered results in the phosphorylation or degradation
of IxBa leading to the expression of NF-«B [56]. NF-«B then
translocates to the nucleus and triggers the transcription of
numerous xB-dependent genes, such as iNOS as well as
Thl cytokines [56]. Thus, some pathogens are capable of
blocking the action of NF-«B via the inhibition of the degra-
dation of IxB during infection [56]. Also, in macrophages, the
MAPK cascade and the NF-«B pathway are the key pathways
via which modulation of inflammation as well as host defense
occurs [56].

Ukil et al. demonstrated that the kinase properties of
IKK were triggered in cells that were stimulated with GA
via a mechanism that most probably involves upregulatory
signaling pathways [56]. They however did not observe any
influence of GA on IKK activity when GA was added
directly to the assay mixture containing IKK immunopreci-
pitated from normal macrophages (Table 1) [56]. An earlier
study revealed that GA influenced the inhibitory interaction
between NF-«B, which is a fundamental modifier to IKKf
and IKKy (Figure 2) [62]. Another study indicated that
GA inhibited one of the essential upregulatory kinases like

NF-«B-inducing kinase, PI3K, or MAPK in the signaling
pathway (Figure 2) [63].

GL was capable of treating coxsackievirus B3- (CVB3-)
triggered myocarditis via the blockade of CVB3-triggered
NF-«B activity via the inhibition of NF-xB inhibitor IxB
(Table 1) [20, 64]. Wang and Du revealed that pretreatment
with GL substantially inhibited the facilitation of NF-«B p65
protein secretion, in methotrexate-stimulated enteritis
(Table 1) [6]. Cherng et al. showed that GL blocked NF-«B
secretion, averted DNA damage, and accelerated DNA
repair (Table 1) [65]. Feng et al. demonstrated that GA safe-
guards advanced glycation end-product- (AGE-) stimulated
endothelial dysfunction via blockade of the receptor for
AGE/NF-«B signaling pathway (Figure 2 and Table 1) [66].

7. Chemokines

Chemokines are a family of molecules associated with the
trafficking of leukocytes in normal immune surveillance and
recruitment of inflammatory cells in host defense [67-69].
They are made up of over 40 groups, which are classified into
four classes founded on the sites of essential cysteine residues
like C, CC, CXC, and CX3C [67]. GL was capable of subduing
the H5N1-triggered generation of CXCL10, and CCL5 resulting
in the blockade of H5N1-triggered apoptosis [20, 70]. Michaelis
et al. demonstrated that 100 mg/ml of GA drastically blocked
secretion of CXCL10, and CCL5 at the mRNA and the protein
levels (Table 1) [30]. Augmented CXCL10 levels were observed
in patients with H5N1, and the elevated levels of CXCL10 were
associated with poor prognosis (Table 1) [30, 71].



CCL11 known as eotaxin 1 was primarily detected as the
prime eosinophil chemoattractant in the lung lavage fluid
after allergic exposure in guinea pigs [39]. Subsequently, it
was cloned for further studies [39, 72, 73]. Several studies
have demonstrated that numerous types of cells, such as lung
or dermal fibroblasts, as well as lung or bronchial epithelial
cells are capable of producing eotaxin 1 [39, 74, 75]. Studies
further revealed that the production of eotaxin 1 was
triggered by IL-4 and inhibited by IFN-y [39, 74, 75]. It was
also observed that eotaxin 1 facilitated the infiltration of
eosinophils into allergic inflammatory sites [39, 74, 75].

Matsui et al. indicated that GL may be capable of mod-
ulating chemokine generation via the posttranscriptional
level such as protein expression or mortification [39]. They
demonstrated that GL derivatives had inhibitory effects on
eotaxin 1 generation via TNF-«a as well as IL-4 induction
in lung fibroblasts (Figure 2) [39]. Studies have shown that
induction of IL-4 and TNF-«a in combination synergisti-
cally accelerated the generation of eotaxin 1 via the trigger-
ing of transcriptional factors like STAT-6 and NF-«B
(Figure 2) [76-78]. GL and its derivatives thus blocked
eotaxin 1 production at protein or mRNA secretary levels
(Table 1) [39, 76].

8. Interferons

Interferons (IFNs) are a family of broad-spectrum antiviral
glycoproteins expressed by cells upon attack by viruses. They
are often involved in numerous immune responses as trig-
gers, modulators, and effectors of both innate as well as adap-
tive immune systems during viral infections [79, 80]. They
have the ability of blocking viral replication and are often
the most prominent cytokines produced during viral infec-
tions [79, 80]. IFN-y, which is expressed by lymphocytes,
has been implicated in the secretion of histocompatibility
antigen as well as immune modifications [6, 81]. Studies have
demonstrated that IFN-y was capable of facilitating the
endotoxin-stimulated generation of NO in murine macro-
phages [79, 80].

Studies have shown that IFN with or without adenine
arabinoside was capable of curing hepatitis B patients [1,
82, 83]. IFNs were capable of reducing the level of either
DNA polymerase or hepatitis B surface antigen in hepatitis
patients [1, 84]. Furthermore, GL was capable of facilitating
IFN-y production in human T-lymphocytes [85, 86]. Also,
GL was capable of inducing the production of IFN in mice,
which was preceded by stimulation of macrophages as well
as the increase of NK activity [87, 88]. Bhattacharjee et al.
demonstrated that splenic expression of IFN-y, TNF-a, and
IL-12 elevated after GA treatment. Wu et al. also demon-
strated that GL drastically decreased inflammatory via IFN-
y (Figure 2) [89]. They concluded that blockade of the IFN-
y signaling pathway may be linked to anti-inflammatory
effects of GL in enteritis [89].

9. Cyclooxygenase and Prostaglandins

COX-1 and COX-2 are the main cyclooxygenase (COX) iso-
enzymes, which catalyze the formation of prostaglandins,
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thromboxane, and levuloglandins [90]. Prostaglandins are
autocoid facilitators that influence practically all recognized
physiological as well as pathological activities via their
reversible communication with G-protein attached mem-
brane receptors [90]. Amongst the COX isoenzymes, COX-
2 was more inducible with low secretory levels in most
tissues under normal circumstances [6, 91]. It was estab-
lished that numerous cell types such as vascular smooth
muscle cells, endothelial cells, mononuclear macrophages,
and fibroblasts were capable of secreting COX-2 up to about
8-10-fold the normal level when stimulated by proinflam-
matory cytokines [6, 92].

It was further observed that augmentation of COX-2
levels resulted in the generation as well as buildup of prosta-
glandin inflammatory factors, facilitating inflammatory
responses as well as tissue damage [6, 91]. Studies have
shown that oversecretion of COX-2 facilitated cell prolifera-
tion, blocked apoptosis, and blocked immune responses,
resulting in abnormal modulation of the balance between
proliferation and apoptosis [6, 91, 92]. Bhattacharjee et al.
demonstrated that a robust antileishmanial protection was
observed via the modulation of macrophage-secreted COX-
2-determined PGE2 levels [25]. Also, Leishmania organisms
were capable of using immune modulators like TGF-f3, IL-
4, and arachidonic acid metabolites to inhibit macrophage
functions and facilitated the organism’s survival within the
host [93].

PGE2 biosynthesis comprises two successive enzymatic
reactions [25]. The first one is a rate-limiting step involving
the COX enzyme, while the second is a precise PGE synthesis
step [25]. In pathophysiological processes, the inducible iso-
form of COX-2 was capable of modulating PGE2 production
while COX-1 was principally copied [25, 94, 95]. Studies have
shown that augmented level PGE2 was capable of modulat-
ing several immune responses via mechanisms involving
the blockade of Thl cytokines like IL-2, IL-12, and IFN-y,
as well as inhibition of phagocytosis and lymphocyte prolifer-
ation [25, 96, 97]. Thus, PGE2 ability to modulated immune
response is champion by Thl- or Th2-associated lympho-
kines [25, 96].

It was established that GA was capable of blocking PGE2
synthesis via blockade of COX-2 resulting in concurrent aug-
mentation NO production through enhancement of iNOS2
mRNA secretion in Leishmania-infected macrophages
(Figure 2 and (Table 1) [25]. Wang and Du demonstrated
that pretreatment with GL significantly blocked the facilita-
tion of COX-2 activity in methotrexate-triggered enteritis
[6]. Cherng et al. also demonstrated that GL was able to block
COX-2 secretion, inhibited DNA damage, and promoted
DNA repair (Table 1) [65]. Ni et al. observed an upsurge in
COX-2 secretion in lung tissues after introducing LPS in their
experiment, which was subsequently decreased in a dose-
dependent manner after GL pretreatment (Figure 2 and
Table 1) [98].

10. Interleukins

Interleukin belongs to a group of cytokines, which are
perhaps the most essential messenger molecules generated
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by leukocytes to modulate the biological activities of target
cells via autocrine or paracrine means [99]. Several groupings
of ILs have been identified [99]. Notable amongst them are
IL-1, IL-2, IL-3, IL-5, IL-6, IL-10, IL-12, IL-13, and so many
others [3, 8,99-101]. Although most of the ILs are influenced
by GL and GA, IL-12 is the most influential. IL-12 is a hetero-
dimeric cytokine produced primarily by macrophages and
monocytes [8]. Its key function is the modulation of cyto-
kines as well as T-cell subsets [8]. A study revealed that a
deficiency in endogenous IL-12 production influenced the
progression of immunodeficiency in HIV-infected patients
[8, 102]. Studies have proven that IL-12 salvaged numerous
activities of cells infected with HIV [8, 103].

Several studies have demonstrated that IL-12 was capable
of influencing T-cells and natural NK cells resulting in cell
proliferation, cytolytic activities, and triggering of IFN-y [8,
104]. Studies further revealed that the polarization of the T
helper response to a Th1-dominant form via IL-12 was accel-
erated by IFN-y resulting in the blockade of IL-4 production
[8, 100, 101]. GA was capable of blocking IL-1p, IL-3, IL-5,
IL-6, IL-10, IL-12 subtypes, IL-13 (Figure 2), eotaxin, and
TNF-a expression (Table 1) [8, 104-106]. GL was also capa-
ble of accelerating the proliferation of lymphocytes and acted
as a facilitator of the late signal transduction of T lympho-
cytes for IL-2 generation (Table 1) [4, 106].

Zhang et al. also indicated that GL facilitated TCR-
mediated T-cell proliferation by selectively influencing the
late signal transduction for IL-2 generation as well as IL-2R
secretion [9]. They further indicated that GL exhibited two
separate activities on immature thymocytes resulting in the
facilitation of IL-2 generation on one hand and blocked
growth response on the other [9, 107]. A hepatitis study
revealed that IL-4 was capable of stimulating STAT6, which
in turn stimulated eotaxin secretion as well as triggered IL-
5 secretion [40, 108]. Wang and Du established that GA
was capable of relieving methotrexate-stimulated upsurge of
TNEF-a, IL-1f3, and IL-6 levels, as well as elevated IL-10 levels,
in rats with enteritis (Table 1) [6]. GL was able to facilitate the
IL-10 production by hepatic dendritic cells in mice with
hepatitis (Table 1) [76].

Studies have proven that IL-10 is a well-known anti-
inflammatory cytokine [40, 109, 110]. It was capable of mod-
ulating STAT3 in hepatocytes as well as macrophages/Kupf-
fer cells [40, 109, 110]. A study revealed that GA was capable
of accelerating LPS-triggered IL-12 generation by peritoneal
macrophages (Table 1) [4, 8]. Its optimal effect on IL-12 gene
secretion was linked to an upsurge in NF-«B modulation [4,
8]. Dai et al. demonstrated that GL accelerated both IL-12
mRNA buildup as well as protein expression by peritoneal
macrophages in response to LPS [8]. They indicated that
the priming influence of GL on IL-12 generation did not
depend on IFN-y or GM-CSF [8]. Thus, they also affirmed
that the facilitation of IL-12 p40 mRNA secretion by GL
may be via the modulation of NF-«B [8].

Yoshida et al. demonstrated that GL was able to block the
upsurge in serum levels of IL-18 in LPS/D-galactosamine-
induced liver injury (Figure 2 and Table 1) [111]. Thus, GL
blocked the generation of IL-18 in this model [111]. They
also observed fewer IL-18-positive infiltrating cells after the

introduction of GL [111]. Also, GL was capable of blocking
the infiltration of neutrophils and macrophages in liver
injury [111]. Furthermore, GL-stimulated decrease in immu-
noreactive IL-18 was probably due to blockade of cell infiltra-
tion in the liver [111]. GL was able to inhibit an upsurge in
alanine aminotransferase activity when exogenous IL-18
was administered in mice treated with LPS/D-galactosamine
[111]. Thus, GL blocked IL-18-mediated inflammatory
response in the pathogenesis of liver injury [111]. Nakanishi
et al. demonstrated that IL-18 was capable of triggering gene
secretion as well as the synthesis of TNF-a, IL-1, FAS ligand,
and many chemokines [112].

11. Mitogen-Activated Protein Kinase

Mitogen-activated protein kinase (MAPK) signal transduc-
tion pathways are linked with cell proliferation, differentia-
tion, apoptosis, and angiogenesis [6]. Specifically, the p38
mitogen-activated protein kinase (p38MAPK) signal trans-
duction pathway modulates stress responses, like inflamma-
tion as well as apoptosis [6, 113]. Studies have shown that
LPS as well as other factors is capable of triggering the MAPK
pathways resulting in the secretion of many inflammatory
mediators via complex signal conduction pathways, which
facilitates inflammation [6]. Furthermore, the modulation
of p38MAPK was observed in various transduction path-
ways, which in turn stimulated many transcription factors
as well as mediated a variety of biological activities [6, 114].

Wang and Du demonstrated that pretreatment with GA
remarkably inhibited the facilitation of p38MAPK in
methotrexate-stimulated enteritis (Table 1) [6]. They
concluded that the anti-inflammatory actions of GA were
probably linked to p38MAPK signaling (Figure 2) [6]. Also,
studies have shown that GA lessens glycative stress in the
kidneys of diabetic mice via the blockade of p-p38MAPK
[115, 116]. It was further established that GA was capable
of blocking the modulation of JNK, p38 protein, and ERK
(Figure 2 and Table 1) in bone marrow-derived macrophages
(BMMs) [45].

12. Nitric Oxide

Nitric oxide (NO) is a radical messenger molecule generated
by the enzyme nitric oxide synthase (NOS) [117-119]. So far,
only three isoforms of NOS have been identified. Amongst
the three, only two of them, NOS in neurons (nNOS) and
in the endothelial cells of blood vessels (eNOS), are intensely
secreted [117-120]. These two are capable of producing only
minute quantities of NO, which is sufficient to trigger cellular
signaling in stress conditions.

Studies have shown that NO in an inflammatory media-
tor is capable of modulating innate immunity as well as path-
ophysiology of many infectious diseases [117, 121, 122]. The
third kind of NOS is the inducible nitric oxide synthase
(iNOS) [117, 119].

Studies have further proven that iNOS generates NO in
hepatocytes as well as macrophages [117, 119, 121, 122].
The stimulation of iNOS is modulated via a posttranscrip-
tional mechanism that is mediated by antisense transcripts



(asRNAs) [117, 122]. Several studies have shown that the
asRNAs are transcribed from the iNOS gene and interact
with iNOS mRNA to stabilize the same iNOS mRNA [122,
123]. Studies have demonstrated that the iNOS is triggered
by cytokines like IFN-y and TNF-a, which in turn produce
large quantities of NO [117, 119, 121, 123]. It is well proven
that NO generated by iNOS was capable of triggering an
inflammatory liver damage [117, 124].

Studies have demonstrated that concanavalin A (Con A)
was capable of triggering the stimulating the T-cells in mice
and induced the secretion of proinflammatory cytokines
associated with the progression of hepatitis (Figure 2) [119,
125]. Furthermore, GL was capable of inhibiting Con A-
stimulated mouse liver damage without influencing the
generation of IFN-y and TNF-« [119, 126]. Tsuruoka et al.
demonstrated that GL blockade of liver damage was via the
inhibition of iNOS mRNA as well as its protein secretion
(Table 1) [119]. Thus, GL inhibited iNOS mRNA and protein
in Con A-stimulated hepatitis [119]. Also, GL was capable of
blocking the secretion of iNOS mRNA stimulated by carbon
tetrachloride in hepatic tissue (Table 1) [119, 127].

13. Toll-Like Receptors

Toll-like receptors (TLRs) are sensors for pathogen-associated
molecular patterns (PAMPs) [128]. TLRs are capable of mod-
ulating several immune responses, especially during the infec-
tious process [128]. Several studies have shown that the
secretion of TLR-3, TLR-4, TLR-7, TLR-9, and TLR-10 genes
from hepatic tissue was upregulated in some viral infection
models [129, 130], and GA or GL is capable of inhibiting these
receptors (Table 1) [131-134]. It was established that the TLR-
4 pathway comprises of two dissimilar signaling pathways
such as the myeloid differentiating primary response gene
88- (MyD88-) dependent as well as the MyD88-independent
pathway [135, 136]. It was further revealed that stimulation
of the MyD88-dependent pathway led to the generation of
proinflammatory cytokines via triggering of NF-«B, while
the stimulation MyD88-independent pathway led to the gen-
eration of type 1 IFNs [135, 136].

A study revealed that TLR-4 was the fundamental recep-
tor of the innate immune signaling responses to influenza
virus as well as other respiratory viruses [137]. Several studies
have shown that the TLR-4 was more associated with respira-
tory syncytial virus and human papillomavirus infections
[129, 138, 139]. Shi et al. revealed that TLR-4 gene deficiency
was not associated with the downregulation of virus titer in
the liver during MHV-A59 infection [129]. They observed
that in MHV-A59 infection, the HMGB1-TLR-4 axis utilizes
proinflammatory activities without directly influencing virus
replication [129].

A study demonstrated that GA was not capable of
influencing TLR-4 gene secretion during viral infection
[129]. Nevertheless, the secretion of the TLR-4 gene facili-
tated MHV-stimulated hepatic inflammation injury as well
as determined HMGBI1 secretory levels in the serum
(Figure 2) [129]. Several studies have proven that pretreat-
ment with a TLR-4 inhibition agent reduced the HMGBI
levels from virus-infected cells via the TLR4-NF-xB path-
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way (Figure 2) [129, 139, 140]. Studies further revealed that
the inactivation of NF-«xB led to a reduced expression of
different proinflammatory cytokines like IL-1, IL-6, TNF-
o, and HMGBL1 (Figure 2) [129, 139, 140]. GL was capable
of blocking porcine epidemic diarrhea virus infection, as
well as reduced proinflammatory cytokine expression via
the HMGBI1/TLR4-p38MAPK pathway (Figure 2 and
Table 1) [141].

14. High-Mobility Group Box 1

High-mobility group box 1 (HMGBI1) protein is a nuclear
protein that functions as an architectural chromatin-
binding factor [142, 143]. HMGBI is the prime signal during
tissue damage usually involving necrotic and apoptotic cells
[142]. Furthermore, HMGBI1 performs dual functions in
the nucleus and the cytoplasm [142]. Also, extracellular
HMGBI facilitates both local as well as systemic responses
in the organism [142]. These responses often include inflam-
mation, modulation of innate as well as adaptive immunity
[142, 143]. Several studies have demonstrated that HMGB1
is secreted by monocytes, macrophages, neutrophils, plate-
lets, and dendritic and NK cells [142, 144].

Several studies have shown that HMGB1 induces macro-
phages, monocytes, and neutrophils to secrete proinflamma-
tory cytokines like TNF-a, IL-1, IL-6, IL-8, and MIP-1 via
p38- and JNK MAPK-dependent pathways (Figure 2) [145,
146]. It was established that HMGB1 was passively secreted
by damage alveolar endothelial cells or macrophages during
virus-mediated cytolysis [145]. Once expressed, extracellular
HMGBI1 was capable of mediating injurious pulmonary
inflammatory response like neutrophil infiltration, derange-
ment of epithelial barrier, lung edema, and lung injury [145,
147]. These injurious pulmonary inflammatory responses sub-
sequently result in respiratory failure as well as death [147].

Also, human microvascular endothelial cells are capable of
secreting ICAM-1, vascular adhesion molecule-1 (VCAM-1),
proinflammatory cytokines like TNFa, IL-8, and chemokines
in response to HMGBI activation (Figure 2) [145, 148]. This
means that HMGBI was capable of disseminating inflamma-
tory response in the endothelium during infection or injury
[145]. Chemotactic as well as mitogenic actions of HMGBI1
depends on its association with the receptor of advanced gly-
cation end products (RAGE) [142, 149]. GL was capable of
blocking the chemoattractant as well as mitogenic activities
of HMGBI (Table 1) [142].

GL was capable of binding to both HMG boxes of
HMGBI in both NMR and fluorescence studies without
altering their secondary structure, which was observed as
an absence of changes in CD spectra [142]. It was further
established that amino acids interacting with GL clusters at
the junction of both arms of the classical L-shape fold of both
HMG boxes in chemical-shift perturbation experiments
[142]. Furthermore, the binding sites for GL on the HMG
boxes partly overlap with the DNA binding sites, shielding
residues like R23, which is recognized to be crucial for
DNA binding [142, 150]. Nevertheless, the RAGE-binding
surface on HMGBI was characterized with the stretch of
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basic amino acids between box B and the acidic tail and did
not match with the binding surfaces of GL [142, 149].

Influenza type A, B, and C viruses are responsible for
influenza infection (“flu”) [145]. This infection is often
depicted with massive virus replication as well as excessive
inflammation [145]. Studies have shown that influenza
viruses are capable of infecting monocytes and macrophages
resulting in the stimulation of proinflammatory cytokines
like TNF-«, IL-1, IL-6, IL-8, IFN-a, and chemokines in
infected areas (Figure 2) [145, 151]. Moisy et al. demon-
strated that HMGBL1 binds to the nucleoprotein section of
influenza ribonucleoproteins (vRNPs) freely in the company
of viral RNA in vitro and interacts with the viral nucleopro-
tein VCAM-1 in infected cells [152]. They revealed that
HMGB1 was capable of facilitating viral growth as well as
augmented the transcription or replication activity of the
viral polymerase in HMGBI1-depleted cells [152]. Thus,
HMGBI binding to DNA was a prerequisite for the augmen-
tation of influenza virus replication [152]. Therefore, GA and
GL may be capable of treating influenza viral infection via the
HMGBI-TNF-a pathway (Figure 2). Further studies should
focus on this pathway.

HMGBL1 was able to trigger necrotic cell death resulting in
abundant budding of West Nile (WN) progeny virus particles
at higher infectious doses [145, 153]. Furthermore, HMGB1
mediated in injurious inflammatory response resulting in the
pathogenesis of WN encephalitis [145, 153, 154]. Besides
WN viruses, other viruses like the salmon anemia virus were
capable of triggering necrotic cell death of infected cells,
leading to simultaneous HMGBI1 expression [145, 154]. GL
and GA may be potential treatment options for WN viral via
HMGBI. Further studies are warranted in this direction.

Studies have shown that an increase in proinflammatory
cytokines like IL-1, IL-6, TNF-a, and IFN-y may trigger the
expression of HMGBI from innate immune cells in SARS
patients (Figure 2) [145, 155]. Thus, further studies on
GL/GA-HMGBI axis are needed to elucidate their potential
role in the treatment for patients with coronavirus disease-
19 in the current SARS-coronavirus pandemic. Acute viral
hepatitis is caused by hepatitis A, B, C, and D viruses. Their
pathogenesis is often depicted with acute necrosis of hepato-
cytes, inflammation, and followed by fibrosis as well as cir-
rhosis [145, 156]. HMGBI, passively secreted by necrotic
hepatocytes, may stimulate tissue macrophages especially
Kupffer cells to express proinflammatory cytokines during
an acute infection [145]. Thus, HMGBI1 alone or in combi-
nation with other proinflammatory cytokines may cause
chronic liver damage in hepatitis patients [145]. GL and
GA are potential treatment options for chronic viral hepati-
tis. Further studies are warranted on HMGBI1 and/or
GL/GA axis.

15. Conclusion

GL and GA are able to block the secretion of IL-1, IL-3, IL-
4, IL-5, IL-6, IL-10, IL-12, IL-13, eotaxin, and TNF-« expres-
sion. This means that GL and GA are capable of inhibiting
cytokine storms elicited during various infectious diseases
most especially viral diseases. GL and GA drastically decreased

inflammation via IFN-y, which means that GL and GA have
very crucial antiviral properties. Also, GA decreased the secre-
tion of VEGF, MCP-1, GM-CSF, and GRO/KC in alcoholic
hepatitis rats’ models. GA was capable of blocking the modu-
lation of JNK, p38 protein, and ERK in BMMs. Further studies
on GL/GA-HMGBI axis are needed to elucidate their poten-
tial role in the treatment for patients with coronavirus
disease-19 in the current SARS-coronavirus pandemic.
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