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Latexin sensitizes leukemogenic cells to gamma-
irradiation-induced cell-cycle arrest and cell death
through Rps3 pathway

Y You1,5, R Wen1,5, R Pathak2, A Li3, W Li1, D St Clair4, M Hauer-Jensen2, D Zhou2 and Y Liang*,1,4

Leukemia is a leading cause of cancer death. Recently, the latexin (Lxn) gene was identified as a potential tumor suppressor in
several types of solid tumors and lymphoma, and Lxn expression was found to be absent or downregulated in leukemic cells.
Whether Lxn functions as a tumor suppressor in leukemia and what molecular and cellular mechanisms are involved are unknown.
In this study, the myeloid leukemogenic FDC-P1 cell line was used as a model system and Lxn was ectopically expressed in these
cells. Using the protein pull-down assay and mass spectrometry, ribosomal protein subunit 3 (Rps3) was identified as a novel Lxn
binding protein. Ectopic expression of Lxn inhibited FDC-P1 growth in vitro. More surprisingly, Lxn enhanced gamma irradiation-
induced DNA damages and induced cell-cycle arrest and massive necrosis, leading to depletion of FDC-P1 cells. Mechanistically,
Lxn inhibited the nuclear translocation of Rps3 upon radiation, resulting in abnormal mitotic spindle formation and chromosome
instability. Rps3 knockdown increased the radiation sensitivity of FDC-P1, confirming that the mechanism of action of Lxn is
mediated by Rps3 pathway. Moreover, Lxn enhanced the cytotoxicity of chemotherapeutic agent, VP-16, on FDC-P1 cells. Our
study suggests that Lxn itself not only suppresses leukemic cell growth but also potentiates the cytotoxic effect of radio- and
chemotherapy on cancer cells. Lxn could be a novel molecular target that improves the efficacy of anti-cancer therapy.
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Leukemia is one of the most common cancers and one of the
leading causes of cancer death. In the United States, an
estimated 52 380 new cases of leukemia will be diagnosed in
2014, and approximately 24 090 patients will die of this
disease (NCI Stat Fact Sheets: http://seer.cancer.gov/
statfacts/html/leuks.html). Leukemia can be treated by
chemotherapy, radiation therapy and bone marrow transplan-
tation. Radiation and most chemotherapeutic reagents induce
apoptosis in tumor cells, resulting in tumor regression.
However, some cancer cells are resistant to therapy-induced
apoptosis, leading to treatment failure and cancer relapse.1,2

There is an urgent need for discovery of novel molecular
targets that can abrogate death resistance in leukemic cells
and enhance the cytotoxic efficacy of anti-cancer therapies.

Latexin (Lxn) could be an interesting candidate for this
purpose. Lxn is a novel regulator of hematopoietic stem cell
function and homeostatic hematopoiesis.3 It is downregulated
in several types of solid and liquid tumors, and overexpression
of Lxn inhibits tumor cell growth.4–8 In lymphoma, the tumor
suppressor function of Lxn is mediated through Bcl-2-induced
apoptosis.5 Moreover, Lxn was reported to be a TNF-
responsive gene in human papillovirus-infected keratinocytes,
suggesting that it may contribute to TNF-induced suppression
of cervical cancer.9 Lxn is also implicated in inflammation
because it is highly enriched in mast cells and can be
upregulated by lipopolysaccharide.10,11 In addition, Lxn
regulates the interaction of hematopoietic stem/progenitor
cells to stroma through altering the abundance of cell
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adhesion molecules.12 The only known Lxn binding protein is
carboxypeptidase A (CPA), and it inhibits CPA activity,
indicating that Lxn might be involved in protein degradation
andmetabolism.10,13–15 However, we have already shown that
the tumor suppressor function of Lxn is not through the
canonical CPA pathway in lymphoma cells.5

Currently, the mechanism of action of Lxn in normal and
malignant conditions remains unknown, and no reports have
been made as to other proteins that could bind to Lxn. In this
study, we aimed to discover novel Lxn binding proteins, and
evaluate whether Lxn could enhance the cytotoxic effect of
radiation and chemotherapeutic agent on leukemic cells. We
used myeloid leukemogenic progenitor cell line FDC-P1 as a
model system and ectopically expressed Lxn in these
cells.16–18 Using a protein pull-down assay and mass spectro-
metry (MS), we identified ribosomal protein subunit 3 (Rps3)
as a novel Lxn binding protein. We then examined the
response of Lxn-overexpressing FDC-P1 cells to gamma-
irradiation and found that Lxn sensitizes these cells to
radiation-induced cell death and inhibits tumor cell growth.
FDC-P1 cells with ectopic Lxn expression demonstrate more
DNA double-strand breaks (DSBs) upon irradiation, which
triggers a dramatic G2/M arrest and blocks G1- and S-phase
entry. The abnormal cell-cycle progression results in massive
necrosis and depletion of Lxn-overexpressing cells. Mechan-
istically, the increased level of Lxn reduces nuclear transloca-
tion of Rps3 upon radiation, which causes abnormal mitotic
spindle formation and chromosome instability. Moreover,
Rps3 knockdown increases the radiation sensitivity of FDC-
P1 cells, confirming that Rps3 is involved in Lxn-mediated
radiation response. In addition, Lxn enhances cytotoxicity of
chemotherapeutic agent, VP-16, on FDC-P1 cells. This study,
for the first time, unravels a mechanistic role of Lxn as a tumor
suppressor via a previously unknown Rps3 pathway. Lxn
could be a novel molecular target that improves the efficacy of
anti-cancer therapy.

Results

RPS3 is a novel Lxn binding protein. Lxn is the only known
CPA inhibitor in mammals; it binds to CPA4 in humans and
CPA1 in mouse.10,14 We have previously shown that the
mechanism of action of Lxn is not through inhibition of CPA in
lymphoma cells.5 Thus, we used the tandem affinity purifica-
tion (TAP) method in combination with MS to screen novel
Lxn binding proteins in FDC-P1 cells, a murine leukemogenic
cell line, that can induce myeloid leukemia in vivo
(Figure 1a).17,18 We first detected the expression of TAP-
Lxn fusion protein with TAP antibody, and found that the
fusion protein was expressed only in FDC-P1 cells trans-
duced with TAP-Lxn vector but not with TAP vector
(Figure 1b, left panel). By using Lxn antibody, we confirmed
overexpression of Lxn protein in TAP-Lxn-transduced cell
compared with a very low level of endogenous Lxn in FDC-P1
cells (Figure 1b, right panel). It should be noted that TAP tag
itself has ~ 7.7 kDa molecular weight, thus TAP-Lxn fusion
protein is around 35 kDa. We next detected proteins
differentially present in TAP-Lxn cells and extracted them
for LC-MS analysis (Figure 1c). Eleven proteins with

significant score were identified, including Lxn itself
(Supplementary Table 1). Among these interacting proteins,
Rps3 was of particular interest because it has important
extra-ribosomal role in DNA damage response and in the
regulation of p53 degradation and NF-κB signaling
pathways.19–24

We confirmed the expression of Rps3 protein in FDC-P1 cell
by western blot (Figure 1d). Protein complex immunoprecipi-
tation (Co-IP) further validates the binding of Lxn and Rps3.
The result showed that Lxn was precipitated byRps3 antibody,
and reciprocally, Rps3 was precipitated by Rps3 antibody
(Figure 1e, top and bottom panel, respectively). Moreover,
immunocytochemical staining result showed that Rps3 and
Lxn were colocalized in the cytoplasm (Figure 1f). Therefore,
Rps3 is a novel Lxn binding protein and both are localized in
the cytoplasm of FDC-P1 cell in non-stressed condition.

Lxn inhibits FDC-P1 cell growth in normal and stress
conditions. Rps3 has an important role in DNA damage and
repair.21,23,25–29 Lxn is a negative regulator of hematopoietic
stem and progenitor cell population size.3,12,30 We asked
whether Lxn overexpression could affect the growth of FDC-
P1 cells in normal and stress conditions. FDC-P1 cells (TAP-
Lxn or TAP transfected) were irradiated with different doses of
gamma-irradiation (3 and 6.5 Gy), and the cell number was
monitored over a period of 9 days of culture after radiation. In
the untreated condition, overexpression of Lxn resulted in a
2-fold decrease in the number of FDC-P1 cells (Figure 2;
P= 0.007 at day 5 and P=0.006 at day 9) although the same
number of cells was seeded into the culture at day 0 in both
groups. Radiation stress dramatically reduced the cell growth
and demonstrated a dose-dependent response. TAP-Lxn
cells showed a 2-fold decrease in number at day 5 after 3 Gy
irradiation (P=0.005), and it further decreased to 8-fold with
the dose of 6.5 Gy (P= 0.009). Lxn-mediated growth sup-
pression was further amplified for the following days of culture
and by day 9 nearly 3-fold fewer cells were present in TAP-
Lxn group than in control group (P=0.03) at 3 Gy. More
surprisingly, TAP-Lxn cells were completely depleted by
6.5 Gy irradiation at day 9, whereas a certain number of
control cells were recovered and started to grow.
We next determined cellular response of TAP-Lxn and TAP-

transduced FDC-P1 cells to another DNA damage agent,
VP-16. VP-16 is an anti-cancer chemotherapy drug and
classified as topoisomerase II inhibitor. Figure 2b shows that
VP-16 dramatically inhibited FDC-P1 growth and had a dose-
dependent effect in the reduction of cell quantity. At day 9, the
number of TAP-Lxn cells was nearly 2-fold less than control
group at the dose of 30 μg/ml (P= 0.005). Altogether, Lxn
inhibits myeloid leukemic cell growth and sensitizes them to
radiation and chemotherapy-induced cytotoxicity. Since radia-
tion exerts more profound effect on Lxn-overexpressing cells,
the followingmechanistic study will focus on this condition. It is
plausible that the similar mechanism may be applied to Lxn-
mediated chemo-sensitivity.

Lxn causes chromosomal instability and increases
radiation-induced DNA damages. Gamma irradiation
causes DNA DSBs.31 We asked whether the increased level
of DNA damages and/or less efficient repair results in the
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radio-sensitivity of Lxn-overexpressing FDC-P1 cells. We
measured the dynamic formation of phosphorylated H2A.X
(γ-H2A.X), a marker for DNA DSB,32,33 in FDC-P1 cells after
a low dose of 2 Gy irradiation. Figure 3a shows that the
number of γ-H2A.X foci at a single cell level was significantly
increased at early time point (1 h) post irradiation in TAP and
TAP-Lxn cells but no significant difference was observed
between two groups. However, TAP-Lxn cells demonstrated a
significantly higher number of γ-H2A.X foci than control cells

from 3 h (Figures 3a and b) to 24 h post irradiation. These
data suggest that Lxn may be involved in DSB repair, and
increased level of Lxn attenuates the repair leading to
accumulation of DNA damage.
We next examined expression of proteins involved in DNA

damage response, including ATM, ATR, phosphorylated Chk2
and Chk1, and p53. Although ATM-Chk2 pathway has a
predominant role in cellular response to radiation, we did not
detect any significant difference in the expression of ATM and
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Figure 1 Rps3 is a novel Lxn binding protein. (a) Experimental scheme for isolation of Lxn binding protein. Full-length mouse Lxn was fused in-frame to an N-terminal tandem
affinity purification (TAP) tag and sub-cloned into Sfβ9.1-GFP retroviral vector to create the TAP-Lxn vector. A plasmid carrying the TAP tag was used as a control (TAP). FDC-P1
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TAP-Lxn or TAP FDC-P1 cells were purified with the InterPlay Mammalian TAP purification kit and the differentially expressed bands were subjected to mass spectrometry.
(b) Detection of TAP-Lxn or TAP protein expression in stable GFP+FDC-P1 by antibodies against TAP tag (left panel) and Lxn (right panel), respectively. (c) Proteins differentially
present in FDC-P1 cells transfected with TAP-Lxn or TAP vectors. (d) Rps3 protein is expressed in FDC-P1 cells. Western blot was performed with anti-Rps3 antibody.
(e) Co-immunoprecipitation confirms the binding of Lxn and Rps3. Whole-cell lysate from FDC-P1 cells was incubated with Rps3 antibody or IgG control, and the precipitated
proteins were probed with anti-Lxn antibody in western blot (WB:Lxn) (top panel). The binding was confirmed by the reciprocal way in which the protein complex was precipitated
by Lxn antibody and then western blotted with Rps3 antibody (WB: Rps3) (bottom panel). (f) Lxn and Rps3 are colocalized in the cytoplasm of FDC-P1 cells. FDC-P1 cells were
fixed and stained with immunofluorescent probes for Lxn and Rps3 proteins. Lxn was detected by polyclonal antibody and rhodamine-conjugated goat-anti-chicken secondary
antibody; Rps3 was detected by polyclonal antibody and FITC-conjugated goat anti-rabbit secondary antibody. Scale bar represents 10 μm
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phosphorylated Chk2 between TAP-Lxn and TAP cells at 4 h
post 6.5 Gy irradiation (data not shown). Instead, we found that
the protein level of ATR and phosphorylated Chk1was lower in
TAP-Lxn cells than in control cells in non-irradiated condition,
and upon radiation, the activation of ATR-Chk1 axis was
significantly inhibited in TAP-Lxn cells (Figure 3c). This result
suggests that increased level of Lxn could inhibit ATR-Chk1
pathway, resulting in a deficient surveillance mechanism.
These changes could cause chromosomal instability in non-
stress condition and accumulation of more DNA DSBs upon
radiation. To confirm the chromosomal instability in non-stress

condition, we performed the cytogenetic study to quantify
chromosomal aberrations. Figure 4A is the photomicrograph
showing different structural aberrations in FDC-P1 cell.
Figure 4B summarizes the quantification of each type of
aberrations out of total ~ 300 cells, and shows that TAP-Lxn
cells had a significant higher percentage of aberrant chromo-
somes than control cells (13.7±2.3 versus 6.4± 1.4,
Po0.01).
In addition, we found that FDC-P1 cells did not express

another critical checkpoint protein, p53, which was consistent
with the literature (data not shown).34 Altogether, Lxn impairs
DNA repair capacity and suppresses DNA damage response,
leading to accumulation of unrepaired DNA damages in
Lxn-overexpressing cells. These cells will probably bypass
cell-cycle checkpoint due to lack of p53, accumulate in the later
phase of cell cycle, and ultimately undergo massive cell death.

Lxn alters cell-cycle progression and induces cell-cycle
arrest. To determine the role of Lxn in DNA damage
response, we studied the cell-cycle progression with BrdU
and 7AAD using flow cytometry (Figure 5a). In the non-
irradiated condition (0 h), Lxn altered the cell-cycle distribu-
tion as follows (Figure 5b): the fraction of G0/G1 population in
TAP-Lxn cells was half of TAP control cells (25 versus 50%),
and correspondingly nearly 4-fold more TAP-Lxn cells were
present in G2/M phase (27 versus 7%). After irradiation, the
fraction of cells in the G2/M phase significantly increased at
all time points but the increase was even higher in TAP-Lxn
group than in control. At 24 h, nearly 90% of TAP-Lxn cells
were present in the G2/M phase whereas around 50% of TAP
control cells were in this phase. The increased population of
G2/M-phase cells corresponded well with the reduced
population of G0/G1 cells, suggesting that Lxn prevents cells
from returning to the G0/G1 phase, thus blocking normal cell-
cycle progression. As a result, TAP-Lxn cells demonstrated a
dramatic decrease in the fraction of S phase after irradiation.
At 24 h, only 6.2% of cells held at S phase compared with
control (23.5%), and a nearly complete depletion of S
population in TAP-Lxn cells at 48 and 72 h. Thus, radiation-
induced cell-cycle arrest and depletion of proliferating cells
may contribute to the elimination of Lxn-overexpressing cells
(see Figure 2a).

Lxn potentiates radiation-induced cell death. To deter-
mine whether the abnormal cell-cycle progression and
accumulation of DNA damages in Lxn-overexpressing FDC-
P1 cells could lead to cell death, we used Annexin V and 7-
AAD staining and flow cytometry to determine apoptosis and
necrosis. Upon 6.5 Gy irradiation, TAP-Lxn cells directly
underwent necrosis without initiating early apoptotic
response, whereas a proportion of control cells was apoptotic
(Figure 6a). At all detected time points, nearly 2-fold more
TAP-Lxn cells were necrotic than control cells, which may
explain the rapid clearance of these cells during 9 days of cell
culture (see Figure 2a). Such different cell death response
was also confirmed at the molecular level. Caspase-3, a
primary executioner of apoptosis, was not activated in TAP-
Lxn cells but its active form was detected in control cells from
24 h post irradiation (Figure 6b). These data suggest that Lxn
is involved in the regulation of cell death response.
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Lxn inhibits nuclear translocation of Rps3 upon irradia-
tion and induces abnormal mitotic spindle formation.
Rps3 is located in the cytoplasm of FDC-P1 cells (see
Figure 1f). It was reported that Rps3 translocates into the
nucleus upon DNA damage stress;35 therefore, we asked
whether or not the nuclear translocation of Rps3 happens in
Lxn-overexpressing FDC-P1 cells and how the increased
level of Lxn affects this process. Immunohistochemical
staining of Rps3 at 4 h post 6.5 Gy irradiation shows that
Rps3 was translocated to the nucleus in both TAP-Lxn and
control cells (Figure 7a). This result was further confirmed by

western blot of Rps3 in the nuclear and cytoplasm protein
lysates of both types of cells (Figure 7b). More interestingly,
the amount of translocated Rps3 was significantly less in
TAP-Lxn cells than in control (Figure 7b, top panel with red
highlight), suggesting that Lxn inhibits nuclear translocation
of Rps3 upon irradiation. It was reported that Rps3 facilitates
spindle formation and chromosome movement during
mitosis.36 We thus hypothesized that the reduced amount
of nuclear Rps3 might interfere with spindle formation. By
using anti-tubulin antibody and DAPI to immunohistochemi-
cally stain spindle and chromosome at 12 and 24 h after
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6.5 Gy irradiation, we found that TAP-Lxn cells failed to form
the normal mitotic spindle and could not complete the
metaphase and the anaphase (Figure 7c). This could explain
the cell-cycle arrest in G2/M phases (see Figure 5) as well as
the increased chromosomal abnormality (see Figure 4).

Rps3 knockdown increases radiation sensitivity and
phenocopies radiation response of Lxn-overexpressing
cells. To further confirm that role of Lxn in radiation response
is mediated by inhibition of Rps3 activity, we knocked down
Rps3 in FDC-P1 cells and examined its effect on cell growth
and radiation response. It was reported that knocking down
Rps3 protein by o50% would not adversely affect ribosomal
instability and protein synthesis. The reason is that RNAi
knockdown has a specific effect on cytosolic and ribosome-
free Rps3, but not the ribosome-bound form.20,22,25 There-
fore, we chose a shRNA sequence with ~ 33% knockdown of
Rps3 in FDC-P1 cells (Figure 8a) and established a stable
Rps3 knockdown cell line (TAP-Rps3 shRNA). The growth
study shows that in comparison with control, the number of
TAP-Rps3 shRNA cells was significantly decreased to a level

similar to TAP-Lxn cells within 1 day of culture (Po0.01,
Figure 8b), suggesting that Rps3 knockdown mimics the
effect of Lxn overexpression. With 6.5 Gy irradiation, the
growth of Rps3 knockdown cells was significantly inhibited
compared with control although its number was higher than
TAP-Lxn cells at day 3 post irradiation. This is probably due to
the extent of Rps3 knockdown is not sufficient enough to
suppress Rps3 translocation, thus radiation toxicity is not as
significant as Lxn overexpression. These data suggest that
RPS3 knockdown increases radiation sensitivity and pheno-
copies the effect of Lxn overexpression.

Discussion

Lxn is a negative regulator of hematopoietic stem cell
numbers.3,30 Recent reports have demonstrated that Lxn
expression is absent or downregulated in several types of
cancers and that Lxn overexpression inhibits tumor growth,
suggesting that it may function as a tumor suppressor.4–8,11

Caboxypeptidase A is the only known Lxn binding protein, but
we previously showed that the tumor suppressor activity of Lxn
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is not mediated via this canonical pathway.5,10,14 In this study,
we examined the role of Lxn in myeloid leukemia, elucidated
the underlying molecular mechanism, and evaluated its
therapeutic potential.
Here, for the first time, we identify Rps3 as a novel Lxn

binding protein. Rps3 is a component of the 40S ribosomal
subunit and participates in ribosome biogenesis and protein
synthesis. Recent reports have revealed its important extra-
ribosomal functions, including DNA damage and repair,29,37

induction of apoptosis,23 regulation of mitosis,36 and involve-
ment in the MDM2-p53 and NF-κB signaling pathways.20,38

Some of these biological functions are involved in the nuclear
translocation of Rps3. However, the precise role of nuclear
Rps3 in DNA damage and response is not yet clear. It can
either facility repair due to its endonuclease activity23 or block
the access of repairing machinery at sites of DNA damage,
thus inhibiting repair.21 Nuclear Rps3 was also reported to
associate with the mitotic spindle and regulate mitosis.36 In
this study, we found that Lxn and Rps3 are located in the
cytoplasm and interact with each other in the unstressed
condition. With radiation-induced genotoxic stress, Rsp3
translocates into the nucleus, a result consistent with the
previous report.21,35 Surprisingly, Lxn attenuates this process,
resulting in less Rps3 moving to the nucleus upon irradiation.
In addition, Lxn-overexpressing cell demonstrated abnormal
mitotic spindle formation. Taken all these evidence together,
we propose a model for the mechanism of action of Lxn in

radiation response: Lxn sequesters Rps3 in the cytoplasm,
resulting in less Rps3 translocation into the nucleus upon
irradiation. Reduced level of nuclear Rps3 interferes with
formation of the mitotic spindle, induces mitotic abnormalities
and blocks cell-cycle progression.
To further address the role of Lxn-Rps3 interaction in cellular

response to radiation, it would be necessary to manipulate
Rps3 expression and examine its effect on radiation response.
Since our data suggest that Lxn inhibits Rps3 activity (nuclear
translocation), we first overexpressed Rps3 in Lxn-
overexpressing FDC-P1 cells and found that high level of
Rps3 severely suppressed cell growth, which precluded us
from further assessing their radiation sensitivity (data not
shown). This result is consistent with the previous report in
which overexpression of Rps3 can induce apoptosis.21 Next,
we employed knockdown of Rps3 in FDC-P1 cells to
determine whether it can phenocopy Lxn-overexpressing
cells. We found that 460% knockdown efficiency also
produced cytotoxicity, which is consistent with the literature
(data not shown).20,22,25 These findings are not surprising
considering the important function of Rps3 in ribosomal
assemble and protein synthesis. Therefore, we finally choose
a Rps3 shRNA sequence that can knockdown Rps3 expres-
sion by 33% without direct cytotoxicity. We found that
knockdown Rps3 can increase the radiation sensitivity and
phenocopy Lxn-overexpressing cells, suggesting that Rps3
might participate in the Lxn-mediated cellular response to
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radiation. It should be admitted that the ideal strategy to
address this question is to block the binding of Lxn and Rps3
and test its functional effect. One of the future studies will be
focused on determining their binding domains, designing
mutants that interrupt the interaction, and examining their
functional effects.
Ectopic expression of Lxn suppresses FDC-P1 growth

in vitro, suggesting its potential tumor suppressor function in
myeloid leukemia. More importantly, we, for the first time,
revealed that Lxn sensitizes leukemic cells to radiation and
chemo agent-induced cytotoxicity in a dose-dependent
manner, and at a certain dose it could completely eliminate
cancer cells. Radiation or chemo agents induce DNA damage,
and in normal cells, the DNA damage response primarily relies
on the ATM-Chk2 signaling, and secondarily on the ATR-Chk1
pathway.39 Activation of these pathways will arrest normal
cells in G1 via p53-dependent mechanism to allow time for
DNA repair or they proceed to cell death if the damage cannot
be repaired.40 In contrast, many cancers rely heavily on ATR-
Chk1 mediated cell-cycle arrest in the S and G2 phases
especially if cancers are deficient in p53.41 In consistence with
these reports, our result showed that FDC-P1 cell is absent in
p53 protein, thus its radiation response is specifically
dependent on ATR-Chk1 signaling but not on ATM-Chk2
pathway. Very interestingly, Lxn inhibits the expression of ATR
and phosphorylated Chk1 proteins in non-stress condition,
resulting in accumulation of aberrant chromosomal structures
in Lxn-overexpressing cells. Upon radiation, activation of ATR-
Chk1 was further suppressed in Lxn-overexpressing cells,
leading to the abrogation of S/G2 checkpoints and M-phase

arrest. Because of the disturbed mitotic spindle, Lxn-
overexpressing cells cannot pass through the M phase and
ultimately undergo mitotic catastrophe and cell death. p53
mutations occur in approximately 50% of cancers, whichmake
cancer cells less responsive to the genotoxic agents.42

Indeed, leukemia patients with p53 deficiency represent a
group with a high resistance to radio- and chemotherapy and
demonstrate the most aggressive disease courses.43 There-
fore, activation of Lxn could sensitize p53-deficient tumor cells
to radiation and chemotherapeutic agent, and potentiate their
cytotoxicity, thus enhancing the efficacy of cancer treatment
and reducing the relapse. It was reported that Lxn can be
induced by clinically used retinoic acid44 and demethylating
agent,5 suggesting the potential pharmaceutical methods to
increase the abundance of Lxn in cancer patients.
Cancer is generally considered to originate from cancer

stem cells, which are more resistant to anti-cancer therapies,
leading to cancer relapse.45 Considering the regulatory role of
Lxn in hematopoietic stem cells, we hypothesize that Lxn can
be a promising molecular target, in combination with conven-
tional anti-cancer therapy, to improve treatment efficacy and
perhaps eradicate cancer stem cells. Our ongoing
study focuses on its combinatorial role with chemotherapy in
the treatment of leukemia and lymphoma as well as solid
tumors.

Materials and Methods
Cell culture. Phoenix GP, 293TN and NIH 3T3 cell lines were cultured in
Dulbecco's Modified Eagle's Medium (DMEM, Gibco, Grand Island, NY, USA)
supplemented with 10% fetal bovine serum (FBS), 80 U/ml penicillin, and 80 mg/ml
streptomycin. FDC-P1 cell line was cultured in DMEM supplemented with 25%

Annexin V

7A
A

D

0 h 24 h 48 h

TA
P

TA
P

-L
xn

72 h 96 h

0.6%

0.92%

2.86% 3.25% 4.04%1.44%

3.31% 4.32% 7.43%6.27%

N

A 

NNNN

NNNNN

TAP TAP-Lxn

0 24 48 0 24 48

Caspase 3

Cleaved
Caspase 3

β-actin

Figure 6 Lxn enhances radiation-induced necrosis. (a) Lxn-overexpressing FDC-P1 cells undergo necrosis in response to radiation. TAP-Lxn or TAP-transfected FDC-
P1 cells were treated with 6.5 Gy radiation and cell death was determined by Annexin V and 7AAD staining and flow-cytometry analysis. Annexin V-positive and 7AAD-negative
cells are apoptotic (labeled as A) and cells positive for both makers are necrotic (labeled as N). Representative flow-cytometry profiles were shown and percentages of apoptotic
and necrotic cells at indicated time points post irradiation were labeled. (b) Lxn-overexpressing FDC-P1 cells lack the activation of caspase 3 upon irradiation. Western blot was
performed with the antibody against caspase 3 to detect intact and active (cleaved) forms of caspase 3. β-Actin was used as the control

Latexin increases radiosensitivity of leukemic cells
Y You et al

8

Cell Death and Disease



mouse interleukin-3 (IL-3, BD Biosciences, San Jose, CA, USA) and 10% FBS,
80 U/ml penicillin and 80 mg/ml streptomycin. These cell lines were incubated in a
humidified atmosphere of 5% CO2 in air at 37 °C. All cell lines used in this study
were purchased from American Type Culture Collection (ATCC).

Construction of overexpression and knockdown vectors and
generation of cell lines. The retroviral vector Sfβ 91 served as a control and
the backbone for Lxn overexpression. It contained a 5’ long terminal repeat (LTR)
derived from myeloproliferative sarcoma virus (MPSV) and a 3’ LTR derived from
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spleen focus forming virus (SFFV). The internal ribosomal entry site sequence
derived from the encephalomyocarditis virus was used for simultaneous translation
of the gene insert and enhanced green fluorescent protein (GFP) gene. Full-length
mouse Lxn was fused in-frame to a N-terminal TAP tag and subcloned into the NotI
site of retroviral vector sfβ to create sfβ-TAP-Lxn. A plasmid comprising only the
TAP tag was used as a control. All of the cloned PCR products and constructed
plasmids were sequenced. Phoenix GP packaging cells were transfected to produce
retrovirus according to the previously described. FDC-P1 cells were then
transfected by the retroviral supernatants of TAP control and sfβ-TAP-Lxn vectors
in the presence of 8 μg/ml polybrene (Sigma-Aldrich, St. Louis, MO, USA). GFP+
cells were sorted by flow cytometry to create the stable cell line. For Rps3

knockdown, the Rps3 MISSION shRNA plasmid DNA (TRCN0000104309) and the
scramble control plasmid DNA (pLKO.1-puro) were purchased from Sigma-Aldrich.
The Rps3 shRNA sequence is 5′-CCGGCAACCAGGACAGAAATCATTACTCG
AGTAATGATTTCTGTCCTGGTTGTTTTTG-3′. In all, 5 × 105 FDC-P1 cells were
infected with lentiviral particles carrying Rps3 shRNA or control sequence in the
presence of 8 μg/ml polybrene. After 48 h, puromycin (2 μg/ml) was added into the
cell culture for the selection of successfully infected cells. After 3 days of selection,
survived cells were collected for the measurement of Rps3 protein level and growth
and radiation study.

TAP purification and MS. Whole-cell extracts were prepared from TAP-Lxn
and TAP expressing FDC-P1 cells and purified using the InterPlay Mammalian TAP
purification kit (Stratagene, Agilent Technologies, Santa Clara, CA, USA) following
the manufacturer's protocol. Eluted proteins were separated on a 4–12%
SDS-PAGE gel and visualized by SYPRO-RUBY staining. The differentially
expressed-bands were cut into slices and processed for mass spectrometric (MC)
analysis. The MC analysis was performed at the University of Kentucky, Center for
Structural Biology Protein Core Facility and results were submitted to MASCOT for a
database sequence similarity search.

Co-immunoprecipitation analysis. FDC-P1 cells expressing Lxn were
harvested and lysed on ice using TNTG lysis buffer (30 mM Tris-HCl, 150 mM NaCl,
1% Triton X-100 and 10% glycerol) with a protease inhibitor cocktail (Roche,
Indianapolis, IN, USA) and 1 mM PMSF (Sigma-Aldrich). After centrifuging, the
lysates were saved and used for immunoprecipitation. Briefly, 5 μg of anti-Rps3
antibody or control normal rabbit IgG (Santa Cruz, Dallas, TX, USA) was incubated
with cell extracts overnight at 4 °C, and subsequently collected by incubating with
protein A/G-agarose beads for 1 h at 4 °C with rotation. The precipitates were
washed five times with lysis buffer and then subjected to SDS-PAGE and detected
by western blotting with chicken polyclonal anti-Lxn antibodies (Abcam, Cambridge,
MA, USA). The same procedure was performed in a reciprocal manner in which
chicken polyclonal anti-Lxn antibody (Abcam) was used to precipitate binding
proteins and Rps3 was blotted by anti-Rps3 antibody.

Immunofluorescence. Immunofluorescence was performed for detecting the
localization of Lxn and Rps3 as well as for staining γ-H2A.X and spindle. For Lxn and
Rps3 staining, the adsorbed FDC-P1 cells were incubated at 4 °C overnight with PBS
containing 5% (v/v) normal goat serum, 0.1% (v/v) Triton X-100 and polyclonal
antibodies against Lxn and Rps3 (diluted 1 : 500). After treatment with FITC and
rhodamine-conjugated secondary antibody (diluted1 : 500) at 23 °C for 2 h, cells were
stained with γ-H2A.X immunofluorescence staining was performed following the similar
protocol. Cells were fixed at 0.5 h post 6.5 Gy irradiation and then incubated with the
PE-conjugated antibody p-histone H2AX (S139) (Cell Signaling, Danvers, MA, USA) at
37 °C for 1 h. After washing three times, cells were stained with DAPI and the number
of γ-h2A.X foci was counted. In all, 60–80 cells were counted per group for each
experimental treatment. Data were expressed as the average number of γ-H2A.x foci
per cells for each time point. The α-tublin antibody (Santa Cruz Biotechnology, Dallas,
TX, USA) was used for spindle staining following a similar protocol. DAPI fluorescence
signals were either taken with a Zeiss Axiovert-200 microscope using a high-resolution
Zeiss digital camera (Carl Zeiss Inc., Jena, Germany) or taken with a FV1000 confocal
microscope (Olympus, Center Valley, PA, USA).

Measurement of cell growth. FDC-P1 cells transfected with TAP-Lxn and
TAP control vectors were treated with (1) 3 Gy or 6.5 Gy γ-irradiation or (2) VP-16
(Etoposide, Sigma-Aldrich) at the concentration of 20 or 30 μg/ml for 1 h. In each
treatment group, 5 × 104 cells were seeded into 24-well tissue culture plates (BD
Falcon, Franklin Lakes, NJ, USA) and at day 0. The cell numbers were subsequently
counted on a hemacytometer using trypan blue dye exclusion at different time points
for 9 days. Fresh medium was added at each time point. FACS analysis was performed
at each time point to measure the percentage of GFP+ cells.

Chromosome stability analysis. Cells in log phase were cultured in fresh
media with colcemid (5 μl/ml of media, stock concentration 10 μg/ml, Invitrogen, Life
Technologies, Grand Island, NY, USA; Cat. No. 15210-040) for 2 h before harvest.
Chromosome preparation was made according to the standard air drying procedure.
The cells were harvested by trypsinization, washed with pre-warmed PBS twice,
hypotonically treated (0.56% KCl, 20 min at 37 °C) and subsequently fixed in freshly
prepared acetic acid-methanol (1 : 3). At least three changes were given in fixative
before the cell suspension was dropped on to a pre-cleaned chilled microscopic glass
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slide and dried at room temperature at least for 1 day before staining. Giemsa staining
method was applied for scoring metaphase chromosomes. Structural chromosome
aberrations such as breaks, chromatid-type exchange (CTE), sister chromatid union
(SCU), acentric fragments (acentrics), double minutes (Dimn), dicentric and ring
chromosomes were scored under × 63 magnification. In each datum point, 4150–340
metaphase spreads were scored. The modal chromosome number of FDC-P1 cell was
33 with 7 metacentric chromosomes. Considering the modal chromosome number 33,
total number of chromosome investigated was calculated by multiplying modal
chromosome number with number of metaphase spread scored for each datum point.
Induction of total structural aberration between two groups (assuming 33 × number of
metaphase spreads scored for the purpose of determining proportion values) was
compared using Z-test to find the statistical significance between TAP control and TAP-
Lxn cells. Considering one-sided test, if the Z-value is 41.64 or 2.33, then the
difference in induction of structural translocations was considered as statistically
significant at 5% level (Po0.05) or 1% level (Po0.01), respectively.46

Flow-cytometry analysis. Cell-cycle analysis: BrdU staining was conducted
using the BrdU Flow Kit (BD Bioscience, San Jose, CA, USA) following the
manufacturer’s instruction. In brief, 106 cells were incubated with BrdU in the culture
medium at the final concentration of 10 μM for 1 h and cells were then fixed in
100 μlBD Cytofix/Cytoperm buffer (BD Bioscience) at RT for 20 min. After washing
three times with BD Perm/Wash buffer (BD Bioscience), DNase was added into the
resuspended cells at the final concentration of 300 μg/ml at 37 °C for 1 h. After
washing, cells were incubated with PE conjugated anti-BrdU antibody (eBioscience,
San Diego, CA, USA) at RT for 20 min. 7AAD (BD Bioscience) was added before
flow-cytometry analysis. Apoptosis and necrosis analysis: To determine the profile of
cell death after γ-irradiation, Annexin V staining was conducted at 0, 24, 48, 72 and
96 h after 6.5 Gy γ-irradiation. Annexin V-PE antibody (BD Bioscience) was used to
stain the fixed cells following the manufacturer’s protocol. 7AAD was added before
flow-cytometry analysis. All flow-cytometry analyses were performed on a FACSAria
II (Becton Dickinson Immunocytometry Systems, San Jose, CA, USA).

Western blot. Total protein was extracted following the method of previous
study. Cytoplasma and nucleus proteins were extracted separately by the Minute
Cytoplasmic and Nuclear Extraction Kit (Invent Biotechnologies, Eden Prairie, MN,
USA) following the manufacturer’s protocol. For western blot, protein lysates were
thawed and mixed with running buffer and a reducing agent (Novex, Life
Technologies) according to the manufacturer’s instructions and heated at 95 °C for
5 min. Samples were then separated in denaturing PAGE (Novex, 10% bis-Tris gel)
using the equivalent of 4 × 105 cells per lane at 185 V for 1 h. Following
electrophoresis, samples were then transferred onto a PVDF membrane (Millipore,
Billerica, MA, USA) by electro-blotting at 30 V for 1 h, which were subsequently
blocked in 5% skimmed milk and probed with anti-p-Chk1 (S317) rabbit antibody
(Cell Signaling), anti-Chk1 mouse antibody (Santa Cruz), anti-p-Chk2 (Thr68) rabbit
antibody (Santa Cruz), anti-Chk2 rabbit antibody (Santa Cruz), anti-ATM rabbit
antibody (Santa Cruz), anti-ATR rabbit antibody (Cell Signaling), anti-β-actin mouse
antibody (Sigma-Aldrich), chicken polyclonal anti-Lxn antibodies (Abcam), anti-P53
mouse antibody (Santa Cruz), anti-laminB goat antibody (Santa Cruz), anti-
caspase-3 rabbit antibody (Cell Signaling) and anti-ribosome protein S3 (Rps3)
antibody (Santa Cruz), respectively. Primary antibodies were detected using
alkalinephosphatase-conjugated secondary antibodies (Santa Cruz Biotechnology)
and electro-chemi-fluorescent (ECF) reagent (Amersham Pharmacia Biotech,
Piscataway, NJ, USA) according to the manufacturer’s instructions. Blots were then
visualized using a Molecular Dynamics STORM 860 system (GE Healthcare Life
Sciences, Pittsburgh, PA, USA).

Statistical analysis. Data were examined for homogeneity of variances
(F-test), then analyzed by Student’s t-test or one-way ANOVA using Tukey’s test.
Differences were considered as significant at Po0.05. All statistical analyses were
conducted with a statistical package (SPSS 16.0 for Windows, IBM SPSS Statistics,
IBM, Armonk, NY, USA).
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