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An influential causal theory attributes dyslexia to visual and/or auditory perceptual deficits. This
theory derives from group differences between individuals with dyslexia and controls on a range of
psychophysical tasks, but there is substantial variation, both between individuals within a group
and from task to task. We addressed two questions. First, do psychophysical measures have sufficient
reliability to assess perceptual deficits in individuals? Second, do different psychophysical tasks
measure a common underlying construct? We studied 104 adults with a wide range of reading
ability and two comparison groups of 49 dyslexic adults and 41 adults with normal reading, measuring
performance on four auditory and two visual tasks. We observed moderate to high test–retest
reliability for most tasks. While people with dyslexia were more likely to display poor task perform-
ance, we were unable to demonstrate either construct validity for any of the current theories of per-
ceptual deficits or predictive validity for reading ability. We suggest that deficient perceptual task
performance in dyslexia may be an associated (and inconsistent) marker of underlying neurological
abnormality, rather than being causally implicated in reading difficulties.

Dyslexia involves an unexpected failure to develop
literacy in otherwise intelligent children. Despite
decades of research, there is little consensus
about the underlying cause. One class of theory
attributes reading failure to a low-level perceptual
deficit affecting the visual magnocellar system and
possible analogous pathways in the auditory
system (see Stein, 2001, for a review). Studies
investigating this hypothesis have compared

people with dyslexia and normal readers on a
range of visual and auditory tasks designed to tap
into relevant constructs—for example, auditory
temporal processing (Tallal, 1980), visual/audi-
tory magnocellular functioning (Kronbichler,
Hutzler, & Wimmer, 2002), visual magnocellular
functioning (e.g., Amitay, Ben-Yehudah, Banai,
& Ahissar, 2002b; Lovegrove, Martin, &
Slaghuis, 1986; Talcott et al., 1998, 2000),
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dynamic sensory sensitivity (Talcott et al., 2000;
Witton et al., 1998), and temporal processing
(Laasonen, Service, & Virsu, 2001, 2002; Van
Ingelghem et al., 2001). In addition, several
studies have investigated associations between
auditory frequency discrimination and dyslexia
(e.g., Ahissar, Protopapas, Reid, & Merzenich,
2000; McAnally & Stein, 1996), although the
extent to which poor frequency discrimination
can be regarded as a consequence of magnocellular
dysfunction is debatable.

Although the magnocellular hypothesis has
been influential, the evidence for a replicable
weakness in the visual or auditory perceptual pro-
cessing of individuals with dyslexia is difficult to
interpret. The existence of an auditory magnocel-
lular system, analogous to that found in the visual
system, remains highly speculative, and the most
that can be confidently claimed in respect to audi-
tory processing is that a subset of people with dys-
lexia shows auditory perceptual deficits compared
to those with normal reading (Ramus, 2003). A
large body of work exploring visual magnocellular
functioning has demonstrated group differences
between dyslexics and individuals with normal
reading on a variety of tasks (e.g., motion proces-
sing and contrast sensitivity). However, these data
have not been universally accepted (e.g., see
Skottun, 2000), and in these studies, as with
those showing auditory perceptual deficits, not
all dyslexic individuals show deficient perform-
ance. Also, while studies in both auditory and
visual perceptual processing do demonstrate
between-group differences, they very often find
but do not explain markedly greater variance
within the dyslexic group.

There are two possible explanations for such
findings. The first, which is most commonly
assumed, is that the magnocellular theory (or a
similar perceptual deficit account) is valid but
applies only to a subset of those with dyslexia.
However, another possibility that merits further
examination is that the within-group variation
reflects poor reliability and/or validity of measures
derived from psychophysical tasks, which are
seldom evaluated for their psychometric proper-
ties. For instance, as Roach, Edwards, and

Hogben (2004) have noted, the distributions of
scores seen in dyslexic samples may show little
consistency from one testing occasion to the
next; they may also be influenced by nonperceptual
factors. Thus, if this field is to advance, we need to
pay attention to both the reliability and the validity
of the measures used to assess perceptual function-
ing and to obtain normative standards against
which to evaluate performance of dyslexic groups.

Reliability

A key question that has not been addressed until
relatively recently in the perceptual processing lit-
erature is whether threshold estimates obtained for
an individual on one testing occasion are reliable,
in the sense that they would be replicated on
retest. Heath and Hogben (2004) demonstrated
moderate reliability for a task of perception of
rapid auditory sequences in 7- to 12-year-old chil-
dren, and Talcott and colleagues (Talcott et al.,
2003; Talcott et al., 2000) have reported high
interrun correlations for coherent motion in
children ranging from 9 to 12 years. McArthur
and Bishop’s (2004) data in individuals aged
from 12 to 21 years suggested that their frequency
discrimination measures produced stable threshold
estimates. Hulslander et al. (2004) showed high
interrun correlations on frequency modulation
(FM) detection, amplitude modulation (AM)
detection, and coherent motion tasks in a similar
age range. However, other studies that have expli-
citly addressed this issue have methodological
limitations. Fischer and Hartnegg (2004) reported
very respectable test–retest data for five auditory
tasks in children and adults, but their data were
biased because a large proportion of the partici-
pants had to be excluded because they could not
do the tasks even at the easiest level. The only
two studies in adults by Laasonen et al. (2001,
2002) reported internal consistency for thresholds
on a temporal order judgement, but the procedure
they used, of calculating split-half reliability
coefficients based on the first and last six reversals
in a block, is questionable, given that the data were
obtained from the same adaptive run and so were
not independent.
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Construct validity

Construct validity involves demonstrating that the
task used taps the dimension we wish to examine
and can be supported by (a) showing significant
relationships within individuals on two or more
tasks purported to tap that dimension, and (b)
demonstrating that individuals with deficits on
one task (i.e., those in the poor performance
“tail” of the distribution) perform similarly
weakly on at least one other task presumed to
capture the same dimension. Some studies have
examined relationships between a small number
of tasks with promising results: Talcott et al.
(1998) showed that thresholds for flicker sensi-
tivity and coherent motion, two tasks that puta-
tively capture visual magnocellular functioning,
were moderately correlated in adults with dyslexia
and normal adult readers; Witton et al. (1998) and
Talcott et al. (2000) found moderately strong
relationships between FM detection and coherent
motion in adults and children respectively; and
Van Ingelghem et al. (2001) reported a moderate
but significant relationship between visual and
auditory gap detection thresholds in children.

Other studies have taken a more systematic
approach by creating a battery of auditory and/or
visual tasks (e.g., Ahissar et al., 2000; Amitay,
Ahissar, & Nelken, 2002a; Amitay et al., 2002b;
Ramus et al., 2003) which are assumed to
capture some broad underlying dimension, then
attempting to demonstrate construct validity by
showing that dyslexics have deficits on all those
tasks. In general, these studies with more compre-
hensive batteries have not provided strong support
for a deficit in any underlying perceptual proces-
sing dimension. These studies also do not report
reliability data. Without data on task reliability,
it is unclear whether failure to find a correlation
between tasks may arise because some are psycho-
metrically weak, or whether a lack of correlation
might genuinely challenge the magnocellular
account or any other suggested underlying percep-
tual dimension.

High intercorrelations between different
measures of the same construct are a first step in
demonstrating construct validity, but they are not

always conclusive, because the commonality
between tasks could arise for quite trivial reasons,
such as ability to understand task demands or
adopt efficient strategies for task performance.
For this reason, it is far more impressive if one
finds significant correlations between tasks that
have different formats. The finding by Laasonen
et al. (2002) of correlations averaging around .4
to .5 between various tasks assessing temporal pro-
cessing in a group of 16 adults with dyslexia is
perhaps the strongest demonstration to date of
cross-task similarity, but the study was restricted
to cross-modal tasks, and the small sample size
means that there were high standard errors
around these estimates.

In the context of dyslexia, it is of particular
interest to consider whether those with very poor
scores on one measure are also impaired on
another measure of the same construct. Even
where two measures are reasonably correlated
across the whole range of performance, there
may be only weak concordance between impair-
ments. For instance, Heath and Hogben (2004)
reported moderate correlations in children with
dyslexia for a task based on the Tallal (1980) rep-
etition test and a backward recognition masking
task. However, individuals with poor performance
on the one task were not necessarily in the tail of
the distribution on the other, indicating that
these individuals were not consistently poor per-
formers across tasks purporting to assess the
same construct In a similar vein, Fischer and
Hartnegg (2004) noted that although there were
significant correlations between auditory measures
of time-order judgement and frequency discrimi-
nation in their sample, there were many partici-
pants who were severely impaired on one of
these measures but quite unimpaired on the other.

Normative performance

Psychophysical studies seldom adopt a standar-
dized methodology, so where there is lack of repli-
cation across studies, it can be hard to know if this
is due to differences in the participant charac-
teristics or methodological factors. The wider
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psychophysical literature provides some general
indication of values that can be expected in chil-
dren and adults on typical tasks, and we do have
some idea of how well these values can be genera-
lized to the types of task that are used to examine
deficits in dyslexics. For example Talcott et al.
(2002) reported normative data for both coherent
motion sensitivity and frequency discrimination
in 350 children unselected for reading ability
between the ages of 7 and 12 years of age, and
Hulslander et al. (2004) examined FM and AM
detection, coherent motion, and coherent form
detection in a large sample ranging in age from
11 to 21 years.

Even so, although sample sizes of unimpaired
individuals in most studies are typically large
enough to give reasonable estimates of the mean,
they are often far too small to give reliable esti-
mates of variance within each age group, making
it hard to quantify performance deficits at the indi-
vidual level. An exception is the study by Fischer
and Hartnegg (2004), who set out explicitly to
generate normative data across different age
groups of normal reading and dyslexic children.
However, as mentioned above, their tasks proved
too difficult for a large proportion of children so
their applicability is limited. Thus, we currently
have limited standards against which we might
sensibly compare the performance of either
control or clinical groups on psychophysical
measures of auditory and visual processing.

A related issue is the typical distribution pat-
terns of psychophysical thresholds. Authors of
standardized tests generally attempt to achieve
normally distributed test values, but to date this
has not been attempted in relation to perceptual
processing tasks. McArthur and Bishop (2001)
and Roach et al. (2004) delineated the typical dis-
tribution pattern seen in many between-group
comparisons in this field: overlap across the
range of threshold values between the control
group and more than half the dyslexic group, but
much greater variance in the dyslexic than the
control group, with a subset of the clinical group
spread out over a long tail at the poor performance
end of the distribution. Indeed, as noted by Roach
et al. (2004), it is often this tail that accounts for

between-group differences. This configuration is
pervasive in our own results (Heath & Hogben,
2000; Heath, Hogben, & Clark, 1999;
McArthur & Hogben, 2001) and in those of
others (e.g., Ahissar et al., 2000; Amitay et al.,
2002b; Talcott et al., 1998; Walther-Mueller,
1995; Witton, Stein, Stoodley, Rosner, &
Talcott, 2002).

Criterion validity

The primary aim of research with perceptual tasks
has been to examine relationships between per-
formance on these tasks and reading. However,
researchers in this area have found it notoriously
difficult to demonstrate predictive or criterion
validity with psychophysical tasks. As mentioned
above, typically only a subset of dyslexics show
deficits on perceptual tasks. Thus, in order to
examine the relationships between perceptual
processing and reading in those individuals with
poor performance we need large samples of dys-
lexic people. Only a few studies have had large
enough numbers to attempt this, and even
Ahissar and colleagues (e.g., Amitay et al.,
2002a, 2002b) have ended up with very small
numbers of disabled readers who were categorized
as weak across a range of perceptual tasks.

Aims of the current study

This study comprises two experiments that
explored the psychometric properties of six percep-
tual processing tasks used in this field, each with
strong claims to having revealed perceptual deficits
in dyslexics. In both experiments we examined
four auditory and two visual psychophysical
tasks. Both visual tasks—global dot motion detec-
tion and flicker constrast sensitivity—have been
used as measures of magnocellular functioning,
with several studies suggesting reduced sensitivity
in people with dyslexia (e.g., Amitay et al.,
2002b; Cornelissen, Richardson, Mason, Fowler,
& Stein, 1995; Lovegrove et al., 1986; Talcott
et al., 1998; Witton et al., 1998). Three of the
auditory tasks are designed to measure auditory
temporal processing and have been regarded as
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indicators of integrity of analogous auditory path-
ways that are implicated in processing of rapid
dynamic change. Frequency modulation detection
has been extensively studied in relation to reading
in both children and adults (e.g., Hulslander et al.,
2004; Ramus et al., 2003; Talcott et al., 2000,
2003; Witton et al., 1998, 2002). Auditory back-
ward detection masking and binaural masking
level difference have been examined as tasks
tapping auditory temporal processing in normal
and disabled readers (e.g., Ahissar et al., 2000;
Amitay et al., 2002a; McAnally & Stein, 1996;
Protopapas, Ahissar, & Merzenich, 1997; Ramus
et al., 2003; Rosen & Manganari, 2001). The
fourth auditory task, frequency discrimination,
measures spectral rather than temporal sensitivity
and is not usually regarded as a magnocellular
task, though McAnally and Stein (1996) have
suggested that it does involve temporal processing,
insofar as sensitivity of a neural phase-locking
mechanism might be implicated in poor frequency
discrimination. Other studies have obtained vari-
able results when studying deficits in frequency
discrimination among poor readers (e.g., Ahissar
et al., 2000; Amitay et al., 2002b; Cacace,
McFarland, Ouimet, Schrieber, & Marro, 2000;
France et al., 2002; Hill, Bailey, Griffiths, &
Snowling, 1999; Walker, Shinn, Cranford,
Givens, & Holbert, 2002).

In Experiement 1 we aimed to (a) describe nor-
mative performance on these six tasks by adminis-
tering them to a large sample of adults with at
least average nonverbal abilities unselected for
reading ability; (b) examine the test–retest reliability
of measurements on these tasks by comparing indi-
vidual performance across blocks of trials; (c) dis-
cover on which of these tasks performance would
covary within individuals when the tasks were all
administered using a standardized psychophysical
procedure; (d) explore relationships between these
tasks and measures of component literacy skills
(i.e., phonological decoding, which involves use of
knowledge about letter–sound correspondences,
and orthographic skills, which tap sight word
knowledge) and of reading; and (e) profile these
skills in any individuals who were weak in either
auditory or visual perceptual processing or both.

Our aims for Experiment 2 were to (a) compare
the performance of a large group of adults with
dyslexia on these same tasks with that of a group
of normal readers and with the normative data
collected in Experiment 1; (b) examine the test–
retest reliability of the tasks across blocks of
trials; (c) explore relationships across tasks within
the dyslexic and control groups; (d) examine the
strength of relationships within the groups
between performance on these tasks and measures
of literacy; and (e) profile the expected proportion
of individuals who were weak in either or both
auditory and visual perceptual processing on the
Experiment 1 literacy measures, spelling, and
tests thought to capture phonological short-term
memory, another area of functioning in which dys-
lexic individuals are said to have deficits (Hulme &
Roodenrys, 1995; Jorm, 1983; Wagner &
Torgesen, 1987).

EXPERIMENT 1

Method

Participants
A total of 104 adults aged 17 to 41 years (male ¼
50; female ¼ 54) with widely varying reading
ability were recruited by posters and personal
contact from university and technical college cam-
puses in Perth, Western Australia. Participants
were required to have English as a first language,
normal or corrected-to-normal visual acuity, a
performance IQ (PIQ) on the Kaufman Brief
Intelligence Test (Kaufman & Kaufman, 1990;
KBIT) of at least 85, and bilateral pure-tone con-
duction thresholds of 20 dB HL or better for
1,000-Hz tones, in standard audiometric screen-
ing (Australian Standard No. 2586; Standards
Association of Australia, 1983). Participants were
paid an honorarium of A$30.

Psychometric tests
Reading accuracy and efficiency. The Test of
Word Reading Efficiency (Torgesen, Wagner, &
Rashotte, 1999; TOWRE) Sight Word Reading

COGNITIVE NEUROPSYCHOLOGY, 2006, 23 (6) 909

PSYCHOMETRIC ANALYSIS OF PERCEPTUAL TASKS



subtest measured speeded reading of a graded list
of 104 regular and irregular words.

Component literacy skills. Phonological decoding
was measured using three tests: (a) the Word
Attack subtest from the Woodcock Reading
Mastery Tests–Revised, Form G (Woodcock,
1987; WRMT-R), which requires the individual
to read aloud a graded list of nonsense words in
unspeeded conditions; (b) the TOWRE
Phonemic Decoding subtest, which follows the
same format as the Sight Word Reading subtest
to measure speeded reading on a list of 63 non-
sense words; and (c) The Phonological Choice
Task adapted from Olson, Kliegl, Davidson, and
Foltz (1985). Participants were asked to indicate
which of three written pseudowords (e.g., crisk/
wosh/hesh) sounded like a real word. The 60
stimuli developed by Olson et al. were presented
on an IBM-compatible computer run by a
Matlab program, and both median latency and
accuracy data were recorded for each trial.

Orthographic skills. The Orthographic Choice Task
also adapted from Olson et al. (1985) presented
participants with adjacent pairs of letter strings.
One of these was an orthographically correct real
word but the other was a pseudohomophone of
the word (e.g., goat/gote). The task was to identify
the real word. A total of 80 orthographic choice
trials were administered in a similar format to
that used for phonological choice.

Measurement of auditory and visual thresholds
All tasks were presented on an IBM-compatible
computer. Participants responded by pressing a
keypad. A two-alternative forced-choice PEST
procedure (Taylor & Creelman, 1967) was used
to estimate the 75% correct performance level.
Participants were given trial-by-trial feedback
about response correctness. In the auditory tasks
the words “correct” or “incorrect” appeared on
the screen; in the visual tasks, a high or low tone
indicated correct or incorrect, respectively. A
total of 10 suprathreshold practice trials were pro-
vided for participants to learn each task. Two
blocks of test trials were then administered.

The threshold estimate for each block was
taken as the mean of all points after the fourth
reversal, except where this value was clearly com-
promised by an extreme variation in stimulus
level. This judgement was made by an experienced
researcher blind to the participants’ individual
profile or group. Threshold was then calculated
after a later reversal, provided at least 30 trials
were available on which to calculate the threshold.

The auditory battery
Auditory testing was conducted in an acoustically
shielded room. Stimuli were digitally generated
on a TDT System 2 controlled by computer and
presented binaurally through Sennheiser HD 265
headphones. Blocks of 70 trials were presented
for all tasks except for estimation of masking
level difference, where blocks consisted of 80 trials.

Frequency discrimination (FD). A task based on the
AXB design described by Mengler, Hogben,
Michie, and Bishop (2005) was used to measure
difference thresholds. This task presents three
100-ms 85-dB SPL tones (10 ms rise/fall) separ-
ated by 300 ms. The first tone (A) was a 1,000-
Hz standard, the third tone (B) was the same
frequency plus the current frequency difference,
and the middle tone (X) matched either the first
or the third tone on a random basis. The initial
stimulus difference was 30 Hz with a maximum
step size of 8 Hz and a minimum step size of
0.1 Hz. The participant’s task was to indicate
whether the middle tone was the same as the
first or last sound.

Frequency modulation (FM) detection. FM detec-
tion thresholds were measured in an adaptive
version of the task described by Witton et al.
(1998). In our measure only the modulation
depth was varied, while the rate of modulation
was held constant. Participants were presented
with pairs of 500-ms 81-dB SPL tones (10 ms
rise/fall) separated by a 500-ms interval. One
sound was a pure 500-Hz tone; the other target
tone was 500 Hz, frequency modulated at a rate
of 2 Hz. The order of the two tones was randomly
varied from trial to trial. Initial depth of
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modulation in the target tone was 10 Hz, with a
maximum step size of 4 Hz and a minimum step
size of 0.1 Hz. The participant’s task was to indi-
cate whether the modulated tone came first or
second.

Auditory backward masking (ABM). This task was
modelled on Wright et al. (1997) and involved
establishing threshold for detecting a tone that
was immediately followed by a 300-ms 40-dB
SPL burst of white noise. In each trial participants
heard two 300-ms noise bursts, separated by a
fixed 500-ms interval. One of these noises was
preceded (interstimulus interval, ISI ¼ 0 ms) by
a 20-ms 1,000-Hz target tone initially presented
at 60 dB SPL (10 ms rise/fall). The initial and
maximum step size was 5 dB, with a minimum
step size of 1 dB. The participant was required to
indicate whether the target occurred before the
first or the second noise.

Masking level difference (MLD). In this task
adapted from McAnally and Stein (1996), partici-
pants’ thresholds for detecting a 1,000-Hz target
tone in Gaussian noise were measured. Two
500-ms bursts of 75-dB SPL white noise were
presented, separated by a 500-ms interval. In
each trial the target was presented either dichoti-
cally in phase or 180 deg antiphase. Participants
had to indicate whether they heard the target
tone during the first or second noise burst. The
target was initially presented at 80 dB SPL but
sound level was varied from trial to trial. Initial
and maximum step size was 6 dB SPL, and the
minimum was 0.1 dB SPL. Two interleaved sets
of trials were used, one for in-phase and one for
antiphase. The in-phase threshold was subtracted
from the antiphase estimate to quantify the differ-
ence between the listening conditions. The higher
the difference score, the greater the advantage the
listener appears to have gained from antiphase
presentation of the target tone.

Visual tasks
The stimuli for the two visual tasks were presented
on a Sony Trinitron GDM-20SEI monitor, con-
trolled by the framestore section of a Cambridge

Research Systems VSG2/3. The screen was
viewed binocularly in a darkened room. Blocks of
80 trials were presented for the Global Dot
Motion Task, and for the Flicker Contrast Task
each block consisted of 60 trials.

Global dot motion (GDM). Stimuli similar to those
described by Edwards and Badcock (1996) con-
sisted of 100 circular dots subtending 0.11 deg.
The dots were randomly distributed across the
screen with proximity restrictions imposed to
ensure that the dots would not overlap. A total
of 20 frames were each displayed for 30 ms,
which resulted in a total duration of 600 ms for
each trial. To eliminate local cues during detec-
tion, the coherently moving dots were chosen ran-
domly on each frame instead of having the same
dots moving coherently across all 20 frames. The
remaining dots moved in a random direction,
excluding the global motion direction.

The coherence of the first presentation was 20%
(i.e., 20 dots were moving in the same direction).
The spatial step size was 0.19 degrees, resulting
in a stimulus velocity of 6.33 deg/s. After each
trial the participant was asked to indicate the
direction of movement (either up or down).
Threshold was defined as the percentage of dots
needed to detect the direction of global movement.
Hence, a higher threshold on this task indicates
low sensitivity.

Flicker contrast sensitivity (FCS). This task was
adapted from Evans, Drasdo, and Richards
(1994). In each trial two stimuli were presented.
The target consisted of a Gaussian patch (SD ¼

3.15 deg) presented in the middle of the screen,
with a temporal frequency of 10 Hz and a mean
luminance of 20 cd/m2. The target was sur-
rounded by a field of matched space-averaged
luminance. In each trial, the target was presented
randomly either before or after another stimulus,
which had the same mean luminance but did not
flicker. The temporal contrast (modulation
depth) was varied from trial to trial to obtain the
threshold.

Before the start of each trial, a fixation cross
indicated where the centre of the target would
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appear. Two tones signalled separate 1,000-ms
observational periods during which the target
and the nonflickering stimulus appeared.
Participants were required to indicate which
observational period contained the target.
Thresholds reflected the Michaelson constrast
ratio needed to detect flicker. Thresholds for
each participant were transformed to contrast sen-
sitivity (1/threshold).

General procedure
Participants attended two sessions of approxi-
mately 90 min with appropriate breaks on separate
days up to 2 weeks apart, or on the same day sep-
arated by a longer meal break. In Session 1, partici-
pants were screened for KBIT PIQ , and suitable
participants then completed the visual tasks, the
WRMT-R and TOWRE tests, and the audio-
metric screening. In Session 2, participants
completed the Olson tasks and the auditory
battery.

Results

Table 1 presents descriptive data for the demo-
graphic and psychometric variables. As this table
indicates, reading ability and educational level
covered a wide range.

Normative data for the psychophysical tasks
Where task performance is expressed as an absol-
ute or differential threshold (i.e., for FD, FM,
ABM, and GDM), distributions of individual
differences were positively skewed. Therefore,
data for these variables were subjected to a log
transform prior to any parametric statistical analy-
sis. The resulting distributions were approximately
normal for all tasks. Table 2 presents threshold
values associated with a range of percentile rank-
ings for each task. Given the large age range
covered by this sample, we looked at the rela-
tionship between age and performance on these
tasks. We found that there were low correla-
tions (highest average r values �.2 for FD and
FCS).

Reliability of the psychophysical measures within
individuals
Figure 1 shows the relationship between the two
independent threshold estimates for each task.
For all tasks except MLD we found statistically
significant positive correlations between blocks
(see Figure 1). As the use of psychophysical tasks
in clinical settings is particularly concerned with
identifying individuals with specific weaknesses,
we also considered the consistency of poor perfor-
mers between blocks. In line with the established
psychometric convention of taking the normal
range to extend from –1 to þ 1 standard devi-
ation, participants whose performance was
ranked below the 16th percentile were deemed to
be poor performers. The region of reliably poor
performance (i.e., where an individual had a per-
centile rank of less than 16 on both blocks) is indi-
cated by the shaded region in the plots in Figure 1.
Ideally, our measures would identify the same
group of poor performers in each task, resulting
in around 15% of the sample (between 15 and 16

Table 1. Group descriptive data for Experiment 1 demographic

variables, component literacy skills, and reading

Variable Mean Range

Chronological ageb 26.3 (7.3) 17–50

Years of education 14.4 (2.0) 9–20

KBIT matrices 107.9 (7.7) 90–127

Olson Phonological Task

Accuracyc 51.2 (6.8) 26–60

Latencyd 2,748.4 (773.7) 1,312–4,537

Olson Orthographic Task

Accuracye 79.8 (2.6) 70–83

Latencyd 841.6 (262.4) 439–1,974

Woodcock Word Attack 102.0 (9.8) 73–135

TOWRE Sight Word 94.3 (13.1) 68 to .113

TOWRE Phonemic Decoding 99.3 (14.3) 56 to .120

Note: Unless otherwise stated, standard scores are shown:

(mean¼ 100; SD¼ 15). Standard deviations are in parenth-

eses. Standard Scores for Test of Word Reading Efficiency

(TOWRE) shown here were calculated from norms given

in the test manual, which cover the age range from 17;0 to

24;11. This was based on the presumption that adult per-

formance is stable over time. Results of the analyses including

this variable do not alter when recalculated using raw scores.

KBIT ¼ Kaufman Brief Intelligence Test.
aN ¼ 104. bIn years. cOut of 60. dIn ms. eOut of 83.
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individuals) occupying the shaded region for each
task. At worst, with complete independence
between estimates, we would expect around 2%
(between 2 and 3 individuals) to perform poorly
on both blocks. Again, MLD was the weak
measure since only 2 individuals could be reliably
identified as poor. The other five measures all
show reasonable consistency, especially FD and
FCS, where the number of individuals falling in
the tail of the distribution on both blocks was 12
and 10, respectively.

Relationships between the psychophysical tasks
Correlations between tasks were mostly quite
weak, and after applying a Bonferroni correction
(aFW ¼ .05) only the relationship between FD
and FM remained significant (r ¼ .40 for both
blocks). To address the question of whether poor

performance covaries between tasks, we calculated
the number of tasks that each participant per-
formed poorly. As some overlap between tasks
would be expected purely by chance, the resulting
frequency distribution was compared against pre-
dictions assuming complete statistical indepen-
dence between tasks. As the likelihood of being a
poor performer on a single block of any task is
fixed at 0.15, the probability of an individual
being poor at n tasks out of 6 is given by:

P(n out of 6) ¼ (0:15)n � (0:85)6�n
�6Cn,

where 6Cn represents the number of ways of select-
ing n tasks out of 6. The upper panel of Figure 2
shows that for both blocks the obtained distri-
butions closely mirror these predictions. This
suggests that the probability of performing

Figure 1. Relationships between threshold estimates obtained on Blocks 1 and 2 for each task in Experiment 1 (N ¼ 104). FD ¼ frequency

discrimination (Hz); MLD ¼ masking level difference (dB SPL); FM ¼ frequency modulation (Hz); ABM ¼ auditory backward masking

(dB SPL); GDM ¼ global dot motion (percent); FCS ¼ flicker contrast sensitivity (1/threshold). Dotted lines represent the cut-offs for

poor performance (16th percentile) on each task. Shaded quadrant shows the region of reliably poor performance, with number of

individuals in each quadrant shown within shaded area. Pearson correlation coefficients are shown in frames (all were significant with

p , .008, except MLD).
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poorly on any given task was independent of
performance on all other tasks.

Given that a certain amount of error is associ-
ated with any single threshold estimate, it
seemed plausible that the noise associated with
classifying poor performance based on a single
block of trials might have masked any systematic
relationships between the tasks. To limit this
potential problem, we repeated the analysis for
individuals who were reliably poor performers on

each task. Restricting the analysis to individuals
who repeatedly fall in the tail of the distribution
should act to increase the robustness of the poor
performance classification and increase the sensi-
tivity to pick up any patterns of covariation
between tasks. As the probability of an individual
being reliably poor varied between tasks, chance
predictions were obtained by a Monte Carlo simu-
lation incorporating the separate base rates for
each task. Results for this analysis are shown in
the lower panel of Figure 2. Again, the distri-
bution of reliably poor performance closely
adheres to expectations based on complete inde-
pendence between tasks.

These results suggest an absence of any sys-
tematic covariation of poor performance across
psychophysical tasks. Additional support for this
conclusion was found when we looked more
closely at the profiles of individuals who happened
to be poor at multiple tasks, either in particular
blocks or reliably across blocks. In each case
there was little consistency in the combinations
of tasks performed poorly by participants. Even
for the FD–FM pairing, of the 12 participants
who were reliably poor at FD and the 9 who
were reliably poor at FM, only 3 participants had
conjoint deficits.

Relationships between the psychophysical measures
and reading ability
Scores for the component literacy skills and
reading measures were highly intercorrelated.
Although we selected measures that aimed to
separately index phonological and orthographic
literacy skills, a principal components analysis
revealed one dominant component loading on all
seven measures that accounted for nearly half
of the variance in scores. The ability of psycho-
physical task performance to predict reading
skills was assessed by multiple regression on this
extracted reading factor. In order to control for
general performance abilities we first entered
KBIT PIQ to the regression model, then observed
the additional variance in reading ability that was
explained when the psychophysical measures
were added as a second stage. Separate regressions
were run for each of the two blocks of threshold

Figure 2. Frequency distributions of the number of psychophysical

tasks performed poorly (a) on each testing block and (b) reliably

across both blocks. The solid lines are not fits to the data. Rather,

they show chance predictions assuming complete statistical

independence between tasks.
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estimates. Block 1 psychophysical measures
accounted for an additional 10% of variance in
reading ability, whereas Block 2 measures
explained an additional 12% of variance. Squared
semipartial correlations revealed that of the six
psychophysical measures, only FD uniquely
explained significant amounts of variance in
reading (5.01% for Block 1 and 6.35% for Block 2).

Discussion

We have demonstrated moderate reliability across
different testing occasions for all tasks except
MLD, with FD, ABM, and FCS being the most
reliable. Our coefficient for the GDM task is
lower than that reported in children by Talcott
et al. (2000) and Talcott et al. (2003). However,
we point out that the coherent motion task used
in those studies is a very different task from the
present one. The poor reliability of MLD is
most likely related to the use of a difference
score to quantify the effect. When the components
of a difference score are positively correlated, the
reliability of the difference is often less than the
average reliability of the two components
(Cronbach & Furby, 1970). The correlations for
the antiphase and in-phase thresholds were of
similar strength to those for the other psycho-
physical tasks, and the intercorrelation between
these components was moderate (r ¼ .46 and
r ¼ .44 for the two blocks).

Regarding construct validity, the assumption
that these tasks may be tapping some pervasive
underlying perceptual processing dimension (e.g.,
magnocellular processing), or even a more
limited domain (e.g., auditory or visual processing)
was not supported. The only two tasks that were
significantly correlated within this sample were
FD and FM, which were moderately related
across both blocks. On the surface, this might
suggest that in this sample of adults unselected
for reading ability, both these tasks are capturing
some sort of auditory domain, possibly related to
the perception of small differences in frequency
(cf. Ahissar et al., 2000). However, when attention
was focused on participants with unusually poor
performance, results on even these two tasks

were not consistent. Overall, when we examined
the proportion of participants who performed
reliably poorly on any given number of tasks, this
was at chance level, suggesting that there was
little systematic effect within the participants
leading to poor task performance.

We were not able to demonstrate predictive or
criterion validity for any of the tasks. There was
little evidence that the psychophysical tasks were
meaningfully related to individual differences in
reading ability. Indeed, our brief PIQ measure
accounted for almost as much variance in reading
ability as the combined total of our six psycho-
physical tasks. Despite the reasonable statistical
power afforded to us by the size of the sample,
only FD uniquely accounted for significantly
more than zero variance.

In sum, we found that in a large sample of
adults unselected for reading ability, at least
some of our measures were tolerably reliable, but
they did not appear to be capturing the constructs
that previous research has argued for, and poor
individual performance was not related to
reading and literacy skills. However, the possibility
remains that deficiencies in reading and psycho-
physical tasks will be more closely related in
people with dyslexia. This was the principal
focus of Experiment 2.

EXPERIMENT 2

Method

Participants
A total of 49 adults (male ¼ 24; female ¼ 25) who
reported a childhood history of literacy problems
and/or a previous diagnosis of dyslexia were
recruited to the dyslexic group in a similar way
and with identical selection criteria to those for
Experiment 1. A total of 41 adults with normal
reading (male ¼ 10; female ¼ 31) were also
recruited in this manner. Participants in the two
groups were further required to rank on the
TOWRE Phonemic Decoding subtest below
the 16th percentile for the dyslexic group and
above the 40th percentile for the control group.
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Because the age bands for this test extend only to
24 years 11 months, cut-offs (dyslexic group: raw
score � 44; control group: raw score � 53) were
based on percentiles generated from the
Experiment 1 sample.

Psychometric tests
Reading and component literacy skills. Tests of
reading accuracy and efficiency and component
literacy skills were all administered as described
in Experiment 1.

Spelling. The Spelling subtest from the Wide
Range Achievement Tests–3rd Edition, Tan
Form (Wilkinson, 1993; WRAT-3) was adminis-
tered according to the standardized directions.

Phonological short-term memory (PSTM). Three
aspects of PSTM were assessed using the Memory
for Digits and Nonword Repetition subtests
from the Comprehensive Test of Phonological

Processing (Wagner, Torgesen, & Rashotte, 1999;
CTOPP) and the Memory for Sentences subtest
from the Stanford Binet Intelligence Scale–4th
Edition, Australian Adaptation (Thorndike,
Hagen, & Sattler, 1986), all administered according
to the test instructions.

Psychophysical measures
The six psychophysical tasks were administered
according to the procedures reported for
Experiment 1. As for the first experiment, raw
thresholds are reported as descriptive data,
but these values were log transformed for any
inferential analyses.

Results

Demographic and psychometric data are presented
in Table 3. On average, both groups in this ex-
periment were slightly older than the group in
Experiment 1. The control group was a little

Table 3. Group mean values for control and dyslexic groups in Experiment 2 on demographic, psychometric and component reading skills

Mean

Variable Control a Dyslexicb Statistical test result

Chronological agec 33.9 (8.1) 36.3 (9.9) ns

Years of education 15.0 (2.6) 12.8 (2.7) t(88) ¼ 3.94, p, .001

KBIT Matrices 111.4 (8.5) 105.2 (9.3) t(88) ¼ 3.27, p, .01

Woodcock Word Attack 111.1 (7.9) 87.8 (9.6) t(88) ¼ 12.42, p, .001

TOWRE Phonological Decoding 106.4 (8.7) 72.9 (8.8) t(88) ¼ 18.10, p, .001

TOWRE Sight Word 100.1 (10.9) 80.3 (9.4) t(88) ¼ 9.23, p, .001

WRAT-3 Spelling 111.9 (7.7) 87.0 (14.8) t(88) ¼ 9.76, p, .001

Olson Phonological Task

Accuracyd 54.4 (3.8) 38.9 (10.8) t(88) ¼ 8.73, p, .001

Latencye 2,494.9 (629.9) 3,342.2 (970.2) t(88) ¼ 4.81, p, .001

Olson Orthographic Task

Accuracyf 80.7 (2.0) 74.8 (9.2) t(88) ¼ 4.04, p, .001

Latencye 720.6 (137.0) 1027.4 (352.8) t(88) ¼ 5.24, p, .001

CTOPP Memory for Digits (scaled score) 12.3 (2.6) 8.6 (3.5) t(88) ¼ 5.63, p, .001

CTOPP Nonword Repetition (scaled score) 6.8 (1.7) 5.00 (1.8) t(88) ¼ 4.86, p, .001

Binet Sentence Memory (scaled score) 52.5 (7.4) 42.2 (8.6) t(88) ¼ 6.02, p, .001

Note: Unless otherwise stated, standard scores are shown (mean ¼ 100; SD ¼ 15). Standard deviations are in parentheses. Where

scaled scores are shown, these have a mean of 10 and SD of 3, except for Binet scaled scores, which have a mean of 50 and SD of

8.5. Missing values were replaced with the group mean value before the inferential analyses were conducted. TOWRE ¼ Test of

Word Reading Efficiency. KBIT¼ Kaufman Brief Intelligence Test. WRAT-3¼Wide Range Achievement Tests–3rd Edition.

CTOPP ¼ Comprehensive Test of Phonological Processing.
aN ¼ 41. bN ¼ 49. cIn years. dOut of 60. eIn ms. fOut of 83.

COGNITIVE NEUROPSYCHOLOGY, 2006, 23 (6) 917

PSYCHOMETRIC ANALYSIS OF PERCEPTUAL TASKS



younger than the dyslexic group, stronger on the
KBIT matrices and somewhat better educated.
Group differences in PIQ and years of education
were statistically significant. Since the KBIT
matrices mean for the dyslexic group was at the
63rd percentile, and the range of scores overlapped
almost completely, the difference in PIQ was not
thought to be an issue. Notwithstanding, the
effect size was relatively large (Cohen’s d ¼ 0.7),
so we controlled for PIQ in any between-group
analyses of the dependent variables. As would be
expected, the dyslexic group had spent fewer
years on average in education. The mean number
of years of education for the dyslexic group was
12 years, which suggests that fewer of this group
had gone on to extended tertiary education.
Between-group differences were as would be
expected in these groups for component literacy
skills, reading, spelling, and phonological short-
term memory.

Reliability of the psychophysical measures
As shown in Table 4, Block 1 to Block 2 corre-
lations for the two groups combined were fairly
consistent with those for the Experiment 1
sample. Reliability of the FD and ABM tasks
was slightly stronger in this sample, whereas
GDM measurements were slightly less reliable.
Once again, the MLD task did not appear to
deliver consistent threshold estimates from one
block to the next. All correlation coefficients
except for MLD and GDM were significant

(a¼ .05). Table 4 shows that similar patterns
were reflected within the groups as well. The
only task where this was not the case was GDM:
There was no relationship between performance
on Blocks 1 and 2 in the control group.

Differences between dyslexic and normal readers
Table 5 shows summary statistics for each of the
two groups on the psychophysical tasks. Mean
performance levels for the dyslexic group were
consistently poorer than that for the normal
readers on all tasks. Analysis of variance per-
formed on the log transformed thresholds with
PIQ as a covariate revealed significant differences
between the group means on both blocks for two
of the tasks—FD and GDM—and on Block 2
for FM. However, as can be seen in Figure 3,
there was substantial overlap between perform-
ance levels of individuals in each group.
Accordingly, the differences in mean perform-
ance seen between the groups cannot be
thought of as characteristic of all individuals
within the sample.

An alternative analytical approach is to consider
the frequency of individuals within each group
who perform poorly on a given task. The region
of reliably poor performance is shaded for each
task in Figure 3 (i.e., at or below the 15th percen-
tile compared to normative data from Experiment
1 on both blocks). In assessing the evidence for
deficient performance in dyslexia, we need to con-
sider both the sensitivity and the specificity of the

Table 4. Pearson correlation coefficients between blocks on the psychophysical tasks in Experiment 2

Variable

Control groupa Dyslexic groupb Whole sample

Pearson’s r Cohen’s d Pearson’s r Cohen’s d Pearson’s r Cohen’s d

FD .81 2.8 .88 3.7 .87 3.6

FM .54 1.3 .47 1.1 .52 1.2

ABM .88 3.7 .70 2.0 .76 2.3

MLD .25 0.5 .15 0.3 .20 0.4

GDM 2 .03 0.1 .28 0.6 .28 0.6

FCS .76 2.3 .80 2.3 .77 2.4

Note: Bold values were significant at the .05 level. FD ¼ frequency discrimination; FM ¼ frequency modulation; ABM ¼ auditory

backward masking; MLD ¼ masking level difference; GDM ¼ global dot motion; FCS ¼ flicker contrast sensitivity.
aN ¼ 41. bN ¼ 49.
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tasks. Ideally, a task would identify a large pro-
portion of dyslexic individuals as poor performers
(good sensitivity), while identifying a relatively
low proportion of normal readers (good speci-
ficity). Table 6 shows the frequency of reliably
poor performers for each of the tasks. For all
tasks the proportion of poor performers is greater
in the dyslexic group than in the normal reader
group. In particular, GDM, FM, and FD show
reasonable utility in discriminating between indi-
viduals in each group with credible effect sizes in
each case (Table 5).

Relationships between the psychophysical tasks
Mirroring the results in the unselected sample,
correlations computed between the psychophysical

tasks suggested that only the FD and FM
measures are substantially related. After a
Bonferroni correction, performance on these
tasks was significantly related across the whole
sample: Block 1, r ¼ .57, p , .003; Block 2, r ¼
.51, p , .003. This pattern was preserved within
the groups, although not all coefficients reached
this stringent level of significance: control group:
Block 1, r ¼ .45, p , .003; Block 2, r ¼ .54,
p , .003; dyslexic group: Block 1, r ¼ .61,
p , .003; Block 2, r ¼ .42, p . .003.

To assess the possibility that poor performance
might covary between tasks, we again calculated
the proportion of participants in each group who
were poor at a given number of tasks. In line
with findings in unselected readers (see

Figure 3. Relationships between threshold estimates obtained on Blocks 1 and 2 for each task in Experiment 2, both groups combined (N ¼

90). FD¼ frequency discrimination (Hz); MLD¼masking level difference (dB SPL); FM¼ frequency modulation (Hz); ABM¼ auditory

backward masking (dB SPL); GDM ¼ global dot motion (percent); FCS ¼ flicker contrast sensitivity (1/threshold). Dotted lines represent

the cut-offs for poor performance (16th percentile) on each task, based on Experiment 1. Shaded quadrant shows the region of reliably poor

performance, with number of individuals in each quadrant shown within shaded area. Pearson correlation coefficients for each group are

shown in Table 6.
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Experiment 1), frequency distributions for the
group of normal readers closely adhered to
chance predictions assuming complete indepen-
dence between tasks (see Figure 4, left). Results
for the dyslexic group are shown in the right-
hand panels of Figure 4. Compared with normal
readers, the centre of mass of the frequency distri-
butions for the dyslexic group is shifted rightward,
reflecting a greater proportion of individuals per-
forming poorly at multiple tasks. This is to be
expected, as the frequency of poor performance
was higher in the dyslexic group for all six tasks.
When these higher base rates were taken into con-
sideration, chance predictions provided a reason-
able fit to the data, though not as tight as that
seen previously.

As the poor performance data for the dyslexic
group showed some evidence of departing from
statistical independence, we investigated the pat-
terns of covariation in more detail. To do this,

we calculated the number of times that reliably
poor performance co-occurred for each pairwise
combination of tasks. The resulting frequencies
could then be compared to chance predictions
obtained by multiplying the proportion of dyslexic
individuals who were reliably poor at each of the
two tasks. As shown in Table 7, results reveal a
tendency for poor performance to co-occur slightly
more than would be expected by chance in most
instances. There is no evidence of a particularly
strong association between any set of tasks.
Rather, there is a tendency for poor performers
on any given task to be more likely to perform
poorly on most other tasks.

Relationships between the psychophysical and
psychometric measures
To explore associations between psychophysical
task performance and the psychometric profiles
of the dyslexic sample, we first conducted a

Table 6. Participants performing at or below the 15th percentile on the psychophysical tasks in

Experiment 2

Control groupa Dyslexic groupb

Task Number % of group Number % of group

FD Block 1 only 0 4

Block 2 only 4 3

Both blocks 7 17.1 21 42.8

FM Block 1 only 0 7

Block 2 only 6 6

Both blocks 2 4.9 11 22.4

ABM Block 1 only 1 8

Block 2 only 1 4

Both blocks 7 17.1 12 24.5

MLD Block 1 only 6 4

Block 2 only 6 4

Both blocks 1 2.4 2 4.1

GDM Block 1 only 2 9

Block 2 only 3 5

Both blocks 0 0.0 8 16.3

FCS Block 1 only 1 5

Block 2 only 0 0

Both blocks 2 4.9 7 14.3

Note: Cut-offs for 15th percentile were those used in Experiment 1. FD ¼ frequency

discrimination; FM ¼ frequency modulation; ABM ¼ auditory backward masking;

MLD ¼ masking level difference; GDM ¼ global dot motion; FCS ¼ flicker contrast

sensitivity.
aN ¼ 41. bN ¼ 49.
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Figure 4. Frequency distributions of poor performance on multiple psychophysical tasks for control and dyslexic participants. The upper panels

show the results when each testing block is treated separately; the lower panels show the results restricted to consistently poor performance across

both blocks. Predictions assuming complete independence between tasks are shown in each case, taking into account the rates of poor

performance on each task.

Table 7. Pairwise analysis of reliably poor performance by dyslexic participants on multiple tasks in Experiment 2

MLD FD FM ABM GDM

FD 0 (1)

FM 0 (0) 8 (5)

ABM 0 (0) 8 (5) 5 (3)

GDM 0 (0) 5 (3) 4 (2) 5 (2)

FCS 0 (0) 4 (3) 2 (2) 3 (2) 1 (1)

Note:Cell values represent the number of individuals who were reliably poor at a given combination of tasks. Predictions for complete

task independence are shown in parentheses, calculated from the baseline frequencies of poor performance in each individual

task: FD ¼ 21/49; FM ¼ 11/49; ABM ¼ 12/49; GDM ¼ 8/49; FCS ¼ 7/49; MLD ¼ 2/49. FD ¼ frequency discrimination;

FM¼ frequency modulation; ABM¼ auditory backward masking;MLD¼masking level difference; GDM¼ global dot motion;

FCS ¼ flicker contrast sensitivity.
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principal components analysis on the reading,
spelling, and phonological short term memory
test results. Table 8 shows the resulting com-
ponent matrix following a varimax rotation.
Three factors were extracted, accounting for a
total of 69.49% of variance in the test measures.
The first loaded most heavily on measures of
reading and spelling accuracy, contributing 31%
of the total variance. A further 21.81% of variance
was explained by the second factor, which isolated
the three memory measures. The third factor
loaded primarily on the response latency measures
for the Olson phonological and orthographic

choice tasks, as well as on the speeded TOWRE
sight word efficiency. We termed these factors
Reading/Spelling Accuracy, Phonological STM,
and Reading Speed, respectively.

Correlations between these extracted psycho-
metric factors and performance on psychophysical
tasks were generally small. Following a Bonferroni
correction for multiple correlations, only the associ-
ation between FD and the Reading/Spelling
Accuracy factor remained significant. Coefficient
values were remarkably stable across testing blocks
(r ¼ –.50 for Block 1, r ¼ –.45 for Block 2, p ,

.004, in both cases). However, examination of the
scatter plots for Block 1 and 2 FD thresholds
versus the Reading/Spelling factor suggested that
these relationships were not particularly robust.

A similar result was found when we looked at
relationships between the psychometric factors
and reliably poor performance on each psycho-
physical task. The dyslexic group was split at the
median for each of the three psychometric
factors, and the frequency of reliably poor task per-
formance in each subgroup was compared against
chance predictions. Table 9 shows a cross tabula-
tion of reliably poor performance on each task
and low factor scores. Reliably poor FD and low
reading/spelling accuracy stands out as the only
combination producing a substantially higher con-
joint frequency than would be expected by chance.

Profiles of reliably poor and good FD performers in
the dyslexic group
Finally, we examined the psychometric profiles of
the dyslexics who were reliably poor at FD (poor

Table 8. Factor loadings from principal components analysis on

literacy tasks

Factor

1 2 3

Woodcock Word Attack .792 .301 2.010

TOWRE Sight Word .334 .365 .758

TOWRE Phonological Decoding .645 .368 .385

Olson Phonological Task

Latency .317 .290 2.633

Accuracy .871 .328 2.030

Olson Orthographic Task

Latency 2.162 2.081 2.721

Accuracy .716 2.067 .008

WRAT-3 Spelling .782 .098 .313

CTOPP Memory for Digits .161 .799 .145

CTOPP Nonword Repetition .042 .868 2.043

Binet Sentence Memory .529 .660 .089

Note: TOWRE¼ Test ofWord Reading Efficiency. WRAT¼

Wide Range Achievement Tests–3rd Edition. CTOPP ¼

Comprehensive Test of Phonological Processing.

Table 9. Pairwise analysis of reliably poor task performance and low scores on three psychometric factors for dyslexic participants in

Experiment 2

MLD FD FM ABM GDM FCS

Reading/Spelling Accuracy 1 (1) 16 (10) 6 (4) 5 (5) 4 (3) 2 (3)

Memory 1 (1) 11 (10) 6 (5) 5 (5) 5 (3) 1 (3)

Speed 1 (1) 11 (11) 6 (5) 5 (5) 5 (4) 2 (3)

Note: Cell values show the number of codeficient individuals. Chance predictions calculated from baseline frequencies are shown

in parentheses. Baseline frequencies were: Reading/Spelling Accuracy ¼ 23/47, Phonological Short-term Memory ¼ 24/47,
Speed ¼ 25/47, FD ¼ 20/47; FM ¼ 9/47; ABM ¼ 10/47; GDM ¼ 7/47; FCS ¼ 6/47; MLD ¼ 2/47. FD ¼ frequency

discrimination; FM ¼ frequency modulation; ABM ¼ auditory backward masking; MLD ¼ masking level difference;

GDM ¼ global dot motion; FCS ¼ flicker contrast sensitivity.
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FD subgroup; N ¼ 21) with those who were not
(good FD subgroup; N ¼ 28). The good FD sub-
group was significantly stronger nonverbally
(mean KBIT PIQ ¼ 109.0, SD ¼ 9.2) than the
poor FD subgroup (mean ¼ 100.1, SD ¼ 6.7);
t(47) ¼ 3.7, p ¼ .001. We also found that the pro-
files of these two groups reflected the factors
described above: That is, the groups differed sig-
nificantly, or almost so, on four of the five
measures that loaded heavily on the Reading/
Spelling factor. These were Woodcock Word
Attack (poor FD, mean scaled score ¼ 83.8,
SD ¼ 7.1; good FD, mean scaled score ¼ 90.7,
SD ¼ 10.4); t(47) ¼ 2.6, p ¼ .013, TOWRE
Phonemic Decoding (poor FD, mean scaled
score ¼ 70.0, SD ¼ 8.4; good FD, mean scaled
score ¼ 75.0, SD ¼ 8.6); t(47) ¼ 2.0, p ¼ .050,
WRAT-3 Spelling (poor FD, mean scaled
score ¼ 80.1, SD ¼ 14.9; good FD, mean scaled
score ¼ 91.6, SD ¼ 13.1); t(47) ¼ 2.7, p ¼ .010,
and Olson Phonological Task Accuracy (poor FD,
mean correct/60 ¼ 33.0, SD ¼ 10.3; good FD,
mean correct/60 ¼ 43, SD ¼ 9.4); t(47) ¼ 3.4,
p ¼ .001. However, these subgroups also differed
significantly on one of the measures that loaded
on Factor 3 in the principal components analysis,
Olson Phonological Task Latency (poor FD,
mean ¼ 3,650.4 ms, SD ¼ 945.9; good FD, mean
¼ 2,931.4 ms, SD ¼ 876.1); t(47) ¼ 2.7, p ¼ .009.
The subgroups did not differ significantly on any of
the memory measures that loaded on Factor 2, or
the efficiency measures that loaded on Factor 3
(i.e., TOWRE Sight Word, and Olson
Orthographic Task Latency). However, they also
showed no significant differences on Olson
Orthographic Task Accuracy. In summary, we
found that the poor FD and good FD subgroups
differed on measures of phonologically based lit-
eracy skills (largely loading onto the Reading/
Spelling factor), and did not differ on phonological
memory, orthographic skills or Reading Speed. It is
noteworthy that when we examined the subgroup
of 7 control participants who were reliably poor in
FD, the means and standard deviations for the
five literacy tasks on which the two dyslexic sub-
groups differed were almost identical to those of
the rest of the control group. This suggests that

the apparent relationship between poor FD and
weaker literacy is in some way specific to dyslexics.

Discussion

The distributions on the psychophysical tasks for
our two comparison groups mapped very closely
onto the normative distributions obtained in
Experiment 1. We found almost identical patterns
of test–retest reliability to those in the normative
sample, both when the two groups were combined
and when we looked within the groups. That is,
FD, ABM, and FCS were strongly reliable
measures, FM was moderately reliable, and the
MLD task was not reliable. We found GDM in
this experiment to be still less reliable than that
in Experiment 1: There was a very weak block-
to-block relationship within the control group
and overall a weaker relationship between per-
formance levels across blocks. We were not able
to explain this apparently anomalous result other
than possible sampling variation.

When we compared the groups on the psycho-
physical tasks, our results followed the patterns
commonly seen in this field. There were significant
between-group differences in at least some of the
variables (i.e., FD, FM, and GDM), but these
differences were due to some very large threshold
values in the dyslexic group, with overlap in
scores between the groups, as usually observed in
this field. Nevertheless, when we examined the
sensitivity and specificity of the tasks, these three
did discriminate tolerably well between individuals
in the groups. Thus, only FD and FM showed
reasonable sensitivity, specificity, and reliability.

However, when we attempted to identify
coherent patterns of weaknesses across individuals,
we were unable to demonstrate validity for any
specific perceptual construct that might explain
poor performance on these tasks. Although the
number of dyslexic individuals showing conjoint
deficits on FD and FM was slightly higher than
would be expected by chance, this was also true
of most other pairwise combinations of tasks.
Indeed, compared to other dyslexic individuals,
poor performers on FD were also more likely to
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perform poorly on ABM, GDM, and FCS. In this
situation it is very difficult to infer support for a
deficiency in any particular perceptual ability
based on poor performance on a particular combi-
nation of tasks. Given the generality of the pat-
terns of conjoint poor performance observed, it
seems likely that the only common processes or
abilities that are being captured relate to generic
difficulties with performing tasks.

Although the psychophysical tasks employed
here do not seem to converge on a set of under-
lying perceptual constructs, this does not preclude
the possibility that some may be valid measures of
specific aspects of perceptual functioning. In prin-
ciple the differences between normal and dyslexic
readers on FD, FM, and GDM could reflect the
existence of independent perceptual weaknesses
in the dyslexic group. One way of validating this
interpretation would be to demonstrate that
failure on each of the tasks is related to a separate
aspect of the psychometric profiles of dyslexic
individuals. Analysis of our psychometric battery
revealed three independent components providing
a reasonable delineation of three areas of weakness
in dyslexia: reading/spelling accuracy, phonological
short-termmemory, and reading speed.Within the
dyslexic group, FD exhibited a robust correlation
with the reading/spelling accuracy component.
However, none of the other tasks was related to
any of the three components.

When we examined the profiles of poor FD and
good FD performers, we found that the patterns
were consistent to some extent with the proposal
by Ben-Yehudah, Banai, and Ahissar (2004) and
Banai and Ahissar (2004) that there are two
subgroups of dyslexics, distinguished by their
performance on FD. However, the difference here
appears to be primarily in the phonological proces-
sing that directly underpins literacy, rather than
working memory as these authors have suggested.

GENERAL DISCUSSION

Our two studies provide a unique opportunity to
evaluate perceptual deficit accounts of dyslexia
because they incorporate several important

design features that have not hitherto been com-
bined in a single investigation. First, the sample
size of nondyslexic individuals was large enough
to allow us to quantify perceptual deficits in
relation to a normative standard; second, the
sample of people with dyslexia was large enough
to make it possible to look at correlates of percep-
tual deficits within the dyslexic group; third, we
tested all participants on two occasions, so could
establish test–retest reliability for our tasks and
identify people with consistently poor perform-
ance; and finally, we tested participants on two
visual and four auditory tasks, making it possible
to test the construct validity of perceptual impair-
ment accounts of dyslexia.

Three main findings emerged from our study.
First, we confirmed that dyslexia in adults is
associated with a deficient performance on
certain psychophysical tasks, most notably audi-
tory frequency discrimination. Second, like pre-
vious researchers, we found that these deficits
affected only a minority of participants.
Previous studies have reported similar results
but have left open the question of whether
poor reliability of measures might be involved
in these inconsistent findings. We were able to
show that the reliability of most of the psycho-
physical tasks was good, and most people with
dyslexia who showed poor performance on FD,
FM, ABM, or FCS on an initial testing block
continued to do poorly on a second session.
This suggests that these tasks are capturing
some stable dimension within a minority of dys-
lexic individuals, and therefore these tasks are
useful for quantifying individual differences.
Furthermore, performance on the FD task
related systematically to performance on literacy
measures, and this relationship was evident only
in measures tapping phonological processing,
which many researchers would now accept as
the core deficit for the majority of dyslexic
people. Third, the present data do not add to
the extant support for a construct of a magnocel-
lular deficit in dyslexia. Granted we have only
two measures of magno processing; we were
also only able to demonstrate moderate reliability
for one of these measures (i.e., GDM) in our

COGNITIVE NEUROPSYCHOLOGY, 2006, 23 (6) 925

PSYCHOMETRIC ANALYSIS OF PERCEPTUAL TASKS



unselected sample and a lower level of reliability
in dyslexics but not in our control group of
normal readers. Even so, there seemed to be
little support here for this construct—or indeed
for any other overarching explanatory factor
that loaded on the different perceptual tasks.
Correlations between the different auditory and
visual measures were weak, and, with few excep-
tions, deficits in the different tasks were not
associated at above-chance levels. In addition,
frequency discrimination, for which the data are
least supportive of a magnocellular explanation,
was the task that seemed most strongly related
to reading ability.

Two related questions are raised by this pattern
of findings. First, what is the underlying basis of
the link between poor frequency discrimination
and low literacy, and second, how can we explain
the fact that on the one hand there are significant
associations between perceptual deficits and dys-
lexia, and on the other hand there is no consistency
in the pattern of deficits within individuals across
different perceptual tasks?

Considering first the FD task, we may ask why
are deficits on this measure more closely linked to
dyslexia than are deficits on other tasks. Although
most of the literature on perceptual impairments
in dyslexia has focused on temporal processing,
our findings join a growing body of work
suggesting that poor FD is a correlate (albeit
very imperfect) both of dyslexia and of the
related disorder of specific language impairment
(e.g., McAnally & Stein, 1996; McArthur &
Bishop, 2004; Mengler et al., 2005). Roach et al.
(2004) suggested that the typical patterns seen in
dyslexic groups could simply result from their
having general difficulties with performing tasks.
That is, they are more prone to give errant
responses and so are generally less reliable at task
performance. However, Roach et al.’s simulation
data demonstrated that an individual’s measured
threshold may at one time approximate the true
threshold and at another constitute a gross overes-
timate of the true value. Therefore, this type of
explanation cannot explain the findings of consist-
ent poor performance on the FD task. Our results
suggest instead that the FD task is capturing some

other stable processing variable. A strong test of
this interpretation would be to retest impaired
individuals: If poor performance does reflect
some enduring deficiency, data from Heath and
Hogben (2004) with a version of the original
Tallal (1980) auditory repetition task suggest
that those individuals would remain within the
tail of the distribution, even after extended practice
on this task. An alternative explanation of poor FD
was proposed by Amitay et al. (2002b), who
suggested that people with dyslexia who had diffi-
culty discriminating both auditory and visual
spatial frequencies did so because the “retain and
compare” paradigm that they used loads heavily
on perceptual memory. We do not think that
this explains the patterns in our data: The sugges-
tions of France et al. (2002) lead us to believe that
our 3-interval AXB paradigm might minimize
demands on memory, although this is difficult to
verify without directly assessing these demands.
Furthermore, if weak perceptual memory were
implicated, we might expect to see correlated pat-
terns of impairment on a range of perceptual tasks,
and we did not. For instance, in our study, only 4
of the 21 dyslexic participants who were poor per-
formers in FD were also reliably poor in FCS (see
Table 7). An alternative line of explanation regards
poor FD as evidence of genuine limitations of fre-
quency resolution. Such a deficit could plausibly
impact on speech discrimination, by compromis-
ing perception of voice pitch or formant frequen-
cies in speech. Such an explanation could be
contradicted by the fact that—at least when we
used a threshold of 1 SD to determine the presence
of a deficit or otherwise—there is a subset of
people who are reliably poor at FD and yet have
no reading deficits (see Table 6). In future
studies with FD, a more conservative threshold
of 1.5 SD might constitute a clearer boundary,
which is not crossed by control participants.
Even so, profiling of these control participants
on the literacy and literacy-related tasks that dif-
ferentiated dyslexics who were reliably poor at
FD from those who were not suggested that
these readers may simply be well compensated
for earlier reading problems that may have been
associated with FD originally.
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Our second question, of why perceptual deficits
are so inconsistent in dyslexia, has been considered
by Ramus and colleagues (Ramus, 2004; Ramus
et al., 2003), who obtained data similar to ours
in a sample of 16 adult dyslexics compared with
16 controls. They too found that on a range of per-
ceptual and motor tasks, a minority of people with
dyslexia were impaired, but there was no consistent
pattern in the profile of impairments. Ramus
(2004) suggested that under certain hormonal
conditions, people with dyslexia may have dis-
rupted neural functioning secondary to focal corti-
cal anomalies. He has speculated on the effects of
these anomalies on sensory pathways in the thala-
mus, posterior parietal cortex, and cerebellum,
producing a sensorimotor syndrome in some
dyslexics. Where disruption is more widespread,
one might find people with dyslexia being gener-
ally less reliable at tasks that make significant
neurological demands. The subgroup of poor FD
dyslexic individuals in this study do certainly
appear to show this pattern of marked weaknesses
in tasks that arguably demand significant cognitive
resources. It may be that affected individuals
appear to have specific perceptual deficits on
tasks that make the greatest demands neurologi-
cally (e.g., FD). This type of account is reminis-
cent of early suggestions by Denckla (1977) that
at least some people with dyslexia suffer a more
generalized neurological debility. Although the
precise mechanism remains highly speculative,
the key feature of this line of explanation is that
the perceptual deficits observed in dyslexia are not
causally implicated in the reading and phonological
deficits, but rather are variable correlates, which are
themselves caused by the same factors that com-
promise the brain’s ability to acquire literacy.

It has been the practice in earlier studies to
generate a plausible perceptual explanation of
whatever deficit is found in a particular data set.
We believe that the apparent absence in such
studies of any consistent perceptual deficit is the
pattern to which we need to attend. Our results
urge a change in direction in this field. In future
our efforts should be directed to discovering how
the tendency to greater variability and poorer
task performance is related to literacy failure, and

to do this we need to consider both the stability
of perceptual deficits in individuals over time and
the interrelationship between deficits on different
tasks.
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