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ABSTRACT

High-throughput chromosome conformation cap-
ture (Hi-C) technology enables the investigation of
genome-wide interactions among chromosome loci.
Current algorithms focus on topologically associ-
ating domains (TADs), that are contiguous clusters
along the genome coordinate, to describe the hier-
archical structure of chromosomes. However, high
resolution Hi-C displays a variety of interaction pat-
terns beyond what current TAD detection methods
can capture. Here, we present BHi-Cect, a novel top-
down algorithm that finds clusters by considering
every locus with no assumption of genomic contigu-
ity using spectral clustering. Our results reveal that
the hierarchical structure of chromosome is orga-
nized as ‘enclaves’, which are complex interwoven
clusters at both local and global scales. We show
that the nesting of local clusters within global clus-
ters characterizing enclaves, is associated with the
epigenomic activity found on the underlying DNA.
Furthermore, we show that the hierarchical nesting
that links different enclaves integrates their respec-
tive function. BHi-Cect provides means to uncover
the general principles guiding chromatin architec-
ture.

INTRODUCTION

Chromosome conformation is tightly linked to DNA func-
tion and activity as illustrated by heterochromatin conden-
sation, enhancer-promoter looping or gene regulatory re-
gion accessibility (1). It is only until recently that we were
able to probe such relations at a genome-wide scale with the
emergence of chromosome conformation capture technolo-
gies, notably their high-throughput version coined Hi-C (2).
Hi-C, through deep sequencing of DNA fragments ligating
proximal genomic DNA, yields a genome-wide inventory of
physical interactions between every accessible locus, captur-
ing the actual folding of the chromatin inside the nucleus.

It is widely documented that chromosomes have the ten-
dency to form insulated structures, that are believed to pro-
vide dynamic ‘microenvironments’ to fine-tune the activity
of the underlying DNA regions (3). This notion motivated
studies to apply various clustering methods on Hi-C data.
One of the main insights these studies revealed is the exis-
tence of recurring insulated clusters at small and large scales
displaying characteristic biological features. At small scales,
topologically associating domains (TADs) were identified
as megabase sized self-interacting contiguous chromosome
regions (4). TADs are considered as fundamental units of
chromosome organisation because of their segmentation of
the chromosome into functionally cohesive regions (4–7).
At large scales, compartments (8) were identified as a broad
segmentation of the entire genome into active and inactive
regions (8). Furthermore, at a more general level, modeling
analyses of Hi-C data indicated that the multi-scale hierar-
chical organisation of chromosomes is based on successive
nesting of loci-clusters following a fractal globule confor-
mation (8,9).

Eventually, a key goal would be to characterize how this
hierarchical organisation of insulated chromosome clusters
bridges whole chromosomes with individual loci. In this ef-
fort, TADs are widely used as a fundamental brick, whose
aggregation eventually forms the whole chromosome in a
bottom-up fashion (10–15). However, TADs postulate clus-
tering among neighboring loci that are contiguous along the
genome coordinate, which can mask more complex interac-
tion patterns often seen in more recent high resolution Hi-C
data (16). These complex patterns often result from impor-
tant processes such as some chromatin looping, chromatin
allosteric effect or sub-TADs formation (17).

To overcome this limitation, we propose a new clustering
method termed BHi-Cect. BHi-Cect clusters loci by consid-
ering all possible combinations without imposing contigu-
ity along the genome coordinate using spectral clustering
(18), thus circumventing the limitations of current TAD-
based methods. Furthermore, the recursive design of BHi-
Cect enables us to find further embedded sub-clusters, re-
vealing the nested organization of loci clusters at all scales
of the chromosome hierarchy. The results from this novel
top-down approach provide a description of chromosome
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architecture linking chromosomal hierarchy with the under-
lying DNA function and activity.

MATERIALS AND METHODS

Clustering algorithm

BHi-Cect first formats the sequenced paired-end reads
yielded by Hi-C methods (2) into a Hi-C contact matrix
W(i, j), where each entry stands for the total read number, or
the interaction frequency, between loci i and j. Here, loci re-
fer to the equally-sized and non-overlapping bins segment-
ing the genome at the resolution of the considered Hi-C
dataset. The matrix is then normalized using the Knight–
Ruiz (KR) matrix balancing normalization (19) so as to
compensate bias in enzymatic digestion frequencies at every
locus. All Hi-C data were downloaded and processed into
KR normalized interaction matrices using Juicer tools (20).
Furthermore, the matrix is scaled with a Box–Cox trans-
formation optimizing for normality to mitigate the disper-
sion of Hi-C interaction frequencies (21). We used a specific
Box–Cox lambda for each chromosome using the MASS R
package (22), which implements the maximum likelihood
estimate procedure described in (23).

The chromatin hierarchy is captured by recursively bi-
secting genomic loci sets starting from the whole chromo-
some. For the bisection, we use the principle of spectral
clustering (24) with some modifications. In this method, the
chromatin interactions are considered as a network, where
each vertex corresponds to a chromosome locus and edge
weights between vertices is set by their normalized interac-
tion frequency. The bisection is performed so as to maxi-
mize the total sum of edge weights within the bisected loci
groups through spectral clustering (18). To compute this, we
first derive the degree matrix, D, which is a diagonal matrix
whose entries correspond to the sum of all the interaction
weights for the considered loci. We then derive the Lapla-
cian matrix, L, from the equation:

L = I − D−1W

with I being the identity matrix of the same size as the Hi-C
matrix W. Here, we use the random walk normalized for-
mulation of the Laplacian matrix, which corrects for un-
desirable topological biases, notably regarding highly inter-
acting loci, while maintaining statistical stability (25). Spec-
tral clustering then requires the eigendecomposition of this
Laplacian matrix to derive the second smallest eigenvalue
and associated eigenvector, also known as the Fiedler vec-
tor. Finally, we perform a k-means clustering (k = 2) on this
vector, for which we collect the consensus from five differ-
ent seedings, in order to find the optimal bisection (24). This
bisection is repeated until we only have a 2 × 2 matrix.

For each bisection, we further evaluated the self-
interaction level of the resulting partitions using the expan-
sion metric (26). The expansion metric is defined as the ra-
tio dividing the sum of edge weights crossing the considered
partition over the sum of edge weights inside the considered
partition. The mathematical formulation for the expansion
metric for a particular partition C1 is given by:

expansionc1
=

∑
x∈C1

∑
y∈C2

w (x, y)∑
x∈C1

∑
y∈C1

w (x, y)

where x and y represent individual chromosome loci, and
w(x, y) represents the edge weight between loci x and y. C1 is
the considered partition and C2 is the other partition result-
ing from the same bisection. We consider a partition well in-
sulated when the expansion metric is smaller than 1, mean-
ing a majority of edge weights exist within the considered
partition. We named a bisection ‘split’ or ‘strip’ depending
on whether it yielded two or one insulated partitions re-
spectively. If neither partitions displayed an expansion value
smaller than one, we stopped the algorithm. To summarize
the result, we built a tree structure called a BHi-Cect par-
tition tree (BPT) by aggregating the found partitions (Fig-
ure 1A). To validate the scalability of BHi-Cect we bench-
marked it against Hi-C datasets of different resolutions
(Supplementary Figure S12). The code for the algorithm is
available at https://github.com/princeps091-binf/BHi-Cect.

Definition of top and bottom enclaves and BPT leaves

We observed that all BPTs accumulated split branching at
the top and then tended to have long streaks of strip branch-
ing toward their deeper end (Supplementary Figure S5).
These features can be captured through three characteris-
tic BPT nodes or enclaves. Firstly top enclaves correspond
to the all BPT nodes yielding a strip branching but above
which we only find split branching events (first strips). Sec-
ondly bottom enclaves are defined as all BPT nodes below
which we only find strip branching events and directly re-
sulting from a split branching event (last splits). Thirdly
leaves correspond to tree nodes marking the end of the BPT,
meaning they don’t have any children nodes despite having
an expansion metric smaller than 1 or they contain less than
two loci.

Definition of nestedness

Nestedness (NS) allows a systematic exploration of the ob-
tained BPT that is not affected by the topological differ-
ences observed between chromosomes. To do so, we assign
the same value for partitions, which because of their BPT
positions, are shared across all chromosomes. We refer to
these topologically invariant partitions as top enclaves, bot-
tom enclaves and BPT leaves as described above. We set the
nestedness value of these partitions to 0 for top enclaves,
0.5 for bottom enclaves and 1 for leaf partitions. We then
linearly interpolate nestedness values for any intermediary
partitions. To achieve this, we consider partitions present
below and above bottom enclaves partition separately.

For partitions between top and bottom enclaves, nested-
ness is defined as:

NSi = 0.5 ∗ Di − min (Di )
(max (Di ) − min (Di )) + 1

Here, Di, or root distance, is the number of branches
needed to link the BPT root with the considered partition.
min(Di) corresponds to the root distance for the closest top
enclave. max(Di) corresponds to the root distance for the
furthest bottom enclave directly descending from the con-
sidered partition. Adding 1 to the denominator ensures that
the obtained nestedness values will be strictly smaller than
0.5.

https://github.com/princeps091-binf/BHi-Cect


PAGE 3 OF 15 Nucleic Acids Research, 2020, Vol. 48, No. 5 e26

Figure 1. Clusters found by BHi-Cect and their representation as a tree. (A) Example of successive bissections performed by BHi-Cect illustrated with
Hi-C contact heatmap showing interaction frequencies between loci. Deep purple regions in the original Hi-C heatmap (top) correspond to unmapped
regions. (B) BHi-Cect partition tree (BPT) representing the hierarchical relationships among the outputted loci clusters (top). Heatmap representations for
split (bottom left) and strip (bottom right) partitions are also shown. (C) Diversity of BPT topology observed across different chromosomes.
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For partitions between bottom enclaves and leaf parti-
tions, nestedness is defined as:

NSi = 0.5 ∗ Di − min (Di )
max (Di ) − min (Di )

+ 0.5

Here, min(Di) corresponds to the root distance for the
closest bottom enclave. max(Di) corresponds to the BPT
leaf directly descending from the considered partition.

Variation of information

To assess the agreement in clustering results between differ-
ent datasets, we used the variation of information (VI) (27).
This value is based on information theory and can give us
a measure of the hypothetical distance regarding the agree-
ment between different loci clustering results. The VI be-
tween two loci clustering results, C and C’, is given by:

VI
(
C, C′) = H (C) + H

(
C′) − 2I

(
C, C′)

where H(C) represents the entropy of C, and I(C,C′) repre-
sents the mutual information between C and C′. Assuming
that C and C′ contains K and K′ clusters respectively, these
values are given by:

H (C) = −
∑K

k=1
P (k) log

P (k)

I
(
C, C′) =

∑K

k=1

∑K ′

k′=1
P

(
k, k′) log

P (k, k′)
P (k) P (k′)

with P(k) representing the probability of loci being identi-
fied as part of the kth cluster in C, and P(k, k′) represent-
ing the joint probability of loci being simultaneously part
of the kth and k′th cluster in C and C’, respectively. Thus
VI(C,C′) will be high when the entropy H of the compared
clusterings is high, meaning they contain many clusters re-
spectively or their mutual information I is low, meaning the
compared clusterings have very little in common in terms
of how they group loci. Conversely, VI(C,C′) will be low
when the compared clusterings contain few clusters respec-
tively or the compared clusterings group loci in a very sim-
ilar manner.

To examine the statistical significance of the agreement
between our enclave clustering and a reference clustering
(e.g. TADs), we derived an empirical P-value based on this
VI. To compute it, we first randomly generated 500 sets
of chromosome clustering. This random clustering comes
from a recursive bisection of the genome into clusters that
match the size and number of loci in the original partition
tree, but are otherwise chosen at random. We then calcu-
lated the VI for each random clustering against the refer-
ence clustering. Then we counted the number of random
clustering that had a smaller VI than the one between our
enclave clustering and the reference clustering (r). We then
derived the empirical P-value using the following formula:

empirical P − value = r + 1
n + 1

with n equal to the total number of clustering considered (n
= 501).

Statistical analyses of genome-wide data

DNA loops integration. We downloaded the genome coor-
dinates of the DNA loop anchor sites found by (16) using
the HICCUPS method on the IMR90 Hi-C data (5 kb) (16).
For each DNA loop, we then computed the overlap of each
member of the anchor site pair with bottom enclaves de-
rived from the same Hi-C data. We then examined for each
DNA loop whether both anchor sites were present in the
same bottom enclave. Finally we reported the percentage of
DNA loops with both anchor sites in the same bottom en-
clave. For the comparison with TADs we repeated the anal-
ysis but using TADs instead of bottom enclaves.

Summarizing the overlap between BHi-Cect clustering and
epigenomic data. To compare our clustering results with
epigenomic features, we used genome-wide BED datasets
from public databases. All epigenomic data (ChIP, RNA-
seq, CAGE, LAD, DNase, ChromHMM) for all cell lines
were downloaded from the NIH Roadmap Epigenomics
Mapping Consortium database website (28) and ENCODE
project website (29).

We first find the overlaps between the epigenomic feature
of interest and the considered cluster. We then compute one
of three summary statistics for these overlaps:

Size of the overlap

xs =
∑n

i=1 b pi ∩c l
b pcl

with i representing a particular site for the considered epige-
nomic feature, n representing the total number of sites for
the considered epigenomic feature along the genome, bpi
representing the number of basepairs for site i, cl represent-
ing the considered cluster and bpcl representing the num-
ber of basepairs composing the considered cluster. The met-
ric essentially computes the proportion of the cluster over-
lapped by the considered epigenomic feature.

Average overlapping signal intensity per bp

xI =
∑n

i=1 (b pi ∩c l) × Ii

b pcl

with i representing a particular site for the considered epige-
nomic feature, n representing the total number of sites along
the genome for the considered epigenomic feature, bpi rep-
resenting the number of basepairs for site i, Ii representing
the intensity reported for site i, cl representing the consid-
ered cluster and bpcl representing the number of basepairs
composing the considered cluster.

Number of overlaps

xn =
n∑

i=1

δi

{
0 if peaki ∩c l = 0
1 if peaki ∩c l �= 0

with i representing a particular site for the considered epige-
nomic feature, n representing the total number of sites along
the genome for the considered epigenomic feature, δi repre-
senting the overlap counter and cl representing the consid-
ered cluster.

Correspondence analysis. We performed a correspondence
analysis (CA) (30) of bottom enclaves with respect to
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their TF content. Briefly with the IMR90 cell line ChIP-
seq data for Ccaat-enhancer-binding proteins (CEBP),
RCOR1, MAZ, MXI, RFX5, MafK, FOS, USF2, NFE2L2
and ELK1 downloaded from the ENCODE website (28),
we build a contingency table summarizing the number of
binding sites for every TF found in each bottom enclave.
More specifically we computed in each bottom enclave the
number of overlaps (as defined above) for every TF. We then
applied CA onto this contingency table and extracted the
first two dimensions for both the row (bottom enclave) and
column (TF) space.

Gene set enrichment analysis gene ranking. For this anal-
ysis when we rank genes based on the RNAP2 (IMR90)
or H3K4me3 (K562) content of bottom enclaves, we use
the respective narrowpeak bed files of these epigenomic fea-
tures from the corresponding cell line. We then computed
the average overlapping signal intensity per bp (as described
above) to summarize the bottom enclave content for these
different epigenomic features.

Feature enrichment analysis. In the feature enrichment
analysis the ‘clusters’ considered are actually individual
loci. More specifically for each locus, we compute the num-
ber of overlaps with the considered epigenomic feature (as
defined above). We then assigned to each locus the nest-
edness value corresponding to the most nested partition
they could be found in. Because we apply the same mea-
sure of nestedness across every chromosome, we can now
examine the genome-wide relation of nestedness with vari-
ous epigenomic features. Since we are interested in the rela-
tive change along nestedness, we further divided each locus
overlap value by the average number of overlap observed
across all the loci of the same top enclave.

FEi = xi

topi

where FEi represents the feature enrichment value for a par-
ticular locus i, xi represents the number of overlaps ob-
served for the considered locus i and topi represents average
number of overlaps observed for all loci belonging to the
same top enclave as the considered locus i.

This is why we talk of feature enrichment, since we are ex-
amining the relative enrichment in overlaps with loci as we
progress from top enclaves all the way down to BPT leaves.
We also performed the same analysis with the average over-
lapping signal intensity per bp and the overlap size metrics
described above.

To test the significance of the difference in the number
of overlaps observed among loci across different nestedness
levels, we performed a Poisson ratio test between the ex-
pected genome-wide frequency of annotated regions for the
epigenomic feature of interest and the observed frequency
of overlap found within the considered set of loci.

Analyses of functional similarity between bottom enclaves

For this analysis, we used two approaches to evaluate the
functional similarity between pairs of bottom enclaves.
Firstly, we considered bottom enclave functionality as sum-
marized by their TF content. Using the first two dimensions

derived from the CA applied on the contingency table sum-
marizing the TF content of every bottom enclave we ob-
tained a reduced 2D space (described earlier). Within it,
we evaluated functional similarity by computing the pair-
wise euclidean distance for every combination of bottom
enclaves in each chromosome.

Secondly we considered bottom enclave functionality as
summarized by their significantly enriched GO-terms con-
tent. We then computed the semantic similarity (resnik sim-
ilarity) for every pairwise combination of bottom enclaves
in each chromosome with respect to their respective signifi-
cantly enriched GO-terms.

The significance of the GO-term enrichment was empir-
ically estimated for each bottom enclaves by considering
only GO-terms with extreme fold enrichment (FE) values
compared to the distribution of GO-terms FE values de-
rived from randomly generated corresponding bottom en-
claves. These random bottom enclaves come from a recur-
sive bisection of the genome into clusters that match the size
and number of loci in the original partition tree, but are
otherwise chosen at random. The threshold used to iden-
tify ‘extreme’ FE values in the random FE distribution was
set as:

FEsignificant > 2 × IQR + 75th percentile

with FEsignificant representing the FE significance threshold
and IQR representing the interquartile range of the consid-
ered distribution. A non-parametric threshold was used to
account for the non-Gaussian distribution of random FE
values.

This procedure gives us a set of enriched GO-terms for
each bottom enclave which we can now use to evaluate the
pairwise semantic similarity between bottom enclaves. We
quantified the pairwise semantic similarity between the as-
sociated sets of enriched GO-terms using the resnik simi-
larity metric (31). Briefly, the resnik similarity is based on
the notion of information content of a GO-term defined as
minus logarithm of the probability of finding the GO-term
in the complete GO-annotation corpus.Thus, for the con-
sidered pair of GO-term sets, we compute the information
content of the lowest common ancestor in the associated
GO-tree (32).

Both TF-distance and semantic similarity were compared
with corresponding pairwise chromosome coordinate dis-
tances between bottom enclaves. We used the average coor-
dinate of all constitutive loci as reference coordinate respec-
tively for each bottom enclave.

Gene set enrichment analysis

We first determined the gene content of every bottom en-
clave and considered only transcriptionally active genes. We
do this by computing all the overlapping RNA-seq peak
sites and listing the associated gene ensembl ID annotation
for every bottom enclave. We then ranked genes according
to specific epigenomic aspects of the respective bottom en-
claves containing them (as described earlier). The gene sets
required for GSEA were formed based on the GO annota-
tion of human genes provided by the GO consortium web-
sites (32). Finally we computed the gene set enrichment and



e26 Nucleic Acids Research, 2020, Vol. 48, No. 5 PAGE 6 OF 15

P-values as described by (33). To account for the multiple
testing effect, we only used FDR corrected p-values.

RESULTS

Description of the method

BHi-Cect is a top-down algorithm for the characterization
of the chromosome’s hierarchical structure. This top-down
analysis was inspired by established image segmentation
methods in computer vision, which identify distinct objects
through the recursive partition of the full image (18). We
applied this approach to detect isolated chromatin loci clus-
ters from the totality of chromosomal interactions yielded
by Hi-C.Similarly to the computer vision approach, BHi-
Cect recursively partitions the chromosome’s loci into two
clusters, starting from the whole chromosome working its
way down to individual loci (Figure 1A). The partitioning
was done using spectral clustering (24), which finds the two
loci clusters sharing the least number of chromosomal in-
teractions. The recursive partitioning was repeated until the
resulting chromosome clusters had <2 loci. Eventually, the
overall process forms a partition tree, which represents the
nested hierarchical architecture of the chromatin structure
(Figure 1A).

Using BHi-Cect, we analyzed Hi-C data from human
IMR90 chromosomes, in which interactions among the
chromosome’s loci were analyzed at a 50 kb resolution (16).
We observed that BHi-Cect could isolate non-contiguous
self-interacting loci clusters as indicated by the plaid pat-
tern regions in the heatmap representation of the associ-
ated Hi-C data (e.g. the first partitioning in Figure 1A).
We confirmed that the isolated clusters were robustly de-
tected when using datasets with different resolutions (5 kb–
1 Mb), sparsity level, read depth, derived from different bi-
ological replicates and subjected to different normalisation
schemes (Supplementary Figures S1, S2 and S4). Impor-
tantly, we noticed that BHi-Cect gave two kinds of bisection
characterized by distinctive heatmap patterns derived from
the resulting loci clusters. The first bisection kind, resulted
in loci-clusters with similar interaction densities and cov-
ering different chromosome locations (Figure 1A, bottom
left), indicating the presence of two strongly self-interacting
chromosome-clusters nested within the original cluster. The
second kind resulted in loci-clusters with interaction densi-
ties that were substantially higher in one compared to the
other and covering deeply intersecting chromosome regions
(Figure 1A, bottom right), indicating that the original clus-
ter is composed of only one strongly self-interacting cluster
with an associated auxiliary loci-cluster. These observations
suggest that the clusters derived from our recursive parti-
tioning display different hierarchical relations which can be
efficiently represented with a tree structure whose branches
will reflect the different nesting dynamics observed in the
chromosome hierarchy.

Figure 1B shows an example of such a tree representation
that captures the hierarchical relationships among the chro-
mosome clusters, which we call the BHi-Cect partition tree
(BPT). Here, the vertices in the BPT represent the chromo-
some clusters, and the branches from a vertex represent the
existence of sub-clusters nested within the cluster. For con-
venience, we named branchings yielding one or two pref-

erentially self-interacting chromosome clusters as strip and
split branching respectively. By analyzing this BPT for every
chromosome, we observed an extensive topological variety
in terms of both tree depth and overall number of branching
events (Figure 1C). This highlights the variety of chromo-
some architecture both in terms of number of clusters found
and their complexity.

Enclaves as fundamental structural units

Next we examined heatmap patterns in the genomic regions
highlighted by the insulated loci clusters detected at dif-
ferent branching points (Figure 2A and B). Since the de-
tected clusters can be non-contiguous, we called them ‘en-
claves’ to distinguish them from the more conventional con-
tiguous clusters like TADs. Also, because enclaves have a
parent-child relationship as described in the BPT, we clas-
sified them depending on their relative position in the BPT
(Figure 2A). Enclaves at the top of the BPT generally ex-
hibited either the plaid patterns or entirely covered the
heatmap (left column heatmaps in Figure 2B). This indi-
cated the presence of large-scale interwoven structures sim-
ilar to compartments, and further suggested global interac-
tions between loci across the whole chromosome. In terms
of size, top enclaves spanned on average 120 Mb containing
thousands of loci (Figure 2C). Enclaves lower in the BPT
became smaller but the plaid-patterning or non-contiguity
is retained (Figure 2B, middle and right column).

Crucially, beyond delineating salient interaction patterns,
we noticed how specific enclaves along the BPT highlighted
topological features found in all BPTs. Typically, we ob-
served that BPTs accumulated split branching at the top and
then tended to have long streaks of strip branching toward
their deeper end (Supplementary Figure S5). We reasoned
we could use these ‘universal’ topological features to sys-
tematize our description of BPTs and thus directly address
their topological diversity showcased earlier (Figure 1C).
Briefly, we identified top enclaves as the deepest enclaves
above which we only find split branching events; bottom en-
claves as the highest enclaves below which we only find strip
branching events and leaves as enclaves marking the end of
the BPT (see Material and Methods). We verified the pres-
ence of these topological invariants with BPTs derived from
Hi-C data with different resolutions (5 kb–1 Mb), from dif-
ferent cell types (IMR90, HUVEC and K562) and species
(mouse and fly)(Supplementary Figure S5).

Next, we examined the agreement of enclaves with com-
partments (16) and TADs (4) by computing the well-
established variation of information metric (VI) (27) be-
tween our enclave clustering and these benchmark cluster-
ing. Briefly, VI evaluates the level of agreement between two
clusterings based on information theoretic quantities (see
Materials and Methods). Our VI analysis confirmed that
this agreement was significant (P-value < 0.01) (Figure 3B)
and supported the visual agreement observed between bot-
tom enclaves and TADs or compartments when compar-
ing their respective heatmaps (Figure 3A). The same trend
was observed when using the average overlap metric (Sup-
plementary Figure S3). We further noticed that BHi-Cect
could characterize the inner arrangement of TAD-like clus-
ters into further nested clusters with a variety interaction
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Figure 2. Enclaves are key positions in the BHi-Cect partition tree highlighting salient interaction patterns. (A) The first strip branching (Top) and following
split branching (Mid and Bottom) events represent tree topological landmarks that highlight chromosome structures we call enclaves. (B) Examples of
heatmap patterns in enclave regions at different levels. (C) Boxplots for the number of loci (left), span (middle) and number of strip branching (right) in
enclaves at different hierarchical levels.
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Figure 3. Enclaves agree well with both compartments and TADs. (A) Loci interaction heatmaps for 50 kb compartments (top middle) and 50 kb bottom
enclaves (top right), 5 kb TADs (bottom middle) and 5 kb bottom enclaves (bottom right). Different colors are assigned to different clusters. Bottom
enclaves coincide with different structures depending on the input data, showcasing how BHi-Cect dynamically adjusts the scale of interaction patterns it
delineates based on the salient chromosome structure present in the input data. For local structures like TADs BHi-Cect further allows to characterize their
inner arrangement, which highlights a variety of interaction patterns (Supplementary Figure S6). (B) Variation of information distance between enclaves
and compartments (top, red), and between enclaves and TADs (bottom, red) in each chromosome. For comparison, distances between 500 randomly
generated loci clusters and compartments (top, blue) or TADs (bottom, blue) are also shown. The smaller distance observed for enclaves (red) compared
to random clustering (blue) at each chromosome suggests a significant agreement between our enclaves and known clusters (compartments or TADs).



PAGE 9 OF 15 Nucleic Acids Research, 2020, Vol. 48, No. 5 e26

patterns including, but not restricted to sub-TAD like struc-
tures (Supplementary Figure S6). We also observed that this
agreement extended to DNA loops. We evaluated the inte-
gration of DNA loops by computing the proportion of an-
chor sites pairs, characterizing a given DNA loop, that re-
mained together within the same bottom enclave (see Ma-
terials and Methods). We noticed that with this metric, bot-
tom enclaves by containing 79.9% of DNA loop anchor-site
pairs, integrated DNA loops better than TADs (59.9%) de-
tected at the same resolution (5 kb). Put together these ob-
servations support the notion that our enclave-based clus-
tering integrates well with the current description of chro-
mosome structure based on compartments, TADs or DNA
loops.

BHi-Cect segments the chromosome into functionally differ-
ent clusters

Following up on the observation that bottom enclaves co-
incided well with benchmark clusters (Figure 3A), we ex-
plored their potential biological relevance. We first exam-
ined the relation between the epigenomic context and the
gene content of bottom enclaves. For this analysis we used
the BHi-Cect results obtained at 5 kb resolution in IMR90
samples, to minimize the effect of binning. We summarized
the epigenomic context of a given bottom enclave by com-
puting the number of overlapping binding sites for a rep-
resentative set of 10 transcription factors (TF) (see Mate-
rial and Methods). We focused on characterizing the bot-
tom enclave’s TF content, because it outlines the regula-
tory context controlling the corresponding bottom enclave’s
gene content. We next characterized the variety of regula-
tory contexts formed by the different bottom enclaves as
captured by their respective TF content. For this, we per-
formed a correspondence analysis (CA) on the contingency
table summarizing the number of binding sites for every TF
found in each bottom enclave. Correspondence analysis is
an extension of principal component analysis typically used
to explore relationships between categorical variables, here
bottom enclave and TF (see Materials and Methods). We
found that the variety of TF contents found across bottom
enclaves could be well summarized by the first two CA di-
mensions, accounting for 63.3% of the total variance (Fig-
ure 4A). Critically we noticed that bottom enclaves’ TF con-
tent could be described with respect to their relative position
along two main ‘gradients’ in the reduced space formed by
the first two CA dimensions (Figure 4A, left). Each of these
gradient is characterized by a distinct set of TFs (MAFK vs.
MAZ-MXI-RCOR1 and CEBP-FOS versus MAFK) and
thus indicates that bottom enclaves vary mostly according
to the relative prevalence in these distinct TFs (Figure 4A,
right).

We next evaluated the extent to which the TF content
of bottom enclaves associated with particular GO-terms
through the GO annotation of the corresponding bottom
enclaves’ genes. More specifically we performed a gene set
enrichment analysis (GSEA) where we ranked genes with
respect to their corresponding bottom enclave’s position
along either the first or second CA-dimension (see Mate-
rials and Methods). We found that bottom enclaves char-
acterized by an increased prevalence of MAZ, MXI and

RCOR1, associated with GO-terms broadly corresponding
to housekeeping functions (Figure 4B, first table). In con-
trast bottom enclaves characterized by an increased preva-
lence of MAFK, associated with GO-terms broadly corre-
sponding to environmental or immune response (Figure 4B,
second table). This highlights how bottom enclaves coincide
with very distinct functions, the more comprehensive tables
reporting these enriched GO-term sets can be seen in Sup-
plementary Tables S3 and S4. For comparison, when com-
paring these GSEA results with results obtained by ranking
genes based on their expression level, we couldn’t retrieve
as significant results and, as expected, mostly found enrich-
ment in ribosome functions (Supplementary Table S2).

We extended this analysis by next characterizing the
GO-term enrichment associated with the prevalence of
RNA polymerase II (RNAP2) in bottom enclaves. The
GSEA results based on bottom enclave RNAP2 prevalence
highlighted skin function, structural molecule activity (cy-
toskeleton) and DNA packaging (Figure 4B, third table).
We found these functions to be consistent with the fibrob-
lastic nature of the IMR90 cell line used for this analy-
sis. We further found that applying this analysis based on
H3K4me3 (active histone mark) prevalence in bottom en-
claves derived from K562 Hi-C data (5 kb) highlighted
mostly immune functions, which conforms well with the
leukemic state of K562 cells (Figure 4B, fourth table). The
more comprehensive tables reporting these enriched GO-
term sets can be seen in Supplementary Tables S5–S6. We
validated these results by running a similar GSEA using
the same epigenomic marks (RNAP2 and H3K4me3) in the
same samples (IMR90 and K562 respectively) but this time
ranking genes based on the prevalence of these marks in the
corresponding promoter regions. The results of these GSEA
were more numerous in terms of significantly enriched GO-
terms but also more heterogeneous (Supplementary Tables
S7 and S8).

We then examined whether this structure-function cou-
pling could be extended beyond individual bottom enclaves
by considering the BPT linking them. More specifically we
evaluated how the BPT distance between pairs of bottom
enclaves related to their corresponding functional similarity.
Firstly we measured BPT distance by computing the min-
imum number of BPT branches required to join the con-
sidered bottom enclave pair. Secondly, we computed func-
tional similarity based on the bottom enclaves’ TF content.
Briefly, we computed the first two CA-dimensions derived
from the contingency table summarizing the bottom enclave
TF-content, as described earlier. We then computed the
euclidean distance between the considered bottom enclave
pair in that reduced space (TF-distance), to measure their
functional similarity. When plotting BPT distance against
the corresponding TF-distance we found a clear positive re-
lation (Figure 4C, left). We validated this relation by swap-
ping the BPT distance for the chromosome coordinate dis-
tance between the same pairs of bottom enclaves (see Ma-
terials and Methods) and found the relation to be weaker
as quantified by a Pearson correlation test (Supplementary
Table S1). We further confirmed this relation by swapping
the TF-distance between bottom enclaves with the semantic
similarity (Resnik similarity) in terms of the enriched GO-
terms found respectively in each of the members of the con-
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Figure 4. Bottom enclaves represent distinct functional units in terms of transcription factor and gene content. (A) Genome-wide factor maps derived from
the correspondence analysis (CA) performed on the contingency table summarizing the transcription factor content in terms of number of transcription
factor binding sites found within each bottom enclaves detected by BHi-Cect in the IMR90 human Hi-C data at 5 kb resolution. For this analysis we
considered the binding sites for CEBP, RCOR1, MAZ, MXI, RFX5, MafK, FOS, USF2, NFE2L2 and ELK1. We can notice how bottom enclaves display
a spectrum of transcription factor composition, indicating a variety of regulatory contexts. (B) Representative GO-terms enriched by bottom enclaves
according to the epigenomic context they form. This enrichment was derived from a gene set enrichment analysis (GSEA) where we rank genes based on
the epigenomic feature value of their respective bottom enclaves. Here, we present the enrichment observed with respect to the bottom enclave’s position
along the first and second dimension derived from the TF-content based CA previously described (first two tables); the enrichment with respect to the
bottom enclave’s number of RNA polymerase II binding sites (3rd table); the last table illustrates the enrichment observed when performing this same
analysis with respect to the H3K4me3 content of bottom enclaves found in leukemic cell samples (K562) at 5 kb resolution. We report for all enrichments
the corresponding FDR adjusted P-value (P.adj).(C) Trend lines summarizing the relation between functional similarity and structural proximity for
bottom enclave pairs. Structural proximity (x-axis) corresponds to the minimum number of branches needed to link the considered pair of bottom enclaves
in their associated BHi-Cect tree. Functional similarity on the left plot corresponds to the euclidean distance between the considered bottom enclaves in
the reduced space formed by the first two dimensions obtained from the TF-content based CA previously described. Functional similarity on the right plot
corresponds to the semantic similarity (Resnik similarity) in terms of the significantly enriched GO-terms found in each of the considered bottom enclaves
respectively.
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sidered bottom enclave pair (see Materials and Methods).
Remarkably, 72% of bottom enclaves (3128/4361) displayed
significantly enriched GO-terms and we also found the same
relation, with the semantic similarity decreasing as we con-
sider bottom enclaves located further apart in the BPT (Fig-
ure 4C, right). These results indicate that the overall chro-
mosome architecture captured by the BPT also is coupled
with the functionality of the chromosome regions it clusters.

The position along the BPT coincides with DNA activity

To extend our analysis beyond bottom enclaves, we next
examined the biological relevance of the BPT as a whole.
More specifically, we analyzed the relation of the chromo-
some’s hierarchical structure, as captured by the whole BPT,
with the biology of the underlying DNA. To this end, we
systematically explored how different epigenomic features
varied as we considered loci present at different positions
or depths along the whole BPT. We quantified this depth
based on the branching events that shape our BPT. Briefly,
we defined a score, which we call ‘nestedness’, for each locus
accounting for the number of branching events necessary
to reach the locus relative to the total number of branching
found in the considered BPT (see Materials and Methods).
The reason we talk of nestedness, relates to the observation
that branching events indicate the presence of some loci fur-
ther preferentially self-interacting within the already found
cluster. This suggests that the degree of confinement or nest-
edness for every locus within the chromosome architecture
can be evaluated from the number of associated branching
events. We further needed our nestedness score to univer-
sally apply to every BPT despite their characteristic topo-
logical diversity (Figure 1C). To achieve this, we will lever-
age the topological invariants identified earlier (top/bottom
enclaves and BPT leaves). Briefly, we set the nestedness score
of these BPT positions to 0 for top enclaves, 0.5 for bottom
enclaves and 1 for BPT leaves. We then linearly interpolate
nestedness scores for any intermediary BPT positions (see
Materials and Methods).

Using this score on 50 kb IMR90 Hi-C data, we observed
that the highly nested regions in enclaves tended to be accu-
mulated in relatively narrow genomic regions spanning hun-
dreds of kb with relatively higher interaction frequencies
(Figure 5B and C). In contrast, less nested regions spanned
tens of Mb with relatively lower interaction frequencies.

Next, we explored the physiological implications of nest-
edness by comparing it with previously reported epige-
nomic datasets (Figure 6). To comprehensively capture the
multiple facets of epigenomic activity we considered the
following epigenomic features: DNase accessibility, lamina
associated domain (LAD), histone modifications as inte-
grated by chromHMM annotations (34), CAGE clusters,
short and long read RNA-seq peaks, DNA-binding factor
binding site for 10 representative TFs, RNAP2 and three
chromatin remodeling factor binding sites (CTCF, RAD21
and CHD1).

When examining the epigenomic influence of nested-
ness across the whole BPT we noticed a clear antago-
nism between top and bottom enclave trends (Figure 6).
Within top enclaves, we observed a progressive enrichment
in epigenomic activity with nestedness. This is indicated

by increased enrichment in active DNA marks such as
DNase accessibility or transcription chromHMM anno-
tations matched by a depletion of inactive DNA marks,
such as LAD overlap or heterochromatin chromHMM la-
bels, as we consider increasingly nested loci. This top en-
clave trend contrasts with the progressive depletion in epige-
nomic activity with increased nestedness observed within
bottom enclaves. This antagonism results in loci present at
the boundary between top and bottom enclaves, in terms
of nestedness, concentrating the relatively more active re-
gions within the chromosome. Furthermore we noticed that
the long range interactions harbored by boundary-loci co-
incided with a significant enrichment in chromatin remod-
eling factors like CTCF (Figure 6 bottom right), indicat-
ing that active looping mechanisms are bringing those dis-
tant genomic regions together. These trends suggest that
the boundary loci correspond to the active and open chro-
matin regions of the chromosome. These trends were further
observed in human umbilical vein endothelial and K562
(leukemic) cell lines suggesting their generalizability (Sup-
plementary Figure S10). We further validated these trends
by running the same analysis with randomly generated BPT
clustering of the corresponding Hi-C data and observed a
complete loss of the trends described above (Supplementary
Figure S11).

We also noticed that the average number of overlaps be-
tween the considered epigenomic features and the loci of in-
terest provided the most consistent trend along nestedness
(Supplementary Figure S7) compared to average ‘intensity’
of the epigenomic features, whether it be average ChIP-Seq,
CAGE or RNA-seq peak intensity (Supplementary Figure
S8) or overlap size for epigenomic annotation (Supplemen-
tary Figure S9). This indicates that nestedness is most cor-
related with the density of epigenomic activity found across
chromosome loci. The significance of the observed enrich-
ment or depletion is reported in Supplementary Table S9.

DISCUSSION

This paper introduces BHi-Cect, a spectral clustering
method to chart insulated, non-contiguous and nested
chromosome clusters, which we map using our novel BPT
framework. We developed a hierarchical description of
chromosome structure, that provides key insights into chro-
matin architecture.

Previous methods using spectral clustering applied to Hi-
C focused on determining the scale at which the found clus-
ters best matched already known clusters such as TADs
or compartments (14,15,17,35–37). Our clustering method
augments existing structural descriptions by using the BPT
representation for chromosome structure, which efficiently
captures the diversity of hierarchical relations bridging the
variety of preferentially self-interacting clusters that make
up the chromosome.

A unique feature of BHi-Cect is how it dynamically delin-
eates chromosome clusters that emphasize the salient inter-
action patterns found in the input data. Notably, we show
that with low resolution Hi-C data (50 kb), BHi-Cect high-
lights global clusters spanning the whole chromosome while
with high resolution Hi-C data (5 kb), BHi-Cect will focus
on local chromosome clusters spanning less than 1 Mb. We
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Figure 5. Nestedness as a universal measure of a locus’ position along their respective BHi-Cect partition tree. (A) Illustration of the nestedness metric
with representations of the BPT as nested clusters (left) and a tree (right). The color reflects the clusters’ nestedness values defined for every locus within
it to reflect their relative position with respect to top and bottom enclaves. The different tree node shapes highlight the important landmarks in the BPT
hierarchical structure. The clusters (left) and nodes (right) labeled C1-C5 indicate the bottom enclave cores. (B) Trend line for the average interaction
frequency (left) and the genomic span (right) found in BPT clusters along their nestedness. The trend line is the result of a locally weighted scatterplot
smoothing (LOESS) fit and the grey region indicates its 95% confidence interval. (C) Examples of bottom enclave heatmaps highlighting how nestedness is
distributed along genome coordinates from chromosome 18 (first two enclaves) and 17 (right-most enclave) from IMR90 Hi-C data (50 kb). We can notice
how enclaves display a variety of span and contiguity across all levels of nestedness.

show how these different clustering outcomes are self con-
sistent and agree well with corresponding global (compart-
ments) and local (TADs) benchmark chromosome clusters.

A key finding are enclaves, which are a novel form of
chromosome clusters identified by our method, that are
mostly non-contiguous and deeply interwoven. Critically
our method targets preferentially self-interacting clusters
expected to be arranged as a tightly packed ‘core’ loci-
cluster nested within a looser ‘shell’ of long-ranging DNA
loops. Enclaves complement TAD-based description of
chromosome structure by offering a much more diverse
and flexible range of possible conformations that supports
the irregular chromosome organisation suggested by oth-
ers, notably in a recent electron microscopy study (38). In
this framework the overall structure of chromatin is shaped
by different levels of compaction that generate 3D nuclear
domains in which DNA is made more or less concentrated

and thereby accessible by looping the flexible DNA fiber at
various lengths and creating contacts between and within
distant chromosome regions.

Bottom enclaves are clusters found in all BPTs and cap-
ture key aspects of the structure-function coupling at play
in the genome. Our CA results highlight how the bottom
enclave’s TF-content shapes distinct regulatory regimes.
We found that the prevalence of MAZ, MXI, USF2 and
RCOR1 in bottom enclaves indicated a ‘steady’ regulatory
regime typically associated with housekeeping genes. In
contrast, we found that the prevalence of MAFK in bottom
enclaves indicated a ‘dynamic’ regulatory regime typically
associated with environmental or immune response genes.
This illustrates how chromosome clusters can form quite
distinct regulatory micro-environments for the genes con-
tained within them. GSEA results focusing on the preva-
lence of RNAP2 and H3K4me3 in bottom enclaves, indi-
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Figure 6. Loci nestedness is coupled with epigenomic activity We plot here the epigenomic feature enrichment for each locus as a function of their BPT
nestedness. The trends for DNase accessibility against lamina associated domain (LAD) enrichment (top-left) and transcription against heterochromatin
histone marks based on chromHMM labels enrichment (bottom-left)are shown. The trends for RNAP II and CTCF enrichment are shown independently
(right column). The trend lines were obtained using b-spline smoothing with 4 degrees of freedom and the shaded areas mark the corresponding 95%
confidence intervals.

cated the colocalization of genes whose function directly
contributed to biological functions of the considered cell
lines (cytoskeleton and skin function enrichment in IMR90
fibroblast samples or immune function enrichment in K562
leukemia samples). Since the prevalence of RNAP2 or ac-
tive histone marks (H3K4me3) promote transcription, this
trend could indicate a direct involvement of chromosome
structure in the functional specialization of the cell, by set-
ting distinct micro-environments for specific gene sets to ac-
tivate particular biological processes. Furthermore we argue
that the more focused and biologically relevant set of func-
tions highlighted by the 3D regulatory context provided by
bottom enclaves supplements the more significant but het-
erogeneous set of functions highlighted by the 1D regula-
tory context provided by promoters. Overall these results
suggest an integral structure-function coupling between the
regulatory context of bottom enclaves and the gene content
of bottom enclaves.

Our analysis integrating loci nestedness and correspond-
ing epigenomic features showed key implications stemming
from our description of chromosome architecture. Inspired
by early Hi-C results, revealing the correspondence between
Hi-C data and a fractal globule conformation of the chro-
mosome (8), we developed the notion of nestedness. Criti-
cally nestedness, or the notion that structural hierarchy in
the chromosome is driven by the tendency of smaller clus-
ters to be nested within larger clusters, significantly coin-
cided with epigenomic activity (Figure 6). We show that
along this hierarchy, the transition into bottom enclaves
harbors the maximal density for active DNA marks and
that the most nested clusters (BPT leaves) display the max-
imal density for inactive DNA marks. Coupled with the
trends observed for LADs, DNase and chromatin remod-

eling factors (Figure 6), this could indicate that BPT leaves
represent compact anchoring regions attached to the nu-
clear lamina, wrapped by a shell of DNA loops with chro-
matin remodeling factors (e.g. CTCF, RAD21, CHD1) co-
localizing active chromosome regions into bottom enclaves
to form transcription factory-like structures (39) (Supple-
mentary Figure S13).

Our results also suggest that depending on the position
along the enclave hierarchy the cluster is found, different
mechanisms might be shaping the strong loci-interaction
observed within it. Firstly, for both top and bottom levels of
hierarchy, increased nestedness is driven by the average in-
crease in interaction frequency between the considered loci
(Figure 5B). Secondly, this trend draws different epigenomic
implications depending on whether we consider top or bot-
tom levels of chromosome hierarchy. At the top level, in-
crease in interaction frequency enables the colocalization
of biologically active DNA regions. This contrasts with the
trend observed at the bottom level of hierarchy where an in-
crease in interaction frequency along nestedness colocalizes
loci enriched in inactive DNA marks and LADs. This an-
tagonism between top and bottom enclaves in terms of what
kind of DNA marks get brought together by increased inter-
action strength, implies that possibly different factors and
mechanisms might be setting these strong interactions at
these different hierarchical levels of chromosome structure.
This notion was hypothesized and tested in a recent simula-
tion study (40). In this paper they argue that loop extrusion
is setting local structures while phase separation is the driver
of global cluster formation in the chromosome. A similar
dynamic equilibrium between competing molecular mecha-
nisms could also explain the trends we observed, though the
details of which cannot be inferred with the present analysis.
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In conclusion, our method and the identified chromatin
hierarchical structure may serve as a framework for draw-
ing inferences from Hi-C and other advanced genome-wide
studies toward unveiling key architectural principles guid-
ing chromatin conformation. Further research should be
done to examine how the arrangement of enclaves varies
across tissues while integrating other known features of
chromatin architecture, such as biophysical constraints de-
rived from in vitro and molecular dynamics studies (41) or
DNA binding factor content derived from molecular biol-
ogy studies (42), to better inform the segmentation of the
chromosome into more biologically realistic structures.
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