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Abstract: The search for more effective and lower cost therapeutic approaches for wound 

healing remains a challenge for modern medicine. In the search for new therapeutic 

options, plants and their metabolites are a great source of novel biomolecules. Among their 

constituents, the monoterpenes represent 90% of essential oils, and have a variety of 

structures with several activities such as antimicrobial, anti-inflammatory, antioxidant and 

wound healing. Based on that, and also due to the lack of reviews concerning the  

wound-healing activity of monoterpenes, we performed this systematic review—which 

provides an overview of their characteristics and mechanisms of action. In this search, the 

terms “terpenes”, “monoterpenes”, “wound healing” and “wound closure techniques” were 

used to retrieve articles published in LILACS, PUBMED and EMBASE until May 2013. 

Seven papers were found concerning the potential wound healing effect of five compouds 

(three monoterpenes and two iridoid derivatives) in preclinical studies. Among the products 

used for wound care, the films were the most studied pharmaceutical form. Monoterpenes are a 

class of compounds of great diversity of biological activities and therapeutic potential. The 

data reviewed here suggest that monoterpenes, although poorly studied in this context, are 

promising compounds for the treatment of chronic wound conditions. 

OPEN ACCESS



Molecules 2014, 19 847 

 

 

Keywords: cicatrix; granulation tissue; terpene; monoterpene; wound-healing; wound 

closure technique 

 

1. Introduction 

Wounds are physical, chemical or thermal injuries that result in an opening or breaking in the 

integrity of the skin. The continuity of the skin should be restored, and appropriate methods for wound 

healing are essential for the restoration of disrupted anatomical continuity and disturbed function status 

of the skin [1]. 

The acute wound healing process is a complex series of interrelated events that are mediated in its 

different phases by a wide range of chemically coordinated cellular processes, as well as hormonal 

influences. It is characterized by a sequence of independent and/or overlapping events [2,3]. The 

process can be broadly categorized into three or four stages: coagulating phase, inflammatory phase, 

proliferative phase (formation of granulation tissue and collagen synthesis), and finally the remodeling 

phase, which ultimately determines the strength and appearance of the healed tissue [4–8]. 

For centuries, natural products such as medicinal plants have been used to treat a lot of illnesses 

worldwide, arousing scientific and commercial interests and still playing an important role in the 

health systems in many developed and developing countries, such as the United States and Brazil, 

respectively [9,10].  

Monoterpenes belong to a large and diverse group of chemical compounds named terpenes.  

They represent a group of naturally-occurring organic compounds. They are the most representative 

molecules constituting 90% of the essential oils and have a great variety of structures [11],  

with relevant pharmacological properties such as antimicrobial, anti-inflammatory, antioxidant,  

antipruritic, hypotensive and analgesic activities [12–16]. Hence, medicinal plants and related 

compounds have traditionally played an important role in drug discovery and were the basis of most early 

medicines [17]. Additionally, the usage of techniques and products in wound care allied to substances 

with anti-inflammatory, antibacterial and antioxidant properties are powerful in the treatment of  

skin lesions [18].  

Despite their importance, there are no reviews on the wound-healing potential of monoterpenes. 

Accordingly, we conducted for the first time a systematic review of the literature to examine and 

synthesize the literature on monoterpenes, to identify and to evaluate those that assess healing effects 

in wound-healing animal models. 

2. Results and Discussion 

A total of 1,895 abstracts/citations were identified for preliminary review from electronic and 

manual searches. The primary search identified 1,894 articles, with 1,116 from PUBMED, 722 from 

LILACS, 56 from EMBASE and one from manual search. After removal of duplicates and screening 

for relevant titles and abstracts, a total of 140 articles were submitted for a full-text review. Seven 

articles met the inclusion and exclusion criteria established. A flow chart illustrating the progress of 

study selection and article number at each stage is shown (Figure 1). 
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Figure 1. Flowchart of included studies. Studies were excluded according to the following 

exclusion criteria: studies in humans, studies of mixtures of substances or extracts from 

plants, review articles, meta-analyses, abstracts, conference proceedings, editorials/letters, 

case reports. 

 

From seven final selected studies, most of that research was conducted in China (43%), Korea 

(29%), Brazil (14%) and Peru (14%). Regarding the pharmaceutical form of the products used for 

wound healing presented in the selected studies (Table 1), bioactive films (38%) were the most used, 

followed by ointments (25%) and solutions (25%) and finally suspensions (12%). 
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Table 1. Characteristics of included studies. 

Authors,  

year,  

Country 

Substance(s) Animals 

Doses, 

Concetration or 

Quantity  

Pharmaceutical 

dosage forms 
Model 

Valued Parameter Settings 

Results and Mechanisms 
Macroscopic Microscopic 

Mai L.M. 

et al., 

2003, 

China 

Borneol 

Adult male 

Sprangue-

Dawley rats  

4.5% and 0.7% 
Vaselin-based 

ointment 

Excision 

wound 

Basic physiological 

conditions (body length, 

weight, food eaten, water 

intake); 

Wound areas measured 

by slide calipers and 

photographed 

Histological 

observation (HE) 

(skin appendages and 

collagen fibers 

quality); 

Measurement of the 

thinckness of the 

granulation tissue and 

newly formed 

epithelium 

This study found that the combination of Bismuth subgallate (BS) and 

Borneol (BO) and Vaseline had a synergistic effect in accelerating wound 

closure. 

All results were associated with the BS, while nothing about BO was 

reported. 

However, the precise mechanism of the drugs remains unclear and further 

work is necessary to study whether macrophages could secret growth 

factor to accelerate wound healing. 

Riella K.R. 

et al., 

2012, 

Brazil 

Thymol 

Adult male 

and female 

Wistar rats 

1.2 mg  
Collagen-based 

films 

Excision 

wound 

Wound contraction rates 

by digital caliper 

Inflammatory 

response and profile 

inflammatory (HE); 

Collagen deposition 

(Picrosirius) 

The modulation of the leukocyte influx by thymol was associated to 

increased levels of macrophage migration inhibitory factor (MIF) in 

central nervous system; 

The improved on granulation tissue by collagen-based containing thymol 

(COLTHY) films founded was associated to anti-inflammatory properties 

of thymol; 

Improvement in the replacement and arrangement by COLTHY was 

associated to modulatory effect on the flbroblast metabolism and collagen 

synthesis and the thymol able to enhance the flbroblasts growth in vitro. 

Zhang K. 

et al., 

2010, 

China 

Genipin 
Sprague–

Dawley rats 
50 mg/mL 

Silk fibroin/ 

hydroxybutyl 

chitosan 

Excision 

wound 
--------- 

Histological 

examination of the 

inflammatory 

response; 

epithelization; 

proliferation of 

fibroblasts and 

collagen proliferation; 

blood vessels 

migration. 

Greater proliferation of fibroblasts was observed in the nanofibers that 

was associated to a genipin crosslinked; 

Fibroblasts cells had greater proliferation and arranged in better order, 

densely in nanofibers that was too associated to a genipin crosslinked. 
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Table 1. Cont. 

Authors,  

year,  

Country 

Substance 

(s) 
Animals 

Doses, 

Concetration or 

Quantity  

Pharmaceutical 

dosage forms 
Model 

Valued Parameter Settings 

Results and Mechanisms 
Macroscopic Microscopic 

Villegas L.F. 

et al., 2001, 

Peru 

α-Terpineol Male mice 0.05 mL Suspension Incision wound Tensile strength --------- 

Epi-α-bisabolol, α-bisabolol and α-terpineol showed significant in vivo 

cicatrizant activity and did not have a significant effect on increasing 

cell migration. The mechanisms is not shown. 

 

Chang W.H. 

 et al., 2003, 

China 

Genipin 
Male Wistar 

rats 
--------- 

Wound dressing 

Membranes 

Excision 

wound 

Basic physiological 

conditions (infection) 

Histological 

examination of the 

inflammatory 

response; 

epithelization and 

granulation tissue 

formation. 

Genipin-crosslinked dressing membrane showed lower inflammatory 

reaction in the wound that may be due to the lower toxicity of its 

remaining residues 

Genipin-crosslinked dressing membrane promotes early re-

epithelialization, but mechanisms is not shown . 

 

Lee S.W.  

et al., 1999, 

Republic of 

Korea 

Aucubin Male rats 
0.1% 

 

Solution and 

based ointment 
Incision wound --------- --------- --------- 
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In the selected articles, the wound models used to study the wound healing included excision and 

incision wound model. However, the main model used was the excision wound model (83%). In most 

of selected studies, both macroscopic and microscopic features were evaluated. A total of 56% selected 

searches evaluated tissue morphology aspects involved in the wound healing process. 

Concerning the mechanisms of action involved in the wound healing proposed for different 

monoterpenes, the ones suggested were antimicrobial activity (inhibits RNA and protein biosynthesis 

of microorganisms), anti-inflammatory activity (decreases the amount of IL-6 and TNF-α production 

in mast cells, inhibits the release of LTC4 and has an effect on the release of TXB2); antioxidant 

activity (photoprotective effects and oxidative stress by inhibiting UVB-induced free radical 

production); low-toxicity characteristics, macrophage migration inhibitory factor (MIF) and fibroblast 

growth effects. 

In this study, China was the country with the largest number of studies on the healing effects of 

monoterpenes. The use of plants for medicinal purposes to treat, cure and prevent diseases is one of the 

oldest forms of medical practice of Humanity [19]. In particular, Traditional Chinese Medicines 

(TCM) are composed by various combinations of medical plants and have been used as natural 

remedies for thousands of years [20]. 

Medicinal plants are the primary sources of many small molecule drugs and herbal products [21,22]. 

Several recent publications reiterate the importance of natural products as a source of drugs [23,24]. In 

this context, the advent of modern technologies has boosted medicinal plants as a highly valuable 

commodity in the patent market. Many developed and developing countries are actively engaged in the 

biomining of medicinal plants for therapeutically precious and biologically active phytochemicals [25]. 

According to the World Conservation Monitoring Centre (WCMC) of United Nations Environment 

Program (UNEP), China was identified as one of the largest mega-biodiversity countries [25]. 

According to Ravenhill, China is one of the largest countries in Asia, which have the richest arrays of 

registered and relatively well-known medicinal plants [26]. In addition, medicinal plants have been 

used in developing countries for thousands of years. The World Health Organization (WHO) estimated 

that 70%–80% of the population living in developing nations depends on traditional healthcare systems 

for primary healthcare [27]. Besides, in China about 40% of the total medicinal consumption is 

attributed to traditional medicines [27].  

Brazil is one of the countries with the largest biodiversity in the planet and it is associated with an 

extensive ethical and cultural diversity (Indigenous, African and European) that traditionally uses 

natural products. It also presents social and economical characteristics that typify it as a developing 

country, where 80% of the population depends on the use of plants for the primary health care [28,29].  

Despite the therapeutic potential of medicinal plants and their compounds, the great biodiversity 

and also the ethnic and cultural aspects of developing countries such as China and Brazil, few studies 

were found regarding the wound-healing effects of monoterpenes. For this study, only isolated 

monoterpenes were included, due to the fact that they provide structural molds for obtaining synthetic 

substances and also because they are considered as sources for drug development. Furthermore, they 

can be used as tools to identify mechanisms of action [30]. 

The healing process can be accelerated and enhanced by the use of wound care techniques and 

products [31,32]. In this review, it was observed that, among the products used for the wound care, the 

films were the most studied pharmaceutical form. The use of liquid dosage form provides the 
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advantage of studying the action of the isolated compounds. However, the major problem is the short 

residence times on the wound site, especially where there is a measurable degree of wound fluid 

exuding [33]. 

It might also be noted that the bioactive films were studied in the most current research. Currently, 

it has been shown that wound healing becomes rapid and successful when a warm moist environment 

around the wound is provided. Unlike the solutions, recently the modern dressings have been 

developed with features to retain and create this great environment playing an active role in wound 

healing [33].  

Moreover, the dressings-based biomaterials, for being part of the matrix of natural tissue, are 

biocompatible at the toxicological point, biodegradable and are able to permeate active ingredients 

such as antimicrobial agents or growth factors [34,35]. 

Wounds are heterogeneous, and the wound-healing process is multifactorial, and influenced by 

many extrinsic and intrinsic factors. In order to obtain new knowledge of the complexity of this 

process or substances effects, the use of animal models is required [36].  

More specific human chronic wound treatments are absent, in a large part due to the lack of knowledge 

of the molecular abnormalities within the wound that prevent healing. Research is hindered by the 

absence of an easily reproducible animal model that mimics the human chronic wound state [37,38]. 

Currently, the chronic wound models described (and that represent the best available at present) are far 

from ideal [38]. 

In the present study, the excisional wound model was the most used. This is an acute wound model 

whose great advantage is the rapid introduction of injury and a relatively rapid course, besides being a 

wound model of easy and inexpensive execution when compared to chronic wound models [38,39]. 

Furthermore, the excisional wound model involves the removal of a significant volume of the target 

tissue, and the filling of the void created allows greater amount of material. The excision site can be 

harvested or biopsied to obtain cells, tissue, RNA, exudates, and histological specimens that have a 

wider cross-sectional area and volume when compared to incisional wound. This is suitable for in situ 

techniques or biomechanical strength (tensile strength) [39,40].  

Concerning the evaluated parameters, the analysis of the kinetics of biological events in response to 

pharmacological substances is crucial for the development of effective therapeutic products able to 

stimulate wound healing [40]. This review shows that no study prioritized the molecular biology assays. 

Monoterpenes or monoterpenoids are compounds with a core of 10 carbons. They are cyclized and 

oxidized in a variety of ways. Due to the low molecular weight, many of them exist in the form of 

essential oils [11]. A type of monoterpenes, the iridoids, is derived from geraniol. They are different 

from the similarly-named iridals (triterpenes). A subclass of iridoid, the iridoid glycosides and 

glucosides are compounds that include a glycoside or glucoside, respectively, moiety, usually found at 

the C-1 position. 

In the present study, articles with the following monoterpenes were selected, including types and 

their subclasses: borneol, thymol, α-terpineol, genipin and aucubin. According to the scientific 

literature, such compounds possess a range of biological activities that may be directly or indirectly 

related to wound-healing effects.  

Borneol is a bicyclic monoterpenoid alcohol (Figure 2a). Borneol has shown effects such as 

antibiotic activity [41], wound-healing activity [42], anti-inflammatory activity by reducing leukocyte 
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migration [43], anti-fibrosis activity by decreasing the fibroblasts growth, inhibiting collagen 

production, decreasing MMP-2 activity and inhibiting TIMP-1 production [44]. It showed no 

cytotoxicity [44], radical scavenging properties [12,45] and immunomodulatory effects [46]. This 

monoterpene was able to suppress the proinflammatory cytokine (IL-1β and IL-6) mRNA expression 

and act as bioactive material in the cellular signal transduction system [47]. It shows antibacterial activity 

and inhibitory effects on several Gram (−)ve and Gram (+)ve pathogenic microorganisms [48,49], 

antifungal activity [12,48,50–52], antioxidant activity by reducing intracellular reactive oxygen species 

(ROS) generation and attenuating the elevation of nitric oxide (NO), the increase of inducible nitric 

oxide synthase (iNOS) enzymatic activity and the upregulation of iNOS expression [53]. Borneol blocked 

NF-κB p65 nuclear translocation [53] and was shown to be a mast cell membrane stabilizer [54]. 

Finally, anti-inflammatory property was shown through fewer ICAM-1 positive vessels, IL-1β positive 

cells, TNF-α positive cells and number of neutrophils [55]. 

Figure 2. Structural formulae of (a) (−)-borneol, (b) thymol, (c) α-terpineol, (d) genipin 

and (e) aucubin.  
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Thymol is a monoterpenoid phenol (Figure 2b) which exhibits multiple biological activities. Studies 

show that thymol modulates prostaglandin synthesis [56], it has anti-inflammatory effect in human 

neutrophils incubated [57] and beneficial effects on the antioxidant status by the influenced on 

docosahexaenoic acid (DHA) concentration [58]. Thymol prevented autoxidation of lipids [59] and the 

formation of toxic products through the action of reactive nitrogen species [60]. It exhibits 

antimicrobial activity [57,59,61–63] and wound-healing activity [64]. Thymol is able to increase the 

levels of macrophage migration inhibitory factor (MIF) in central nervous system [65], enhance the  

in vitro fibroblast growth [66] and interfere with elastase activity as evidenced by the reduced  

release of this proteinase by human neutrophils stimulated with the synthetic chemotactic peptide  

N-formyl-methionyl-leucyl-phenylalanine (fMLP) [57]. It effectively inhibited COX-1 [67], inhibited 
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inducible lymphocyte proliferation [68] and showed anti-inflammatory effects through the reduction of 

the edema, inhibition of MPO activity and decreased leukocyte influx [64]. 

α-Terpineol is a monoterpenoid alcohol (Figure 2c) relatively non-toxic which is present in the 

essential oils of several species [69,70]. This monoterpene presented wound healing effect [69] and 

anti-inflammatory activity by inhibiting the COX enzyme and IL production [71,72]. α-Terpineol is 

also an NF-κB inhibitor and promotes down-regulation of IL-1β expression [73] and IL-6 formation [74]. 

Futhermore, the power in the reduction of TNF-α and NO production was demonstrated [75]. In 

addition, α-terpineol showed selective inhibition of ovine COX-2 activity [72], inhibited the neutrophil 

influx [75], exhibited strong antimicrobial activity [76] and antifungal effects [77]. 

Genipin is an iridoid compound (Figure 2d) and an alternative natural crosslinking agent [78–82].  

It has shown ability to form biocompatible and stable crosslinked products and showed low 

cytotoxicity [83]. Moreover, it has been proved that genipin has anti-inflammatory [84], wound 

healing [81,82] and anti-oxidative effects [85] and abilities of inhibiting lipid peroxidation and 

production of nitrogen monoxide (NO) [86]. Additionally, genipin can increase the mitochondrial 

membrane potential [87], increase the ATP levels and close KATP channels [87] and stimulate insulin 

secretion [87]. Finally, studies showed that genipin suppress the alpha-TN4 lens epithelial cells and 

subconjunctival fibroblast migration induced by TGF-b [88,89]. 

Aucubin is an iridoid glycoside (Figure 2e) with a variety of pharmacological effects, such as 

antimicrobial [90–92], anti-inflammatory [93,94], dermal wound healing [95,96] and in vitro antioxidative 

capacity [97]. In addition, aucubin showed inhibition of RNA and protein biosyntheses [91,95,98–100]. 

Futher, aucubin inhibits TNF-α-induced secretion and mRNA synthesis including PAI-1, MCP-1, and 

IL-6 [101]. Furthermore, investigation revealed that aucubin suppressed extracellular signal-regulated 

kinase (ERK) activation [102], inhibitory kappa Bα (IκBα) degradation [102], and subsequent nuclear 

factor kappa B (NF-κB) activation [102]. Finally, aucubin was considered as a promising 

chemopreventive agent and was devoid of any cytotoxic activity [103–105]. 

3. Experimental  

The present systematic review was conducted according to the guidelines for Transparent Reporting 

of Systematic Reviews and Meta-Analyses (PRISMA statement) [106].  

3.1. Search Strategy 

Three databases (Internet sources) were used to search for appropriate papers that fulfilled the study 

purpose. Those included the National Library of Medicine, Washington, DC, USA (MEDLINE-PubMed), 

Excerpta Medical Database by Elsevier (EMBASE), and Latin American and Caribbean Health 

Sciences (LILACS), using different combinations of the following keywords: wound healing, wound 

closure techniques, cicatrix, granulation tissue, monoterpenes and terpenes. The databases were 

searched for studies conducted in the period up to and including May 2013. The structured search 

strategy was designed to include any published paper that evaluated a wound healing to identify those 

that show potential therapeutic value. Citations were manually limited to animal studies. Additional 

papers were included in our study after analyses of all references from the selected articles. We did not 

contact investigators, nor did we attempt to identify unpublished data.  
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3.2. Study Selection 

All electronic search titles, selected abstracts, and full-text articles were independently reviewed by 

a minimum of two reviewers (R.S.S.B., A.S.B. and L.J.Q.J.). Disagreements on study inclusion/exclusion 

were resolved with the reach of a consensus. The following inclusion criteria were applied: wound-healing 

studies, and the use of monoterpenes isolated or not isolated from medicinal plants (natural or 

synthetic product) for treatment. Studies were excluded according to the following exclusion criteria: 

studies in humans, studies of mixtures of substances or extracts from plants, review articles, meta-analyses, 

abstracts, conference proceedings, editorials/letters, case reports (Figure 1). 

3.3. Data Extraction 

Data were extracted by one reviewer using standardized forms and were checked by a second 

reviewer. Extracted information included data regarding the substance, animal models, dosages and 

concentrations, dosage form, evaluated parameters, results and proposed mechanisms of action. 

4. Conclusions  

For more than a decade, researchers have studied the wound-healing potential of monoterpenes 

through in vivo and in vitro assays. Therefore, as in Nature there are about 20,000 known different 

terpene metabolites [107], this superfamily, of which the monoterpenes are a part, still offers a great 

opportunity of new discoveries for this application. Nevertheless, this review described the study of 

only five monoterpenes or types of monoterpenes in models of wound healing in animals. In summary, 

it can be concluded that, although there are some studies about the wound-healing effects of 

monoterpenes, a class of compounds of great diversity of biological activities and therapeutic potential, 

they have been little studied for the treatment of wounds, which occurs especially in developing 

countries that have a wide biodiversity and tradition in the use of natural products such as Brazil. 

Moreover, of those, every evaluated monoterpenes showed wound-healing effects. The  

anti-inflammatory action of monoterpenes is often related and correlated to wound-healing effect. 

However, further studies are required to better understand these mechanisms. All these findings make 

the monoterpenes a great potential source of compounds for the development of new drugs for the 

treatment of various pathological processes that afflict humanity, including chronic wound conditions. 
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