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Abstract: COVID-19 is a global pandemic, primarily affecting the pulmonary system but its ef-
fects on other systems are not certain. Coronavirus, the causative organism, binds with angiotensin-
converting  enzyme  2  (ACE2)  receptors  in  the  lungs  and  produces  pneumonia-like  symptoms.
Other than lungs, ACE2 receptors are also seen in the endothelium of blood vessels. Therefore,
viruses can bind to the ACE2 that is present in the endothelium of brain blood vessels and thus can
invade BBB, leading to neuronal damage. It is also believed that olfactory cells rich in ACE2 recep-
tors may act as the main route of viral spread into various parts of the brain. The reported neurologi-
cal effects of SARS-CoV-2 include cerebrovascular diseases, ageusia and anosmia, Guillain Barre
Syndrome, and viral encephalitis. The extent of neurological involvement in SARS-CoV-2 infec-
tion warrants the necessity of further research to systematically classify neurological complications
associated with SARS-CoV-2 infection, its diagnosis, and treatment. As ACE2 receptors are pre-
sent in various other organs, it is obligatory to study the effect of coronavirus on other organs also.
Since the long-lasting effects of the COVID-19 are unclear, more studies should be conducted to
confirm the effect of the virus on the central nervous system. This review highlights the reported
neurological manifestations of SARS-CoV-2 and its mechanism.

Keywords: COVID-19, SARS-CoV-2, neurological complications, Guillain Barre syndrome, viral encephalitis, cerebrovascu-
lar diseases.

1. INTRODUCTION

As  of  14th  September  2020,  the  number  of  confirmed
coronavirus cases crossed 29 million worldwide, and 928k
deaths  were  reported  due  to  this  deadly  pandemic.  It  has
spread dreadfully all over the world [1]. The outbreak was
initially showed up in Wuhan province of China in Decem-
ber 2019, reported as acute pneumonia-like symptoms. It is
an infectious disease mainly spread by close contact with an
infected  person  via  droplets  produced  by  coughing  and
sneezing. The infection's main symptoms include fever, dry
cough, and fatigue associated with headache, breathing diffi-
culty, and loss of smell sensation. A family of RNA virus,
Coronaviridae, causes severe acute respiratory distress syn-
drome coronavirus 2 (SARS-CoV-2) or coronavirus disease
2019 (COVID-19). No vaccine or effective treatment is avai-
lable  for  this  disease,  which  makes  this  global  pandemic
more dreadful. Clinical trials are on going worldwide on an-
tiviral  drugs  and  other  vaccines  to  determine  an  effective
treatment for virus infection. Coronavirus attacks majorly on
the respiratory system, and in most cases, it does not show
any  symptoms  [2].  Even  though  the  virus   causes  acute
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respiratory tract infections, it may also affect other body or-
gans.  The long-lasting effects of this novel virus infection
on human health are still undefined. Recent studies have al-
so emphasized that SARS-CoV-2 has a role in various co-
morbidities [3].

From clinical data that has emerged from the reported pa-
tients, it is evident that the virus attack can trigger neurologi-
cal complications.

A retrospective study of 214 patients in Wuhan, done by
Mao et al., shows that 36.4% of patients suffer from neuro-
logical difficulties. Patients who are severely affected are ex-
hibiting more neurological complications [4].

The most common complications reported so far include
headache, dizziness, lost consciousness, cerebrovascular dis-
eases, encephalitis, seizures, and loss of smell and taste. A
case  report  in  February  2020  in  Wuhan  confirms  that  the
novel coronavirus causes viral encephalitis. The presence of
a virus in CSF approves the role of coronavirus in neuronal
complications [5].  Neurological complications of COVID-
19 are widely being reported nowadays, either during infec-
tion  or  post-viral  infection.  This  review  highlights  the
crosstalk between SARS-CoV-2 and its various neurological
manifestations like cerebrovascular complications, neuronal
inflammation, neuromuscular interventions, ageing, and neu-
ronal degeneration. Various mechanisms involved in these
neurological complications are also discussed in this review,
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along with different diagnostic tools used in the diagnosis of
SARS-CoV-2 infection.

2. STRUCTURE, SYMPTOMS, AND DIAGNOSIS OF
CORONAVIRUS

2.1. Structure of SARS-CoV-2
SARS-CoV- 2 virus belongs to the family of Coronaviri-

dae,  a  group  of  large,  positive-stranded,  enveloped  RNA
viruses.  There  are  four  genera,  Alpha,  Beta,  Gamma,  and
Deltacoronavirus  (Fig.  1).  Alpha  and  Betacoronavirus  (β-
CoVs or  Beta-CoVs)  infect  mammals,  whereas  avian  spe-
cies get infected by Gammacoronaviruses, and Deltacoron-
avirus can infect both avian and mammalian species. SARS-
CoV and  SARS-CoV-2  belong  to  Betacoronavirus.  It  is  a
group of non-infectious as well as infectious viruses. In past
years there were some coronavirus outbreaks like the Mid-
dle  East  respiratory  syndrome  (MERS  CoV)  and  severe
acute respiratory syndrome (SARS-CoV-1) [6, 7]. The struc-
tures  of  infectious  viruses  from  the  Coronaviridae  family
are listed in (Fig. 2) [8].

Fig. (1). Genera under Coronaviridae. SARS-CoV- 2 belongs to
Betacoronaviruses. (A higher resolution / colour version of this fig-
ure is available in the electronic copy of the article).

Therefore, the effects of the virus in a host are long-last-
ing and constant. The structure of the virus has 16 non-struc-
tural proteins (Nsp1-16) and 4 structural proteins. Non-struc-
tural  proteins  together  form a  replicase/transcriptase  com-
plex (RTC) that  contains several  enzymes,  and it  interacts
with different biological processes of a host like nuclear tran-
sport (Nsp7) and ribonucleoprotein biogenesis (Nsp8) [9].

Structural  proteins  include  a  nucleocapsid  protein  (N)
bound to the genetic matter, RNA. A membrane protein (M)
gives shape to the virus. An envelope protein (E) forms a vi-
ral envelope by interacting with membrane protein and spike
proteins  (S),  which  binds  to  the  host  cell  receptors  [10].

Spike proteins are projected out of the virus, and it gives a
crown-like structure to the virus. It has 3 main segments, a
transmembrane anchor, an ectodomain, and a short intracel-
lular tail.

Fig. (2). Various types of coronavirus are pathogenic for humans
[8]. (A higher resolution / colour version of this figure is available
in the electronic copy of the article).

Spike proteins in the host can modulate the metabolism
of  lipids.  Angiotensin-converting enzyme 2 (ACE2)  inter-
acts with SARS-CoV. In (Fig. 3 and 4) the structure of the
coronavirus and its different proteins are illustrated [8].

Fig.  (3).  Structure  of  severe  acute  respiratory  syndrome  coron-
avirus 2 (SARS-CoV-2). (A higher resolution / colour version of
this figure is available in the electronic copy of the article).

Fig. (4). Structure of SARS-CoV-2 genome. (A higher resolution /
colour version of this figure is available in the electronic copy of
the article).

They are unique among RNA viruses as they have a larg-
er genome compared to other viruses. They follow several
uncommon approaches for their genome expression. There
will  be  ribosome  frameshifting  during  translation  of  their
genome, and their assembly of virions are also found to be
exceptional  among  other  enveloped  RNA viruses.  Several
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subgenomic mRNAs are produced during coronavirus tran-
scription,  which  contains  sequences  of  both  ends  of  the
genome. They are highly capable of adapting to the new en-
vironment via mutation and recombination, thereby altering
the host range.

There are 29 known proteins in the coronavirus genome.
They include two large groups of polyproteins, namely OR-
F1a and ORF1ab that constitute 16 non-structural proteins
of  SARS-CoV-2,  4  structural  proteins;  spike  (S),  envelop
(E), membrane (M), and nucleocapsid (N), and 9 accessory
proteins,  ORF3a,  ORF3b,  ORF6,  ORF7a,  ORF7b,  ORF8,
ORF9b, ORF9c, and ORF10. Accessory proteins are not es-
sential for viral replication, but they are actively involved in
host  pathogenesis  and  modulation  of  interferon  pathways,
and they are placed in between structural proteins [11].

3’- poly-A tail of viral genomic RNA can act as mRNA
to  translate  viral  polyproteins  like  ORF1a  and  ORF1ab.
Both  5’  and  3’  end  have  an  untranslated  region  (UTR),
which regulates RNA replication and transcription. ORF1a
and ORF1ab encode two main transcription units, replicase
polyprotein 1a and 1ab (PP1a and PP1ab). The largest po-
lyprotein PP1ab constitutes the non-structural proteins that
form  an  intricate  replicase  machinery.  The  structural  pro-
teins and accessory proteins are translated from a set of nest-
ed subgenomic RNAs regulated by transcriptional regulato-
ry sequences [12-15].

Spike protein of SARS-CoV-2 was found to have a key
role in attaching to ACE2 receptor and thereby infection. It
is a homotrimer that projects from the viral membrane. Each
monomer of homotrimer has a receptor-binding domain or
RBD that acts as a tool to interact with ACE2 on the surface
of cells. ACE2 is mainly expressed on the surface of various
cells of the host body such as lungs, heart, kidney, brain, in-
testine, and arteries. In the brain, ACE2 is seen in the brain
stem, regions that control central blood pressure, and cardio-
vascular functions like the subfornical organ, nucleus of the
tractus solitarius, paraventricular nucleus, and rostral ventro-
lateral medulla.

When compared to SARS-CoV, SARS-CoV-2 has more
affinity towards ACE2, and both share 96% similarity in nu-
cleotide  sequence.  SARS-CoV-2  has  more  positively
charged spike proteins. The greater number of spike proteins
can have a substantial influence on cell adhesion and BBB
crossing. Most of the studies regarding the neurological ef-
fects of SARS-CoV-2 report no evidence of the virus in the
brain or CSF, but demyelination of the brain can occur due
to viral entry.

Interaction of spike protein with host ACE2 receptor is a
two-step process. In the first step, spike protein is in a closed
conformation. This step is dominated by electrostatic forces,
leading to the formation of transient and nonspecific encoun-
ter complexes. In the second step, a structural rearrangement
in the spike protein takes place. The RBD opens up to reveal
its binding interface on the host body, ACE2, and forms a
well-defined  complex  that  is  stabilized  by  electrostatic
forces, polar and nonpolar interactions such as salt bridge,

hydrogen bond, π stack, π anion, and hydrophobic interac-
tions [16-18].

2.2. Symptoms
The  disease  spreads  mainly  by  tiny  droplets  from  the

nose  or  mouth  from person  to  person,  which  are  expelled
when a person with COVID-19 coughs, sneezes, or speaks.

The most frequent COVID-19 symptoms are fever, dry
cough,  and  tiredness.  Other  less  common  symptoms  that
may affect some patients include aches and pains, nasal con-
gestion, headache, conjunctivitis, sore throat diarrhea, loss
of taste and smell, skin rash, and finger or toe discoloration.
Typically, these symptoms are mild and begin gradually.

Most people (around 80%) recover from the disease with-
out seeking care in the hospital. About 1 in every 5 people
who get COVID-19 become seriously ill and develop breath-
ing  difficulties.  Older  people,  and  those  with  underlying
medical issues such as high blood pressure, heart and lung
problems, diabetes or cancer, are at higher risk of develop-
ing severe illness. Some of the affected people do not show
any symptoms but still tested positive for the virus [19].

2.3. Diagnosis
Like other infectious diseases, coronavirus attacks also

have different laboratory approaches to identify the presence
of viruses in the host’s body [20]. A list of diagnostic tech-
niques are mentioned in (Fig. 5). Samples like blood, serum,
urine, stool, lower and upper respiratory tract specimens are
the most accepted specimens for the analysis. Lower respira-
tory  tract  specimen  analysis  is  strongly  recommended  as
sometimes  upper  respiratory  sample  analysis  comes  nega-
tive  in  some  severely  affected  cases.  Different  studies
showed the importance of lower respiratory tract specimen
analysis as it contains a high virus load than other samples
[21].

Fig. (5). Different diagnostic techniques use to detect the presence
of SARS-CoV-2. (A higher resolution / colour version of this fig-
ure is available in the electronic copy of the article).
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Analysis of nucleic acids is another successful approach
to  analyze  the  presence  of  the  virus.  Different  probes  and
primers  that  target  the SARS-CoV-2 virus  genome can be
useful  in the laboratory investigation.  The structure of  the
virus includes parts of nucleocapsid(N), spike protein (S), en-
velop (E), etc. can be work as a target for the lab analysis.
Other than these parts, RNA polymerase (RdRP) and open
reading frame1 ab (ORF1ab) are also useful as a target gene.
Identification  of  the  specific  gene  targets,  ORF1ab  and
RdRP, confirms the presence of SARS-CoV-2 in the host’s
specimen [21].

WHO recommended and widely accepted detection tech-
nique is qRT-PCR(real-time quantification reverse transcrip-
tion-polymerase chain reaction) kit for the qualitative detec-
tion of the SARS-CoV-2 virus in lower and upper respirato-
ry tract specimens. At the same time, it is time-consuming
and expensive [21, 22].

Nested RT-PCR is used in the early days of detecting the
virus, which is a less expensive and time-saving type of RT-
PCR. Compared to the qRT-PCR, nested RT-PCR is more
sensitive and specific for the SARS-CoV-2 virus when there
is a low viral load, which is in the early stages of virus at-
tack. Nevertheless, nested RT-PCR is producing false-posi-
tive cases as there is a chance of cross-contamination from
the laboratory [23-25].

Droplet  digital  PCR(ddPCR)  has  better  sensitivity  and
specificity and less load of detection (LOD) when compared
to RT-PCR. But it is expensive and needs more sophisticat-
ed types of equipment than RT-PCR [26, 27].

Loop-mediated isothermal amplification (LAMP), as the
name indicates, needs a constant temperature and has a rapid
amplification  for  the  identification  of  coronaviruses.  This
technique utilizes visual or colorimetric detection methods.
ORF1ab genes could be detected using this  technique and
practiced at home with the least instruments [28, 29].

Nanoparticle-based  amplification  is  another  technique
used for the detection of the virus. Gold nanoparticles could
be introduced to improve the specificity and sensitivity of
the virus and analyzed by the naked eyes using the colorimet-
ric method [30-32].

Portable benchtop-sized analyzers are the most accurate,
sensitive, and powerful analyzing technique for fast detec-
tion  of  SARS-CoV-2,  which  can  be  used  bya  person  who
does not have any PCR training or point of care testing (test-
ing a person in their  proximity).  But there are reports that
this  type  of  analyzer  may  produce  unpredictable  perfor-
mances  [33,  34].

Antigen tests utilize the viral proteins, specifically S and
N, which are the main antigen targets for detecting the virus.
The S protein can be sliced into two separate S1 and S2 sub-
units. S protein is essential for virus entry and can be seen
on the surface of the virus, but N is the most expressed that
interacts with RNA. S1 is more specific to SARS-CoV-2 de-
tection. The nasopharyngeal swab is directly placed on viral
transport media and analyzed in a laboratory setup. For the

detection of this specific virus, the immunochromatographic
technique is commonly used. However, it shows compara-
tively low sensitivity due to which newly developed biosen-
sors are used [35-38].

Antibodies such as IgG, IgA, and IgM could be used for
the identification of the virus. Immediately after the virus in-
festation, in 5 to 7 days, IgM is produced, and this testing
can be successfully used for the identification of the virus in-
side the host’s body. IgA could be present in the mucosal se-
cretions and can be detected in 6 to 8 days. If the RT-PCR is
failed to detect the virus and the host is still suspecting the
presence of the virus, a serological analysis could work. En-
zyme-linked immunosorbent assay, immunofluorescence as-
say, chemiluminescence immunoassay, etc., are considered
manual laboratory-based serological analysis. Another set of
analytical techniques useful in antibody detection are lateral
flow  assay,  microarray,  and  microfluidic  analysis  [21,
39-42].

Virus  culture  techniques  are  considered  the  gold  stan-
dard for the detection of viruses. Virus neutralization tests
and pseudovirus neutralization tests are commonly used for
viral  culture.  Viral  culture  is  a  laboratory  technique  that
places samples of a virus in various cell lines that can be con-
taminated by the virus being examined. If the cells display
changes, it is referred to as cytopathic effects, and the cul-
ture  is  positive.  The  serum of  COVID positive  patients  is
used for neutralization capacity, and it is evaluated whether
the  serum  can  reduce  the  cytopathic  effects.  These  tech-
niques are time-consuming and expensive [41, 43-45].

Genomic sequencing is another powerful method to ana-
lyze the evolution of viruses, the relation between genetics
and disease progression, and the development of novel treat-
ment strategies like vaccines. The main sequencing methods
of  SARS-CoV-2  include  metatranscriptomics  sequencing,
hybrid capture-based sequencing, amplicon sequencing, and
nanopore  targeted sequencing [21,  45].  A translational  re-
search approach would be beneficial for identifying the pos-
sible CNS effects of CoV infections [46].

3.  COVID-19  AND  NEUROLOGICAL  INVOLVE-
MENT

Past CoV attacks, like SARS-CoV and MERS-CoV in-
fections, can induce neuronal damages like polyneuropathy,
cerebrovascular  diseases,  encephalitis,  ischemia,  and  de-
myelination neurons, and seizures. According to WHO re-
ports, MERS-CoV is found to be potentially neuroinvasive.
As these viruses belong to the same family Coronaviridae,
and  SARS-CoV-2  has  structural  and  genetic  similarities
with other family members that can produce neural damage,
SARS-CoV-2 is also expected to produce neuronal complica-
tions [47].

Clinical  reports  show that  some  patients  infected  with
SARS-CoV-2  had  neuroinvasive  symptoms  such  as  hea-
dache, seizure, loss of taste and smell, and viral encephalitis
very rarely. Along with the expression of new neurological
disorders, the pre-existing neurological conditions got wors-
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ened  in  some  patients.  Neurological  involvement  of
COVID-19  was  reported  in  one-third  of  patients.  A  retro-
spective study done by Luigetti M et al. showed that from
March to April,  out  of  213 positive cases,  64 patients  had
neurological  involvement,  including  encephalopathy,
seizures, headache, myalgia, encephalitis, ageusia, and anos-
mia [48].

SARS-CoV-2 induced neurological  complications may
be classified into three forms based on the parts they affect;
CNS, PNS, and skeletal muscle-related. Cerebrovascular dis-
eases (CVD) are the most common type of neurological dis-
order associated with this virus infection. Other CVDs relat-
ed to this virus are cerebral venous thrombosis and cerebral
hemorrhage.  These  conditions  have  a  risk  of  incidence  in
people who have higher blood pressure, diabetes, and past
CVD records. Neuromuscular complications are the second
most common type in which Guillain-Barré syndrome (GB-
S) is a dominant complication, which is an autoimmune dis-
ease that affects neurons. The mechanism of how the virus is
causing GBS is still uncertain. The possible mechanism may
be  either  the  cytokine  storm  produced  due  to  infection  or
due  to  the  neuronal  virus  invasion.  The  neuronal  invasion
may cause CNS infections and increase BBB permeability,
making  the  brain  more  prone  to  other  infections  like  en-
cephalopathy. ACE2 receptors bind in the host’s body, and
endothelial cells, glial cells, and other related neurons rich in
ACE2 receptors. Encephalitis- meningitis is another neuron-
al  disorder  associated  with  the  neuroinvasive  nature  of
SARS-CoV-2,  which  initially  shows  symptoms  like  hea-
dache, fever, fatigue, and unconsciousness [49, 50]. The role
of SARS-CoV-2 in various neurodegenerative pathways is
still unknown, and further studies are also needed [51, 52].

3.1. Cerebrovascular Complications
Cerebrovascular  diseases  (CVD)  are  reported  as  the

most common and severe form of neurological complication
in COVID-19 patients. This condition has multifaceted etiol-
ogy, and it may develop after common symptoms of infec-
tion.  Those  with  pre-existing  CVD are  more  prone  to  hy-
poxia  and  thereby  lower  the  brain's  oxygenation  [53,  54].
The experimental animal model confirms that the influenza
virus's  cytokine  cascade  produces  ischemic  brain  injuries
and  intracranial  hemorrhage  [55].  In  a  retrospective  study
done in 221 SARS-CoV-2 infected patients in Wuhan, 6%
of patients showed cerebrovascular complications such as is-
chemic stroke, intracranial hemorrhage, and cerebral venous
sinus thrombosis [56]. Younger COVID-19 patients are ad-
mitted due to ischemic stroke and occlusions in large vessels
[57]. All these conditions are due to the damage of the en-
dothelium or activation of immune factors. Another possible
mechanism is  due to  the  elevated D-dimer,  increased pro-
thrombin  time,  C-reactive  protein,  and  ACE2  expression
[58]. The presence of the virus in CSF and brain tissues after
autopsy  in  previous  CoV  attacks  has  been  proven.  CVDs
could be identified by brain CT [4].

3.2. CNS Infections and Inflammations
In severely affected covid-19 patients, an increased level

of  cytokines  was  observed,  termed  cytokine  storm  or  cy-
tokine  release  syndrome.  Cytokines  such  as  IL-6,  IL-1b,
TNF,  IL-2,  IL-8,  IL-17,  G-CSF,  GM-CSF,  IP-10,  MCP-1,
and MIP1a2 were upregulated in circulation, and increased
level of IL-6 and TNF in serum was also observed in critical-
ly ill patients [59]. After viral infestation, viral proteins in
the blood circulation and molecular complexes such as high
mobility  group  1(HMGB1-  a  type  of  nuclear  protein  pro-
duced from damaged cells) could reach the brain via manipu-
lated  BBB  and  induce  brain  damage  by  acting  as  patho-
gen-associated molecular patterns (PAMPs) and damage-as-
sociated molecular patterns (DAMPs). They can induce in-
nate immunity by activating macrophages, pericytes, and mi-
croglia in the brain that prompt toll-like receptors (TLR, pat-
tern  recognition  receptors  involved  in  innate  immunity)
[60].

The main reason for the inflammation of brain parenchy-
ma or encephalitis is either autoimmune or any kind of infec-
tion [61]. It is characterized by fever, vomiting, convulsions,
and altered consciousness [62]. Encephalitis and encephalo-
pathy are  reported in  SARS-CoV-2 infections  very rarely.
Even though the etiology of encephalitis in SARS-CoV-2 in-
fection remains unclear, it is suspected that it may be due to
cerebral inflammation caused by a viral infection. There is
no evidence of the presence of a virus in CSF, but high lym-
phocyte levels have been documented [63].

Acute  hemorrhagic  necrotizing  encephalopathy  is
another complication related to SARS-CoV-2 infection. It is
a  type of  reversible  brain  dysfunction due to  cytokine up-
surge  or  damage to  BBB characterized  by  cerebral  edema
and no noticeable changes in CSF [64]. Severe hypoxia in
SARS-CoV-2 patients may lead to encephalopathy and de-
velop symptoms like headache, confusion, loss of conscious-
ness, and paralysis. CT and MRI can be used for the detec-
tion of encephalopathy. Autopsy reports of deceased SARS-
CoV-2 patients indicatedthe presence of edema in the brain
[5].

In  a  case  report  of  76-year-old  women,  the  post-en-
cephalitic  seizure  was  reported  after  being  infected  with
coronavirus,  confirming the  neurological  involvement  and
seizure [65].

3.3. Ageusia and Anosmia
SARS-CoV-19 infection is highly associated with loss of

sensation of smell and taste [50]. A multicenter study con-
ducted in Europe reported that around 86% of patients devel-
op olfactory disorder; either anosmic or hyposmic, and 89%
of patients developed the gustatory disorder. Post viral anos-
mia  leads  to  loss  of  smell  sensation.  The  etiology  behind
anosmia  is  mucosal  congestion  and  olfactory  conduction
loss due to nasal obstruction. But in the case of COVID-19,
there is no noticeable runny nose or nasal congestion [66].

In  COVID-19  patients,  the  high  concentration  of  the
virus was observed in the nose, causing inflammation of ol-
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factory nerves, and damage to the receptors leads to anosmia
[67]. Ageusia develops due to the binding of the virus to the
ACE2 receptors that are highly expressed in the tongue, lead-
ing to damage of the taste receptors and ageusia [68].

3.4. Neuromuscular Interventions
Post COVID-19 myalgia was reported after viral shedd-

ing  by  a  group  of  researchers.  In  a  study  done  by  Long  -
Quan Li et al. in 1995 patients, 35.8% of total subjects ex-
hibited myalgia. Along with myalgia, elevated creatinine ki-
nase (CK) level and rhabdomyolysis (death of muscle fibers
and release of their contents to blood circulation due to di-
rect or indirect injury to the muscles) [69], point to the fact
that coronavirus is capable of producing myositis. Critically
ill patients are reported with a critical illness, myopathy, or
polyneuropathy  (CIM  or  CIP),  due  to  long  term  usage  of
non-depolarizing neuromuscular blocking agents as part of
therapy [69].

Guillian Barre syndrome (GBS) is the second most com-
mon  neurological  disturbance  that  happened  with  SARS-
CoV-2  infection.  Guillain-  Barre  syndrome  (GBS)  and
Miller-Fisher syndrome (MFS-a variance of GBS) were re-
ported after 3 days to 4 weeks of COVID-19 infection and
often reported in elderly patients. When compared to post-in-
fectious GBS/MFS, para infectious GBS/MFS are most com-
mon. Typical GBS patients do not have olfactory symptoms,
wherein COVID-19 related GBS, ageusia, and anosmia are
common.  Most  of  the  patients  were  reported  with  lower
limb areflexia (less responsive to stimuli) followed by bifa-
cial weakness and other cranial neuropathies [70].

Studies prove that virus entry to the central nervous sys-
tem is via the olfactory pathway, blood-brain barrier, or in-
fected immune cells' infiltration. Hypothalamus and cortex
of covid-19 infected patients were detected with neuronal da-
mages  [70].  The  underlying  pathophysiological  processes
may be secondary to the neuroinvasive nature of the ravag-
ing virus demyelination or viral infection, which produces
an  inflammatory  environment  that  causes  an  aberrant  im-
mune system reaction, resulting in peripheral demyelination
[71]. Due to this virus invasion, there will be overactivation
of macrophages, neutrophils, and natural killer cells, leading
to cytokine releasing syndrome (CRS) such as IL-1β, IL-6,
IL-12, and TNF-α. This upsurge may cause tissue and pe-
ripheral nervous system damage [71].

3.5. Aging and Neuronal Degeneration
Comorbidities  like  cerebrovascular  diseases,  diabetes,

and chronic obstructive pulmonary disease can worsen the
condition of COVID-19 patients [72]. Neurological manifes-
tations of coronaviruses are already established earlier dur-
ingthe time of MERS-CoV infections [73, 74].

When  SARS-CoV  spike  proteins  enter  the  host  body,
their pro-inflammatory effects are meditated by TLR on hu-
man macrophages via NF-kB, which may lead to an upsurge
of  cytokine  production  and  thereby  brain  injury  and  im-
paired brain function. Animal studies reveal that viral infec-
tion leads to increased levels of IFNa/b, followed by activa-

tion of interferon receptors (IFNR1) on cerebral endotheli-
um and cognitive impairment [59].

Recent studies confirm the interaction of viral proteins
with  human  proteins  in  different  age-related  pathways,
which influences the brain's health and eventually is associat-
ed with the development of AD [74]. For example, viral pro-
teins such as Nsp6, Nsp10, Nsp 13, Orf3a, Orf 8, etc., inter-
act with vesicle trafficking (an age-related pathway). Nucleo-
capsid  protein  (N)  interacts  with  host  proteins  such  as
G3BP1 (involved in the induction of innate immunity), and
this complex inhibits the formation of stress granules (SG),
which can manipulate RNA biology and protein synthesis in
the host cell [75]. The virus's nucleocapsid protein also inter-
acts with LARP1 (mTOR translational repressor; involved
in different biological processes) and regulates protein synth-
esis [76]. The role of mTOR in aging is already proven in
several  studies  [77].  When  the  spike  protein  of  the  virus
binds with the ACE receptor, it can modify the host’s cellu-
lar mechanism like protein homeostasis, leading to impaired
protein translation, folding, and clearance. These manipula-
tions can affect several aging hallmarks, such as increased
endoplasmic reticulum stress, and inhibit the ubiquitin-pro-
teasome system, leading to protein misfolding. Further ef-
fects include mitochondrial dysfunction and an increase in
the  ROS  level  and  can  affect  the  host’s  innate  immunity.
Virus infection alters  the control  over the host’s  Hsp90 (a
chaperone  protein  involved  in  the  proper  folding  of  other
proteins and stabilizes proteins against stress) by increasing
RNA polymerase enzyme, facilitating caspase activation and
inducing apoptosis [78, 79].

A  cohort  study  conducted  by  UK  Biobank  (UKB)  de-
monstrates  the  relationship  between  COVID-19  and
APOE4. In adults aged over 65, pre-existing dementia is the
main risk factor, and it is a common comorbidity associated
with COVID-19. APOE4 allele relates to dementia, and peo-
ple with double copies of APOE4 possess a higher risk. In
the study, they used genetic data of around 338,000 people
of  European descent  from the  UK Biobank to  analyze  the
role of APOE4 in AD. Out of which more than 9,000 people
carried  two  copies  of  APOE4.  This  data  is  cross-checked
with people who tested positive for COVID 19. The result-
ing observation proposes that people possessed APOE4 ho-
mozygous genotype and were associated with twice the risk
of severe disease than people who possess another variant
like APOE3. They concluded, however, that the APOE4 al-
lele raises the risk of serious infection with COVID-19. It af-
fects  lipoprotein  function  and  manipulates  macrophage
pro/anti-inflammatory  phenotypes.  APOE  is  highly  ex-
pressed  as  a  co-existing  gene  in  the  lungs'  alveolar  cells,
along with the ACE receptor [80].

Possession of one or two copies of APOE4 leads to en-
hanced innate immunity levels and cytokines [81]. Reports
from previous studies assure the role of APOE4 in the para-
site, bacterial, and viral infections [82]. An in vitro study de-
monstrated the influence of APOE4 in viral infections; cells
that  possess  two  copies  of  APOE4 alleles  showed  a  rapid
progression of HIV disease. Also, APOE4 is associated with
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comorbid risk factors connected with severe coronavirus in-
fection  such  as  atherosclerosis  and  body  vitals  like  blood
pressure [83, 84]. ACE2 is highly expressed in alveolar tis-
sues, and a high concentration of APOE4 is more dangerous
in  asthmatics  as  they  activate  immune  mediators  like  cy-
tokines and interleukin-6. Thus the possession of two copies
of  APOE4  increases  the  severity  of  coronavirus  infection
[85].

4.  MECHANISMS  OF  NEURONAL  DAMAGE  BY
CORONAVIRUS

The mechanism by which SARS-CoV-2 produces neuro-
logical  damage is  still  unknown.  The  pathways  that  cause
neurological damage are explained in light of past CoV in-
fections  and new reports  based on SARS-CoV-2 infection
[86].

4.1. Direct Invasion
Direct invasion of the virus to the nervous system causes

neuronal  damage  via  the  blood-brain  barrier  or  neuronal
pathway.  ACE2 is  highly expressed in  the  lungs produces
pneumonia-like symptoms. Along with the lungs, ACE2 re-
ceptors  are  seen  in  the  endothelium of  blood  vessels.  The
virus can bind to the ACE2 endothelium of brain blood ves-
sels and thereby invade BBB and finally neuronal damage.
Another possible way of BBB breaching is found to be high
levels of pro-inflammatory cytokines that can produce struc-
tural and functional damage to the BBB. In both ways, there
will be damage to the BBB, and invasion of the virus made
it easier.

Another direct invasion is through the nerve endings. In
the case of SARS-CoV-1, intranasal inoculation of the mice
showed the viral  spread to the different parts of the brain,
and the removal of the olfactory bulb in mice resulted in less
spread  of  the  virus  in  the  brain.  The  olfactory  nerve  bulb
was  the  main  route  of  viral  spread  by  this  method,  and  a
high degree of neuronal damage was observed. Recent find-
ings point out that olfactory cells are rich in ACE2 receptors
[87-90].

4.2. Hypoxia
Hypoxia is another mechanism that lies behind neurologi-

cal  damage  in  coronavirus  infection.  The  binding  of  the
virus to the ACE2 receptors leads to impaired functioning of
normal gas exchange between cells, which further causes hy-
poxia in the brain and other parts of the CNS, leading to in-
creased  anaerobic  metabolism  in  the  brain  mitochondria.
Solomon et al. conducted a study, an autopsy of 18 deceased
SARS-CoV-2 patients, showed hypoxic changes in the cere-
bellum and cerebrum and neuronal damage in the cerebral
cortex and hippocampus. Hypoxia leads to edema, ischemia,
cerebral  vasodilation,  and  obstructed  cerebral  blood  flow
that eventually leads to headaches [91, 92].

4.3. Immune-mediated Pathology
Recognition of the virus in the host’s body results in the

activation of innate immune responses like interferons and
natural killer cells. Due to viral infection, there will be an ex-

cessive defense mechanism called systemic inflammatory re-
sponse syndrome (SIRS). It happens to avoid the noxious ef-
fect of the foreign material that invaded the host’s body. As
a part of SIRS, a cytokine storm may lead to multiple organ
dysfunction. The same happens in the case of SARS-CoV-2
infection, and it affects macrophages, microglial cells, and
astrocytes  in  CNS.  Due  to  the  effects  on  microglial  cells,
pro-inflammatory agents such as interleukin-6 (IL-6) will be
the  main  member  of  the  cytokine  storm.  Other  than  IL-6,
there will be an overproduction of other interleukins as well
as TNF-α. This activation or cytokine storm results in neuro-
nal damage, even death [93-96].

4.4. ACE2
The lungs are the major organ involved in the pathophy-

siology  of  COVID-19  infection  since  ACE2  receptors  are
highly expressed in the lungs. ACE2 is present in other or-
gans such as the nervous system, skeletal muscles, and vas-
cular  endothelium,  and it  leads  to  elevated  blood pressure
and eventually results in cerebral hemorrhage. As mentioned
earlier,  vascular  endothelium  is  rich  in  ACE2  receptors
through which the virus may damage BBB and thereby neu-
rons [67, 97, 98].

5. INVOLVEMENT OF AGE AND SEX IN COVID-19
INFECTION

Neurological effects like ischemic or hemorrhagic stroke
of  SARS-CoV-2  infection  is  commonly  reported  in  mid-
dle-aged or elderly. Various studies on neurological interven-
tions of SARS-CoV-2 pointed out the same. In a study done
by Mao et al., out of 214 patients, 40.7% were men, and 88
were severely infected with SARS-CoV-2, and 64% of them
were above 50 years of age. 78% of overall had neurological
symptoms. Those who were severely infected had more seri-
ous neurological symptoms [73]. In another study of 153 pa-
tients infected with SARS-CoV-2, male patients (48%) were
reported to develop neurological symptoms, and the median
age of the patients was 71 years. These patients had cerebro-
vascular  symptoms,  altered mental  status,  and PNS symp-
toms [99]. Males and females have a different immune re-
sponse to the virus, and males are suspected of having a low-
er  immune  power  than  females.  Studies  showed  that  in
males, viral clearance is delayed. A recent study pointed out
that the testis can act as a port for the virus. Other than this,
sex hormones play a role in the immune responses as estro-
gen is  an  immunoenhancing  agent,  but  testosterone  is  im-
munosuppressive  [100].  Age is  another  main  factor  in  the
severity of virus infection. As age increases, the number of
ACE2 in the lungs decreases, and this decrease is more in
males  than  females.  Virus  attack  increases  the  decline  of
ACE2, thereby increasing the number of ACE1. As a result,
there will be a generation of more angiotensin II, and it can
damage  endothelial  cells  in  different  organs  such  as  the
lungs  and  brain  [101].

6.  MEDICATIONS  USED  FOR  THE  TREATMENT
AND THEIR NEUROLOGICAL EFFECTS

There is no proper cure for the disease to date. Only sup-
portive treatments are available globally. For further preven-
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tion of virus spreading, the infected should be isolated and
protected. Humans infected with the virus should be treated
with  supportive  care  such  as  bed  rest,  maintain  internal
homeostasis,  frequent  monitoring  of  vitals  like  heart  rate,
pulse  rate,  respiratory  rate,  blood  pressure,  etc.  Different
therapies used in the treatment are listed below in Table (1).
The latest clinical trial of dexamethasone shows a reduction
in the mortality rate of ventilated patients or severely ill pa-
tients. In patients with mild symptoms, it is not found to be
very effective [102]. Recently, Favipiravir, another antiviral
drug that inhibits RNA dependent RNA polymerase (RdRp),
was found to be effective in COVID-19 [103]. Supplemen-
tary studies should be done to know the exact mechanism be-
hind the effect.
Table 1. Therapies used in the treatment of COVID-19(Differ-
ent classes of drugs and their mechanism of action).

Drug Class Therapies Used for the Treatment of
COVID-19

References

Antivirals • Interferon-alpha (INF-α)
o Promotes innate and adaptive immunity,

inhibits replication of the virus
• Lopinavir/Ritonavir

o Protease inhibitor inhibits protein synthe-
sis in virus
• Ribavirin

o Nucleoside analogue prevents replication
of the virus
• Arbidol

o Anti-influenza drug, potent inhibitor and
reduce reproduction of the virus

• Remdesivir
o Nucleoside analogue inhibits SARS-CoV

and MERS-CoV

[106]
[107]
[108]
[109]
[110]

Antimalarials • Chloroquine and Hydroxychloroquine
• Potential broad-spectrum antiviral

[111]

Cellular therapy • Natural killer cells (NK cells)
o Immune cells for defense mechanism

• Mesenchymal cells
o Strong immunomodulatory and anti-in-

flammatory action

[112]
[113]

Immunotherapy • Convalescent plasma therapy
o Treatment using antiviral antibodies se-
parated from the plasma of recovered pa-

tients
• Monoclonal antibodies

o Prevention of virus entering to host cells
by targeting spike proteins using monoclon-

al antibodies

[114]
[115]

Some  of  these  drugs  show  neurological  effects,  and
some of them possess drug interaction with other lifesaving
drugs such as antihypertensives, anticoagulants, and statins.
Neurocognitive effects are associated with antivirals such as
ritonavir and lopinavir when used for a longer period. Inter-

feron α and ribavirin may produce neuropsychiatric effects.
Antimalarials like chloroquine and hydroxychloroquine are
producing neuropsychiatric adverse effects [47, 104, 105].

7. LIMITATIONS AND CURRENT SCENARIO
SARS-CoV-2  has  spread  globally  and  is  considered  a

global pandemic. It has affected every aspect of human life.
However, there is no proper treatment available to date, and
the disease is still spreading from one person to another. Re-
search  works  are  going  on  for  better  treatments.  Another
matter of concern is the mutation of SARS-CoV, resulting in
the  emergence  of  new strains,  making  the  treatment  more
complicated. Some affected people are not having any symp-
toms that make the infection more dreadful.

More clinical research needs to be conducted to classify
neurological problems and their pathophysiology. Still, the
long-term  effects  of  the  virus  attack  are  unknown.  Along
with standard tests, CSF should be tested to understand the
neurological impact of the virus.

Those who have been severely affected show high levels
of  cytokines  due  to  an  altered  immune  system,  as  theyare
pro-inflammatory agents, which may exacerbate an existing
cognitive deficit or may result in de novo cognitive impair-
ment.  Cytokines  and  other  related  chemokines  such  as
IL-1β, IL-2, C-reactive protein, TNF-α, etc., are mediated in
neuronal inflammation and resulted in neuronal damage. It
is  necessary to do cerebrospinal  fluid investigations to as-
sess the virus infiltration and predict the possible long-term
effects of the virus attack.

8. FUTURE PERSPECTIVES
The  impact  of  SARS-CoV-2  on  the  nervous  system is

very complicated and dangerous. Aged people who already
suffer from neurological disorders such as CVD, stroke, and
Alzheimer’s are more prone to severe neurological complica-
tions  due  to  SARS-CoV-2.  Examining  nasopharyngeal
swabs or other respiratory specimens will not be enough to
detect the virus if it is present in the nervous system. For de-
tection of neurological involvement of virus infection, prop-
er investigative approaches should be used for better diagno-
sis. It is also necessary to develop a systematic approach in
treating neurological complications associated with SARS-
CoV-2.

CONCLUSION
SARS-CoV-2 infection can manipulate the host’s neuro-

logical  homeostasis and produce unwanted effects such as
headache, dizziness, loss of consciousness, and some other
severe symptoms such as seizure, ischemia, hypoxia, inflam-
mation, and encephalitis, etc. Along with dreadful respirato-
ry effects, COVID-19 may affect other systems and organs.
Furthermore, pre-existing disease conditions can worsen. In
this review, we tried to demonstrate different diagnostic tech-
niques, neurological effects, and their mechanisms in detail.
Timely  assessment  of  symptoms and  CSF evaluation  may
help  to  manage  neuronal  complications  of  virus  infection.
Further clinical research is warranted to classify neurologi-
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cal complications associated with SARS-CoV-2 and its treat-
ment systematically.

LIST OF ABBREVIATIONS

SARS-CoV-2 = Severe Acute Respiratory Syndrome
Coronavirus 2

COVID-19 = Coronavirus Disease 2019
RNA = Ribonucleic Acid
MERS CoV = Middle East Respiratory Syndrome Coro-

navirus
SARS-CoV-1 = Severe Acute Respiratory Syndrome

Coronavirus 1
Nsp = Non-structural proteins
RTC = Replicase/transcriptase Complex
ACE2 = Angiotensin-converting Enzyme 2
ORF1ab = Open Reading Frame1 ab
RdRP = RNA Polymerase
qRT-PCR = Real-time quantification Reverse Tran-

scription-polymerase Chain Reaction
ddPCR = Droplet digital PCR
LOD = Load of Detection
IgG = Immunoglobulin G
IgM = Immunoglobulin M
IgA = Immunoglobulin A
ELISA = Enzyme-linked Immunosorbent Assay
WHO = World Health Organization
CNS = Central Nervous System
PNS = Peripheral Nervous System
CVD = Cerebrovascular Disease
GBS = Guillain-Barré Syndrome
BBB = Blood-brain Barrier
CSF = Cerebrospinal Fluid
CoV = Coronavirus
CT = Computerized Tomography
MRI = Magnetic Resonance Imaging
CRS = Cytokine Releasing Syndrome
IL = Interleukins
TNF-α = Tumor Necrosing Factor-alpha
G3BP1 = Ras GTPase-activating Protein-binding

Protein 1
SG = Stress Granules

mTOR = Mammalian Target of Rapamycin
UKB = UK Biobank
APOE = Apolipoprotein E
SIRS = Systemic Inflammatory Response Syn-

drome
INF-α = Interferon alpha
NK cells = Natural Killer cells
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