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Abstract: During the past several years, there has been a shift in terminology from bariatric surgery
alone to bariatric and metabolic surgery (BMS). More than a change in name, this signifies a paradigm
shift that incorporates the metabolic effects of operations performed for weight loss and the ameliora-
tion of related medical problems. Metabolomics is a relatively novel concept in the field of bariatrics,
with some consistent changes in metabolite concentrations before and after weight loss. However,
the abundance of metabolites is not easy to handle. This is where artificial intelligence, and more
specifically deep learning, would aid in revealing hidden relationships and would help the clinician
in the decision-making process of patient selection in an individualized way.
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1. From Bariatric to Metabolic Surgery—A Name Change or a Game-Changer?

Bariatric surgery includes a constellation of surgical procedures that aim at reducing
body weight. In current practice, the most commonly performed procedures are laparo-
scopic sleeve gastrectomy (LSG), laparoscopic Roux-en-Y bypass (RYGB), one-anastomosis
gastric bypass (OAGB), single anastomosis stomach–ileal bypass with sleeve gastrectomy
(SASI-S), and single anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-
S) [1,2]. Beyond the primary objective of weight loss, bariatric operations have shown
benefits in providing long-term resolution of associated health problems, and most impor-
tantly, type 2 diabetes mellitus (T2DM), which is the most prevalent metabolic perturbation
worldwide [3–6]. Consequently, the term “metabolic surgery” has been coined by Profes-
sors Henry Buchwald and Richard L. Varco in 1978 and was popularized in the current
literature by Professor Francesco Rubino [7,8]. It has been widely adopted by both the
bariatric and the endocrinologic community in order to describe the role of weight-loss
operations in the armamentarium of antidiabetic interventions offered to people who suffer
from diabetes and obesity [9]. This change in terminology reflects the recognition that
benefits from operations performed for weight loss are not restricted to reducing body
mass index (BMI), but also expand to ameliorating associated medical problems, including
type 2 diabetes mellitus (T2DM), hypertension, dyslipidemia, as well as reducing overall
mortality [10].

The effect is far from simply mechanistic and includes modulation of neural circuits,
alterations of the intestinal microbiome, changes in bile acid excretion, restoration of the
intestinal and adipose tissue hormonal milieu (with emphasis on the dynamic balance
between incretins and anti-incretins, notably glucagon-like peptide-1 (GLP-1), peptide YY,
leptin, ghrelin and glucose-dependent insulinotropic peptide), and recruitment of intestinal
glucose transport molecules [7]. Among these mechanisms, the metabolome constitutes a
relatively novel, upcoming and promising area of vigorous scientific research in the fields
of bariatric and metabolic surgery, as it has been shown in three recent reviews [11–13].
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2. The Metabolome as a Field of Studying the Effects of Bariatric and Metabolic Surgery

Metabolites are a constellation of low-molecular weight molecules (<1 kD) that con-
stitute intermediate or end-products of metabolism. They are classified into amino acid
(AA) derivatives (branched-chain amino acids (BCAA—Leu, Ile, Val), aromatic amino acids
(AAA—Typ, Phe, Trp), and other amino acids (Gly, Gln, Arg, Orn, Met), lipid derivatives
(acylcarnitines, glycerolipids, ketone bodies, phospholipids, and sphingolipids), bile acids
(primary (cholic, chenodeoxycholic), secondary (deoxycholic, lithocholic)), microbiota-
derived (short-chain fatty acids (SCFA), secondary bile acids, indole compounds, trimethy-
lamine N-oxide (TMAO), tricarboxylic acid cycle (TCA)-related (citrate, pyruvate, succi-
nate), and endocannabinoids (arachidonic acid, 2-arachidonoylglycerol, anandamide) [14].
The entire set of metabolites is collectively named metabolome and belongs to the genetic–
phenotypic continuum (genome, transcriptome, proteome), which is also under the dy-
namic and constant influence of the symbiotic microorganisms of the body (microbiome).
Pertinent evidence has increased exponentially over time, and relevant studies may be
distinguished into untargeted or targeted ones, according to the metabolomics technique
implicated (comprehensive analysis of all metabolites in a sample including unknown ones
in the former case vs. measurement of defined and annotated metabolites in the latter).
According to a recent review, the top 10 statistically significant metabolomics pathways
analyzed in the literature for bariatric and metabolic surgery (BMS) are aminoacyl-tRNA
biosynthesis, glycine–serine–threonine metabolism, nitrogen metabolism, phenylalanine
metabolism, cysteine–methionine metabolism, TCA cycle, taurine–hypotaurine metabolism,
valine–leucine–isoleucine biosynthesis, propanoate metabolism, and nicotinate and nicoti-
namide metabolism [11]. BCAAs are the most extensively studied compounds in the field
of BMS [14].

With regard to BMS, the metabolome has been implicated both as a means to interpret
the effects of BMS and as a scaffold of surrogate markers for predicting metabolic and
bariatric outcomes on an individualized basis. Regarding the former area of interest, the
trends of metabolites following BMS as documented in the literature are as follows—AA
derivatives: decrease in BCAA (Leu, Ile, Val), AAA (Phe, Tyr, Trpkynurenine pathway),
increase in serotonin, indoxysulfate, indole-3-propionic acid, glycine, and serine; lipid
derivatives: decrease in free fatty acids (FFA), short-(C3, C5), medium-, and long-chain
acylcarnitines, unsaturated and long-chain saturated fatty acids (LCSFA), triglycerides,
ceramides, ketone bodies (late postoperatively), increase in medium-chain saturated fatty
acids (MCSFA), decanoid acid, phosphatidylcholine, phosphatidylethanolamines, ketone
bodies (early postoperatively); bile acids: increase in primary and secondary bile acids;
microbiota-related metabolites: increase in trimethylamine-N-oxide, phenyl sulfate, p-cresol;
TCA-related metabolites: decrease in pyruvate and lactate, increase in citrate, succinate, and
malate; endocannabinoids: decrease in 2-arachidonoylglycerol, anandamide, arachidonic
acid [13,14]. As far as prediction is concerned, relevant studies focus mainly on the relation-
ship of various compounds with T2DM remission [12,15–19], and to a lesser extent, with
(suboptimal) weight loss [20,21]. More specifically, successful weight loss was linked to a de-
crease in AA, a decrease in metabolites of FA metabolism, an increase in 3-hydroxybutyrate,
an increase in post-prandial and total glycine amidated-chenodeoxycholic acid, and an
increase in post-prandial glycine-amidated hyocholic acid [13]. Similarly, T2DM remission
and improved sensitivity to insulin were connected with a decrease in AA (BCAA, AAA,
and pyroglutamic acid), a decrease in Trp-derived intestinal microbiota metabolites, a
decrease in VLDL, LDL, N-acetyl glycoproteins and unsaturated lipids, an increase in
HDL and phosphatidylcholines, a decrease in LCFA (16:0, 18:3 and 17:2), an increase in
3-hydroxybutyrate, a decrease in hippuric acid and 2-hydroxybutyric, and an increase in
total bile acids [13].

Ultimately, in a rather breakthrough study, Palau-Rodriguez et al. attempted to
correlate the impact of bariatric surgery with the metabolomic profile of bariatric patients,
i.e., whether they were metabolically “healthy” (MH) or “unhealthy” (MU) [22]. They
found that hydroxy–propionic acids, medium/long-chain hydroxy–fatty acids and bile acid
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glycuronides were the most discriminative biomarkers of response between MH and MU
patients, whereas other metabolites featured various positive or negative correlations with
effective weight loss. Furthermore, obesity is considered a state of chronic inflammation [23].
With this regard, C-reactive protein (CRP) could be implemented as a surrogate marker
before and after bariatric surgery for evaluating treatment outcomes [24].

As one can understand, thus far, the metabolome is dynamic, not only at discrete time
points, but also before and after BMS. The study of the changes of metabolite concentrations
as well as their interconversions have recently emerged as a separate field of investigation
known as fluxomics. Of importance, experimental animal models have been developed
in order to trace incorporation and changes of metabolites after specific types of diet
(high carbohydrate vs. ketogenic), by means of isotopic tracing, mass spectrometry, and
mathematical analysis [25]. Similarly, fluxomics could be used to elucidate the relationship
between incretins/anti-incretins and insulin sensitivity in patients with diabetes before and
after metabolic surgery.

3. Bariatric and Metabolic Surgery in the Era of Artificial Intelligence

Artificial intelligence (AI) is an umbrella term that describes the process through which
a machine (computer) simulates human learning by incorporating (input) a large amount
of data (big data), processing them and giving results that lead to conclusions, decisions
or adjustments of function (output) [26]. Depending on the degree of human interference
in the algorithmic function of artificial intelligence, we have supervised machine learning
(unknown input with designated output, predetermined data), unsupervised machine
learning (unknown input and output, predetermined data), and deep learning (unknown
input and output, data represented in a layered network of neurons). The latter category is
the one closest to human learning and has the potential of revealing nonobvious (hidden)
relationships between cause and effect (Table 1). There is an increasing body of evidence
on AI and relevant publications in healthcare [27].

Table 1. The main types of artificial intelligence with examples of statistical approaches for each one.

Type of AI Algorithm Purpose Examples

Supervised machine learning

Classification (categorical
output, i.e., obese, not obese,

T2DM
remission-nonremission) or

Regression (continuous
output, i.e., weight, BMI,

HbA1c level).

Decision trees, random forest,
knn, logistic regression

Unsupervised machine
learning

Clustering (inherent grouping
in data, i.e., grouping

responders of bariatric
surgery based on their
metabolomic setup) or

Association (discovering the
rules that describe large

portions of data).

K-means for clustering, a
priori algorithms

Deep learning

Input and output are
connected in layers with

relationships that resemble
neural networks in the
nervous system. These

relationships are usually
“hidden”.

Convolutional neural
networks, artificial neural

networks, Bayesian networks.

Our team recently published a scoping review on current evidence regarding the
applications of AI in BMS [28]. We identified seven broad categories of subjects: basic
science, safety (complications), effectiveness (bariatric outcomes), comorbidities (including
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T2DM), quality of life, operative characteristics, and cost. Among these, there were only
two publications relevant to metabolomics. In the first study, Narath et al. investigated
the short- and long-term metabolic changes after bariatric surgery using an untargeted
metabolomics approach, with the aid of random forest, an established machine learning
(ML) algorithm [29]. In the second study, Candi et al. performed metabolic profiling
of visceral adipose tissue from patients living with obesity, with or without metabolic
syndrome, who underwent bariatric surgery [30]. Their untargeted metabolomic analysis
yielded 481 metabolites, and the results indicated increases in oxidative stress markers
(plasmalogens), in addition to changes in glycerolphosphorycholine, glycerolphospho-
rylethanolamine, glycerolphosphorylserine, ceramides, and sphingolipids. More recently,
Perakakis et al. have implemented support vector machine, a supervised learning algo-
rithm, to aid in the diagnosis of nonalcoholic steatohepatitis and fibrosis by noninvasive
means of metabolomics [31]. Along the same lines, Castañé et al. investigated the po-
tential of coupling machine learning and lipidomics in order to decipher the metabolic
dysfunctions underlying fatty liver disease [32].

Metabolomics datasets are wide, which means that the amount of measurements
greatly exceeds the quantity of samples [33]. Nevertheless, ML algorithms depend on large
datasets for purposes of training and validation. As such, ML may not be methodologically
sound for analyzing metabolomics studies for the time being. Conversely, deep learning
(DL) with its simple architecture would be more appropriate. There is a paucity of publica-
tions on metabolomics and deep learning in the field of bariatrics, following equally scarce
evidence bridging metabolomics and deep learning in general. A metabolomics-specific
problem related to this is the fact that metabolites represent highly correlated variables
owing to their extensive cross-linking in biochemical processes. Consequently, feature
selection is burdensome, and predictive modeling is challenging [33].

4. Deep Learning and Metabolomics—Too Hard to Handle or the Coming of an Era?

In the past, there have been efforts to apply DL in metabolomics data acquisition
and processing, stratification of metabolic phenotypes, integration of metabolomics into
multi-omics studies, prediction of metabolic pathways, and genome-wide metabolic mod-
eling [34]. These efforts have met several methodological predicaments, such as high
computational cost, suboptimal training and internal validation, lack of external validation,
noncalculation of isotopic peaks (spectrometry and its variations are pivotal in the quan-
tification of metabolites), overfitting in case of applying DL to data with low sample size,
reduced predictive ability upon application to class-imbalanced datasets, poor applicability
of experimental models to human metabolism, etc. [34]. Date and Kikuchi tried to over-
come some of these barriers by applying a mean decrease accuracy (MDA) calculation in a
deep neural network (DNN) [35]. Here is an attempt to systematize current limitations of
combining DL with metabolomics and through these make BMS-specific suggestions with
clinical orientation.

(1) Lack of human-centric data availability: Bariatric patients constitute a surgical pop-
ulation that is submitted to vigorous follow-up. Most importantly, there are two
large international bariatric databases (IFSO® Registry and MBSAQIP® Database)
that are regularly updated. Starting to integrate metabolic profiles of patients before
and at discrete follow-up visits after BMS apart from demographic, clinical, rou-
tine laboratory, and nutrition data would serve as a scaffold for a population-wide
metabolomics database.

(2) Dimensionality and overfitting: This limitation is generated by the asymmetrical
distribution of low numbers of samples and too many measured features in the context
of metabolomics (high-dimension low-sample size data; HDLSS). Again, the key to
this could be found in the large populations of existing bariatric databases, provided
they start to integrate data on metabolites.

(3) Lack of metabolomics-specific DL features: This problem is non-BMS specific, but
it is rather ubiquitous for metabolomics. In contradistinction to genomics and pro-
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teomics, metabolomics still lacks well-defined problem statements and methods. Rele-
vant studies in the aforementioned fields employ strategies that convert DNA/RNA
sequences and protein structures (alpha-helix, beta-strand, loop region) into en-
coded representations that are suitable for convoluted neural network (CNN) ap-
plications [33]. More advanced is the conversion of nonimage data to image-like data
suitable for processing with CNN [36].

(4) Challenging model validation: Given that metabolomics datasets are considered
HDLSS, one measure to overcome the current lack of large populations would be to
apply nonconventional validation methods. For example, a widely adopted validation
method, k-fold cross validation, leads to biased performance with small sample sizes.
On the contrary, nested cross-validation has shown stable performance regardless of
the sample size [37]. Metabolomics studies on MBS patients with limited sample sizes
could benefit from this approach.

Applying DL to the metabolome with respect to BMS would be a revolutionary
endeavor. A DL algorithm with its layered architecture would be able to process the
abundance of metabolites and reveal hidden “outside the box”, nonlinear relationships
between them and bariatric and/or metabolic outcomes. These results could be further
used to predict each individual patient’s postoperative course and response to each bariatric
surgery according to their metabolomic setup. In conjunction with other omics, this process
would become more accurate and individualized. With respect to the disciplines mentioned
earlier, DL could provide specific benefits:

(1) Basic science: Existing studies on retrieving metabolites and their pathophysiological
role could benefit from a layered structure of analysis after applying the strategies
mentioned earlier. A good relevant example is the study of Date and Kikuchi [35]: their
experimental model was yellowfin goby (Acanthogobius flavimanus), their objective was
metabolic characterization depending on geographical distribution, the sample type
was muscle tissue, they studied two sets of metabolites (water-soluble components,
n = 170; methanol-soluble components, n = 1022), and the utilized DL algorithm was
a deep neural network analytical approach that yielded better classification accuracy
as compared to ML algorithms. Analogous experiments could be implemented to
existing animal models of BMS [38,39] with the purpose of metabolomic character-
ization before and after initial operation and monitoring of BMS effectiveness at a
second level.

(2) Safety (complications): DL algorithms could be implemented to map the metabolome
of BMS candidates and to correlate specific metabolotypes with certain adverse out-
comes, such as defective wound healing that may lead to a leak or to susceptibility to
the formation of adhesions.

(3) Effectiveness (bariatric outcomes): Weight loss is the main objective of the vast
majority of BMS. Consequently, being able to predict in advance which patient is
going to benefit from which operation based on their metabolomic synthesis would
be of utmost research and clinical interest. DL could be implemented in order to yield
data from existing populations and through hidden layers that reveal favorable and
avoidable metabolomic setups.

(4) Associated medical problems (including T2DM): Existing evidence focuses on the
metabolic aspects of metabolomics on patients who undergo BMS [22,29]. The advent
of DL, following the implementation of strategies to overcome limitations, could
contribute to a more widespread performance of such studies.

All bariatric patients who are prepared for BMS are submitted to extensive laboratory
workup, which includes complete blood count, coagulation studies and biochemical stud-
ies, both for ensuring suitability for surgery and for obtaining baseline values on sugar
metabolism, lipid profile, and micronutrient sufficiency. At the immediate postoperative
period, most patients undergo blood tests in the context of monitoring the impact of the
operation itself and for promptly diagnosing potential adverse outcomes (hemorrhage,
acute kidney injury, liver dysfunction, etc.). More frequently than not, virtually all ac-
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credited bariatric programs integrate mandatory blood testing at regular intervals (i.e., 3,
6, 12, 24 months postoperatively) as part of their follow-up scheme, for the purpose of
monitoring the metabolic and nutritional impact of the bariatric operation. Consequently,
blood is the most readily available biological specimen. It is understandable that blood
may not be the most appropriate medium for assessing specific metabolites, in part because
of the interference with other plasma proteins and circulating mediators [40]. Even so,
blood requires careful handling and pre-analytical processing in order to be amenable to
metabolomics analysis [41]. It has been postulated that BMS provides a unique oppor-
tunity to obtain both tissue biopsies (from the liver, adipose tissue, jejunum, or from the
resected stomach, in the case of sleeve gastrectomy) and portal vein blood samples [42].
Regardless of their theoretical superiority, such endeavors entail a certain learning curve,
lead to extension of the operative time and bear a small but nonnegligible complication
burden. As such, for the time being, the most appropriate biological sample considered for
human metabolomics studies in MBS should be blood. Microbiota-related metabolomics
studies could also include feces, which is relatively easy to collect and process. Figure 1
summarizes the proposed workflow algorithm for metabolomics studies in BMS.
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Figure 1. A schematic model of how tissue retrieved during bariatric metabolic surgery can be
used for metabolomic analysis, and consequently, the resulting data undergo feature extraction and
classification with deep learning techniques. As a first step, metabolomics analyses on tissue samples
could be compared against metabolomic analyses on body fluids before operation (serum, urine, feces).
At a following stage, fluctuations in metabolite concentrations in body fluids could be measured at
standardized intervals after the bariatric operation and compared to both preoperative body fluid
values, as well as tissue sample values. At a final stage, changes in metabolite concentrations could
be correlated with clinical data that are routinely collected before and after bariatric surgery, such as
BMI, blood glucose, HbA1c, HDL, LDL, total cholesterol, and triglycerides, etc.

Regarding BMS outcomes, the major stake of clinical prediction is prognosis rather
than diagnosis, and this is relevant to both diabetes remission and weight loss or regain.
The ultimate purpose for the clinician is to be able to determine preoperatively which
patient will benefit from a specific BMS procedure and who will not but, on the contrary,
be exposed only to the perils of an operation. This way, DL-based metabolomics studies
will have a role in the preoperative decision-making process, in what is assumed as a
typical classification problem (responders–nonresponders). Conversely, prediction in safety
studies is relevant to both prognosis and diagnosis, but the clinical benefit of the latter
remains to be shown, given that more practical approaches are readily available.

The two major drawbacks of deep learning are the high demand of computational
power and the fact that the relationships simulated by neural networks may be less self-
explanatory than the determined algorithms of conventional machine learning. These
problems are ubiquitous across data analyses. From a clinical point of view, only head-to-
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head comparisons between the two types of methodologies may reveal the advantages
of one or the other. Again, the study of Date and Kikuchi give such an example, where
a DNN-based DL algorithm that was considered inappropriate for classification and re-
gression modeling as compared to its ML counterparts was rendered appropriate after
implementation of importance estimation for each variable using MDA calculation [35].

The significant impact that DL is beginning to make on metabolomics data processing
and analysis paves the way for the future. Most importantly, it underlines the importance
of integrating data analysts into the multidisciplinary team which is dedicated to the care
of patients living with obesity. Close collaboration between clinicians and data scientists
could expedite the adoption of DL into daily practice for the benefit our patients.
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Conflicts of Interest: The author declares no conflict of interest.

References
1. Ramos, A.; Kow, L.; Brown, W.; Welbourn, R.; Dixon, J.; Kinsman, R.; Walton, P. The IFSO Global Registry, 5th IFSO Global Registry

Report. 2019. Available online: https://www.ifso.com/pdf/5th-ifso-global-registry-report-september-2019.pdf (accessed on
15 March 2022).

2. Bhandari, M.; Fobi, M.A.L.; Buchwald, J.N. Standardization of Bariatric Metabolic Procedures: World Consensus Meeting
Statement. Obes. Surg. 2019, 29, 309–345. [CrossRef] [PubMed]

3. Schauer, P.R.; Kashyap, S.R.; Wolski, K.; Brethauer, S.A.; Kirwan, J.P.; Pothier, C.E.; Thomas, S.; Abood, B.; Nissen, S.E.; Bhatt,
D.L. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N. Engl. J. Med. 2012, 366, 1567–1576.
Available online: https://pubmed.ncbi.nlm.nih.gov/22449319/ (accessed on 14 May 2022). [CrossRef] [PubMed]

4. Schauer, P.R.; Bhatt, D.L.; Kirwan, J.P.; Wolski, K.; Aminian, A.; Brethauer, S.A.; Navaneethan, S.D.; Singh, R.P.; Pothier, C.E.;
Nissen, S.E.; et al. Bariatric Surgery versus Intensive Medical Therapy for Diabetes—5-Year Outcomes. N. Engl. J. Med. 2017,
376, 641–651. Available online: https://www.nejm.org/doi/10.1056/NEJMoa1600869 (accessed on 14 May 2022). [CrossRef]
[PubMed]

5. Mingrone, G.; Panunzi, S.; De Gaetano, A.; Guidone, C.; Iaconelli, A.; Nanni, G.; Castagneto, M.; Bornstein, S.; Rubino, F.
Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 Year follow-up of an
open-label, single-centre, randomised controlled trial. Lancet 2015, 386, 964–973. Available online: http://www.thelancet.com/
article/S0140673615000756/fulltext (accessed on 27 September 2020). [CrossRef]

6. Mingrone, G.; Panunzi, S.; De Gaetano, A.; Guidone, C.; Iaconelli, A.; Capristo, E.; Chamseddine, G.; Bornstein, S.R.; Rubino, F.
Metabolic surgery versus conventional medical therapy in patients with type 2 diabetes: 10-year follow-up of an open-label,
single-centre, randomised controlled trial. Lancet 2021, 397, 293–304. Available online: http://www.thelancet.com/article/S01406
73620326490/fulltext (accessed on 14 May 2022). [CrossRef]

7. Buchwald, H. The Evolution of Metabolic/Bariatric Surgery. Obes. Surg. 2014, 24, 1126–1135. Available online: https://pubmed.
ncbi.nlm.nih.gov/25008469/ (accessed on 15 March 2022). [CrossRef]

8. Rubino, F. From Bariatric to Metabolic Surgery: Definition of a New Discipline and Implications for Clinical Practice. Curr.
Atheroscler. Rep. 2013, 15, 369. Available online: https://pubmed.ncbi.nlm.nih.gov/24194467/ (accessed on 16 August 2020).
[CrossRef]

9. Rubino, F.; Nathan, D.M.; Eckel, R.H.; Schauer, P.R.; Alberti, K.G.M.M.; Zimmet, P.Z.; del Prato, S.; Ji, L.; Sadikot, S.M.;
Herman, W.H. Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: A Joint Statement by International Diabetes
Organizations. Diabetes Care 2016, 39, 861–877. Available online: https://pubmed.ncbi.nlm.nih.gov/27222544/ (accessed on
15 March 2022). [CrossRef]

10. Aminian, A.; Zajichek, A.; Arterburn, D.E.; Wolski, K.E.; Brethauer, S.A.; Schauer, P.R.; Nissen, S.E.; Kattan, M.W. Predicting
10-year risk of end-organ complications of type 2 diabetes with and without metabolic surgery: A machine learning approach.
Diabetes Care 2020, 43, 852–859. Available online: https://pubmed.ncbi.nlm.nih.gov/32029638/ (accessed on 20 April 2021).
[CrossRef]

11. Samczuk, P.; Ciborowski, M.; Kretowski, A. Application of Metabolomics to Study Effects of Bariatric Surgery. J. Diabetes Res.
2018, 2018, 6270875. Available online: https://pubmed.ncbi.nlm.nih.gov/29713650/ (accessed on 15 March 2022). [CrossRef]

12. Ha, J.; Jang, M.; Kwon, Y.-K.; Park, Y.S.; Park, D.J.; Lee, J.-H.; Lee, H.-J.; Ha, T.K.; Kim, Y.-J.; Han, S.-M.; et al. Metabolomic Profiles
Predict Diabetes Remission after Bariatric Surgery. J. Clin. Med. 2020, 9, 3897. Available online: https://pubmed.ncbi.nlm.nih.
gov/33271740/ (accessed on 15 March 2022). [CrossRef] [PubMed]

13. Vaz, M.; Pereira, S.S.; Monteiro, M.P. Metabolomic signatures after bariatric surgery—A systematic review. Rev. Endocr. Metab.
Disord. 2021, 1–17. Available online: https://pubmed.ncbi.nlm.nih.gov/34855133/ (accessed on 15 March 2022).

https://www.ifso.com/pdf/5th-ifso-global-registry-report-september-2019.pdf
http://doi.org/10.1007/s11695-019-04032-x
http://www.ncbi.nlm.nih.gov/pubmed/31297742
https://pubmed.ncbi.nlm.nih.gov/22449319/
http://doi.org/10.1056/NEJMoa1200225
http://www.ncbi.nlm.nih.gov/pubmed/22449319
https://www.nejm.org/doi/10.1056/NEJMoa1600869
http://doi.org/10.1056/NEJMoa1600869
http://www.ncbi.nlm.nih.gov/pubmed/28199805
http://www.thelancet.com/article/S0140673615000756/fulltext
http://www.thelancet.com/article/S0140673615000756/fulltext
http://doi.org/10.1016/S0140-6736(15)00075-6
http://www.thelancet.com/article/S0140673620326490/fulltext
http://www.thelancet.com/article/S0140673620326490/fulltext
http://doi.org/10.1016/S0140-6736(20)32649-0
https://pubmed.ncbi.nlm.nih.gov/25008469/
https://pubmed.ncbi.nlm.nih.gov/25008469/
http://doi.org/10.1007/s11695-014-1354-3
https://pubmed.ncbi.nlm.nih.gov/24194467/
http://doi.org/10.1007/s11883-013-0369-x
https://pubmed.ncbi.nlm.nih.gov/27222544/
http://doi.org/10.2337/dc16-0236
https://pubmed.ncbi.nlm.nih.gov/32029638/
http://doi.org/10.2337/dc19-2057
https://pubmed.ncbi.nlm.nih.gov/29713650/
http://doi.org/10.1155/2018/6270875
https://pubmed.ncbi.nlm.nih.gov/33271740/
https://pubmed.ncbi.nlm.nih.gov/33271740/
http://doi.org/10.3390/jcm9123897
http://www.ncbi.nlm.nih.gov/pubmed/33271740
https://pubmed.ncbi.nlm.nih.gov/34855133/


Metabolites 2022, 12, 458 8 of 9

14. Ha, J.; Kwon, Y.; Park, S. Metabolomics in Bariatric Surgery: Towards Identification of Mechanisms and Biomarkers of Metabolic
Outcomes. Obes. Surg. 2021, 31, 4564–4574. Available online: https://pubmed.ncbi.nlm.nih.gov/34318371/ (accessed on
15 March 2022). [CrossRef] [PubMed]

15. Ceperuelo-Mallafre, V.; Llaurado, G.; Keiran, N.; Benaiges, E.; Astiarraga, B.; Martinez, L.; Pellitero, S.; González-Clemente, J.M.;
Rodríguez, A.; Fernández-Real, J.M.; et al. Preoperative circulating succinate levels as a biomarker for diabetes remission after
bariatric surgery. Diabetes Care 2019, 42, 1956–1965. [CrossRef] [PubMed]

16. Christensen, M.H.E.; Fadnes, D.J.; Røst, T.H.; Pedersen, E.R.; Andersen, J.R.; Vage, V.; Ulvik, A.; Midttun, Ø.; Ueland, P.M.;
Nygård, O.K.; et al. Inflammatory markers, the tryptophan-kynurenine pathway, and vitamin B status after bariatric surgery.
PLoS ONE 2018, 13, e0192169. Available online: https://pubmed.ncbi.nlm.nih.gov/29401505/ (accessed on 15 March 2022).
[CrossRef]

17. Kwon, Y.; Jang, M.; Lee, Y.; Ha, J.; Park, S. Metabolomic Analysis of the Improvements in Insulin Secretion and Resistance After
Sleeve Gastrectomy: Implications of the Novel Biomarkers. Obes. Surg. 2020, 31, 43–52. Available online: https://pubmed.ncbi.
nlm.nih.gov/32815103/ (accessed on 15 March 2022). [CrossRef]

18. Luo, P.; Yu, H.; Zhao, X.; Bao, Y.; Hong, C.S.; Zhang, P.; Tu, Y.; Yin, P.; Gao, P.; Wei, L.; et al. Metabolomics Study of Roux-en-Y
Gastric Bypass Surgery (RYGB) to Treat Type 2 Diabetes Patients Based on Ultraperformance Liquid Chromatography–Mass
Spectrometry. J. Proteome Res. 2016, 15, 1288–1299. Available online: https://pubmed.ncbi.nlm.nih.gov/26889720/ (accessed on
15 March 2022). [CrossRef]

19. Zhao, L.; Ni, Y.; Yu, H.; Zhang, P.; Zhao, A.; Bao, Y.; Liu, J.; Chen, T.; Xie, G.; Panee, J.; et al. Serum stearic acid/palmitic acid ratio
as a potential predictor of diabetes remission after Roux-en-Y gastric bypass in obesity. FASEB J. 2016, 31, 1449–1460. Available
online: https://pubmed.ncbi.nlm.nih.gov/28007782/ (accessed on 15 March 2022). [CrossRef]

20. Kwon, Y.; Jang, M.; Lee, Y.; Ha, J.; Park, S. Amino Acid Metabolites and Slow Weight Loss in the Early Postoperative Period after
Sleeve Gastrectomy. J. Clin. Med. 2020, 9, 2348. Available online: https://pubmed.ncbi.nlm.nih.gov/32717870/ (accessed on
15 March 2022). [CrossRef]

21. Abidi, W.; Nestoridi, E.; Feldman, H.; Stefater, M.; Clish, C.; Thompson, C.C.; Stylopoulos, N. Differential Metabolomic Signatures
in Patients with Weight Regain and Sustained Weight Loss After Gastric Bypass Surgery: A Pilot Study. Am. J. Dig. Dis. 2019,
65, 1144–1154. Available online: https://pubmed.ncbi.nlm.nih.gov/31385097/ (accessed on 15 March 2022). [CrossRef]

22. Palau-Rodriguez, M.; Tulipani, S.; Marco-Ramell, A.; Miñarro, A.; Jauregui, O.; Gonzalez-Dominguez, R.; Sanchez-Pla, A.;
Ramos-Molina, B.; Tinahones, F.J.; Andres-Lacueva, C. Characterization of Metabolomic Profile Associated with Metabolic
Improvement after Bariatric Surgery in Subjects with Morbid Obesity. J. Proteome Res. 2018, 17, 2704–2714. Available online:
https://pubmed.ncbi.nlm.nih.gov/29893570/ (accessed on 2 April 2022). [CrossRef]

23. Ellulu, M.S.; Patimah, I.; KhazáAi, H.; Rahmat, A.; Abed, Y. Obesity and inflammation: The linking mechanism and the compli-
cations. Arch. Med. Sci. 2017, 13, 851–863. Available online: https://pmc/articles/PMC5507106/ (accessed on 15 May 2022).
[CrossRef] [PubMed]
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