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Recently, chronic obstructive pulmonary disease (COPD) has been considered as a
common risk factor of non-small cell lung cancer (NSCLC). However, very few studies
have been conducted on the effects of COPD on the lung microbiota in patients with
NSCLC. To identify the lung microbiota in patients with COPD and NSCLC (CN), the
microbiome of the induced sputa of 90 patients was analyzed using 16S rDNA
sequencing. The results showed no significant differences in the bacterial diversities of
induced sputa among patients with COPD, NSCLC, and CN and no intrinsic differences
among patients with different pathological types of lung cancer. After surgical operation,
the diversities of the induced sputa in patients with CN significantly decreased. More
remarkably, both the microbial community phenotypes and the components of the
induced sputa in patients with CN obviously differed from those in patients with COPD
or NSCLC. The relative abundances of Streptococcus, Veillonella, Moraxella, and
Actinomyces significantly decreased, but those of Neisseria and Acinetobacter
significantly increased in patients with CN compared with those in patients with COPD
or NSCLC alone, resulting in increased Gram-negative microbiota and, therefore, in
potential pathogenicity and stress tolerance, as well as in enhancement of microbial
glycolipid metabolism, amino acid metabolism, and oxidative stress. Although COPD did
not affect the number of pulmonary flora species in patients with NSCLC, these significant
alterations in the microbial populations, phenotypes, and functions of induced sputa due
to COPD would contribute to inflammation-derived cancer progression in patients
with CN.
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is currently the
fourth leading cause of death in the world, and the burden from
COPD is expected to increase over the next few decades (Lange
et al., 2021). According to the reports of the Pulmonary Health
Observational Study in China, there are nearly 100 million
COPD patients in the country, which is a heavy burden to the
society (Guo et al., 2020; Dong et al., 2021). In addition to
irreversible obstructive ventilatory disorders, COPD is also a
systemic inflammatory disease, which can also increase the risk
of lung cancer. Some studies have shown that the risk of lung
cancer in patients with COPD is two to five times higher than
that in non-smokers, and the link between the two is not
significantly related to age or tobacco exposure (Hou et al.,
2019; Parris et al., 2019; Zheng Y. et al., 2021). Moreover, the
5-year overall survival rate of patients with COPD is significantly
lower than that of patients without COPD, especially in men and
patients with squamous cell carcinoma (Parris et al., 2019; Ahn
et al., 2020; Kang et al., 2020). However, a recent study has shown
that, compared with never smokers without COPD, the lung
cancer incidence rates in never smokers with COPD, ever
smokers without COPD, and ever smokers with COPD were
increased by 97%, 167%, and 519%, respectively. This indicated
that COPD is a strong independent risk factor of lung cancer,
irrespective of smoking status (Park et al., 2020).

Growing evidence has demonstrated that the overall changes
in pulmonary flora are associated with COPD status (Hou et al.,
2019). Through microbiota analysis in pulmonary tissues,
bronchoalveolar lavage fluid (BALF), and sputa, the greatest
differences in flora between patients with COPD and healthy
controls were found to be in Pseudomonas, Streptococcus,
Prevotella, and Haemophilus, whose relative abundances were
significantly elevated with COPD aggravation (Houghton, 2013;
Bozinovski et al., 2016; Park et al., 2020). Notably, an increased
abundance of TM7 had been found in both COPD and lung
cancer patients, indicating that TM7 plays a potential role in the
progression of COPD into lung cancer (Cheng et al., 2020; Wang
et al., 2021). However, previous reports presented diverse results,
and the global perspective of macrobiotic changes from COPD to
lung cancer remains to be elucidated.

To date, our understanding of the microbiome in patients
with lung cancer is still in its nascent stage. Respiratory samples,
such as saliva, sputa, bronchoscopy samples (e.g., bronchial
aspirated fluid, BALF, and bronchial mucosa), and lung
biopsies, have been widely used in the field of lung
microecological research. Given that lung biopsy is invasive
and difficult to perform in patients without clinical biopsy
indications, induced sputum and BALF samples are easier to
implement as noninvasive procedures for dynamically observing
the airway microbiome in patients with lung diseases. However,
there were obvious differences in the microbiota composition
among the above specimens. The microbiota in the upper airway
tract differs from that in alveolar tissues, which is partly due to
the parenchymal components of the airway and vascular tissues
mainly contained in lung tissue samples (Lee et al., 2016; Yang
et al., 2021; Zheng Y. et al., 2021; Zitvogel and Kroemer, 2021).
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The induced sputa obtained from patients with COPD had the
most similar compositions to bronchoalveolar aspirated sputa,
while BALF had the closest results to the upper bronchial mucosa
flora rather than the lower respiratory flora, indicating that
induced sputa could be a better representative of lower
bronchial dysbiosis in lung diseases (Sze et al., 2012; Huang
et al., 2014; Tiew et al., 2021). Therefore, in this study, to
investigate the characteristics of the microbiome in patients
with COPD and non-small cell lung cancer (NSCLC), 16S
ribosomal DNA (rDNA) sequencing was performed to
compare the microbiome diversities and differences among the
induced sputum samples and to estimate its application value in
NSCLC and lung precancerous lesion screening.
MATERIALS AND METHODS

Ethics Approval and Inclusion Criteria
This research was approved by the ethics committees of the
participating institution: The First Affiliated Hospital of Zhejiang
Chinese Medical University. Informed consent was obtained
from all patients. The samples and data were completely
anonymized. Basic information was collected on patients’ age,
sex, weight, type of pathology, and treatment modality on
admission. The study was conducted in accordance with the
ethical guidelines and regulations for human research and the
Helsinki Declaration.

The inclusion criteria were as follows: 1) lung cancer patients
with a clear pathological diagnosis of lung squamous carcinoma
or lung adenocarcinoma; benign lung lesions with a clear
pathological diagnosis, combined with computed tomography
(CT) findings and clinical features; and COPD diagnosis meeting
the diagnostic criteria of GOLD 2017 or confirmed diagnosis in
the past; 2) age 18–90 years; 3) absence of other types of
respiratory infections, such as community-acquired
pneumonia, upper respiratory tract infection, acute bronchitis,
bronchiectasis with infection, asthma, and acute exacerbation of
COPD; and 4) no ongoing antibiotic treatment, immunotherapy,
radiotherapy, targeted therapy, or other interventions
for tumors.

The exclusion criteria were as follows: 1) patients without
clear pathological diagnosis; 2) patients with COPD that could
not be clarified through clinical data; 3) patients with lung cancer
suspected or clearly combined with lung infection; 4) presence of
yellow pus or dark sputum; 5) unknown antibiotic use status
prior to specimen collection; 6) patients who received
interventions such as immunotherapy, radiotherapy, and
targeted therapy prior to specimen collection; and 7)
sequencing results that presented insufficient absolute
abundance or a homogeneous composition of flora.

After the application of the inclusion and exclusion criteria, a
total of 90 patients were eligible for this study, including 67
patients with NSCLC and COPD [18 samples were collected after
surgical treatment (CLA group) and 49 samples were obtained
from patients not undergoing surgical treatment (CLB group)], 9
patients with NSCLC only (LC), and 14 patients with COPD
only. Patients were aged 28–88 years, and the mean age was 64.4
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years. There was only one female COPD patient; all other
patients in this study were men.

Collection of BALF Samples
The induced sputum samples from each patient were collected
after waking up in the morning. The patients repeatedly gargled
three times with normal saline to remove oral bacteria and
foreign bodies, and then ultrasonic nebulized 3% saline was
inhaled for 15 min. Sputum (2 ml) was expectorated from the
deep part of the trachea and collected into sterile Eppendorf
tubes. The sputum samples were immediately sent to the
laboratory for bacterial smear and sample culture.

Each sputum sample was mixed with two volumes of 0.1%
dithiothreitol solution (Merck, Darmstadt, Germany) and then
centrifuged at 1,300 rpm for 5 min. Subsequently, two volumes of
phosphate-buffered saline (PBS) solution were added to the
supernatant and centrifuged again (800 rpm for 5 min). The
supernatant was collected and stored at −80°CC. The eligibility
criteria for induced sputum were determined as follows: the
volume of each sample was >2 ml; the number of epithelial cells
was <50% of the total cells; and the number of non-epithelial cells
exceeded 200. All of the above processes were performed under
sterile conditions.

DNA Extraction
The sputum was centrifuged at 14,000 rpm for 10 min, the
supernatant was discarded, and the pellet was resuspended in
200 ml of sterile PBS and applied to DNA extraction using Blood
& Tissue Kit (Qiagen, Hilden, Germany) following the
manufacturer’s instructions.

16S rDNA Sequencing
The DNA concentration and purity were examined using
NanoDrop2000 (Thermo Scientific, Waltham, MA, USA) and
the DNA quality tested with 1% agarose gel electrophoresis.
Primers 341F (5′-CCTACGGGNGGCWGCAG-3′) and 805R
(5′-GACTACHVGGGTATCTAATCC-3′) were used for PCR
amplification of the V3–V4 variable regions of 16S rDNA. PCR
products were recovered with 2% agarose gel, purified with
AMPure XT beads (Beckman, Brea, CA, USA), eluted with
Tris–HCl, and detected with 2% agarose electrophoresis. The
Quantifluor TM-ST system was used for quantitative detection.
Qualified samples were used to construct a PE 2*300 library and
sequenced following the standard operating procedures of the
Illumina MiSeq Platform.

Data Analysis
The Trimmomatic software was used for quality control in the
original sequencing, splicing was performed with FLASH, and
UPARSE (version 7.1) was applied for the operational taxonomic
unit (OTU) clustering of the sequences based on 97% similarity.
Chimeras were culled with UCHIME. Each sequence was
annotated for species classification with the RDP classifier and
aligned with the Silva 128/16S bacteria database. The alignment
threshold was set to 0.8. The indices Sobs (observed accumulated
richness), Chao, and ACE were adopted to evaluate the richness
of the microbial community. The Shannon and Simpson indices
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were used to assess community diversity. The diversity index was
used to comprehensively evaluate the community richness and
evenness of the samples. The larger the Shannon value, the
greater the community diversity. The smaller the Simpson value,
the lower the community diversity. Species composition analysis
was performed using I-Sanger.
Statistical Methods
The paired signed-rank test was used to assess intergroup
differences for the a-diversity index and species difference
analysis, and statistical analysis was performed using SPSS
version 23.0. Principal component analysis (PCA) was applied
for the b-diversity analysis to evaluate the similarity and
difference between different samples, and statistical analysis
was performed using R language. All statistical tests were two-
tailed, with p < 0.05 considered statistically significant.
RESULTS

Analysis of Microbiota Diversity
A total of 1,500 OTUs were obtained using Illumina high-
throughput sequencing analysis. To distinguish the shared and
unique OTUs in the test groups, a Venn diagram was drawn to
visualize the number of OTUs and overlaps between each group.
As shown in Figure 1, 187 OTUs were shared among the four
groups, accounting for 12.5% of the total, whereas 533 OTUs
were shared between the lung cancer (LC) and COPD groups
and 198 among the LC, CLA, and CLB groups. The OTUs were
identified as belonging to 22 phyla and 364 genera.

The Chao1 and Observed_otu indices were positively
correlated with the number of species contained in the
community, whereas the Simpson and Shannon values
indicated the richness and evenness of species, respectively. As
shown in Figure 2, the values of Chao1 and Observed_otu in the
LC group were significantly increased compared with the other
three groups (p < 0.05). The values in the COPD and CLB groups
were very close (p > 0.05), but were much higher than those in
the CLA group, indicating that the LC group had the highest
species diversity, while the CLA group had the lowest. Moreover,
there were no significant differences in the Simpson and
Shannon values among the four groups, indicating the non-
significant difference in the richness and evenness of the lung
microbiota among the groups.

In addition, a principal coordinate analysis (PCoA) graph was
obtained by calculating the weighted UniFrac distance
(Figure 3), which displayed the similarity and difference
between the lung microbiome in different environments. Each
point in Figure 2 represents an individual sample, and the
distance between points represents the similarity between the
samples. In other words, the smaller the distance, the more
similar the property. The contributions of the principal
components PC1 and PC2 were 40.33% and 31.75%,
respectively, based on the weighted principal coordinates of the
UniFrac distance, which reflected the overall status of the
samples well. Furthermore, samples from the same group
July 2022 | Volume 12 | Article 937864
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presented remarkable discrete states under the same
clinicopathological characteristics, indicating that there were
individual differences in the microbiome among samples from
the same group. Notably, there was a huge overlap between the
CLA and CLB groups and between the COPD and LC groups,
indicating the similarity of the microbiota composition between
the two groups. However, both the COPD and LC groups
showed partial overlaps with the combined COPD and LC
groups (i.e., CLA and CLB), indicating marked differences
among the CLA, CLB, COPD, and LC groups.

Alterations in the Components of the Lung
Microbiome
To visualize the differences in species richness among the groups,
we compared the relative abundance of the top 30 species using
clustering stacked bar charts (Figure 4A). For this purpose,
clusters were dynamically generated by merging four groups
into two clusters. Interestingly, at both the genus and phylum
levels of taxonomic criteria, CLA and CLB were grouped into one
cluster, whereas COPD and LC comprise another cluster. These
results demonstrate that the relative abundances of the top 30
microbial compositions at the genus and phylum levels were not
significantly altered by surgical operation. More importantly, the
microbial compositions of the COPD and NSCLC combination
groups differed from those of the COPD and LC groups,
indicating the high specificity of COPD patients with lung
cancer. The dominant phyla were Firmicutes, Proteobacteria,
Bacteroidetes, Actinobacteria, and Fusobacteria; especially, the
levels of the first two accounted for >60% of the total. On the
other hand, the dominant genera in these four groups were
Streptococcus, Neisseria, Veillonella, Prevotella_7, Actinomyces,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Moraxella, Acinetobacter, Corynebacterium_1, Haemophilus,
Gemella, Alloprevotella, Porphyromonas, Rothia, Fusobacterium,
and Leptotrichia, all of which accounted for more than nearly
70% of the total abundances. Remarkably, the relative
abundances of Veillonella, Haemophilus, Alloprevotella, and
Acinetobacter in the CLA group were significantly elevated
compared with the other three groups, indicating obvious
alterations in the Gram-negative microbial compositions,
which was found to be in agreement with the results of
BugBase (Figure 5).

To further display the specific flora visually in the different
groups of patients, a Sankey diagram was plotted to demonstrate
the taxonomic abundance of the main lung microbiota. As
shown in Figure 4B, Streptococcus, Neisseria, Veillonella, and
Prevotella_7 were the main species in the induced sputa of
patients. Compared with the other groups, the relative
abundances of Streptococcus and Actinomyces were significantly
elevated in the LC group. Moraxella, Corynebacterium_1, and
Gemella had high expressions in the COPD group, whereas these
had little or no expression in the LC, CLA, and CLB groups,
whose data were consistent with those of previous reports (Leung
et al., 2017; Beech et al., 2020). Compared with the other groups,
Haemophilus and Neisseria showed the highest levels in the CLA
group, whereas Acinetobacter was only observed in the CLB
group. These results revealed that induced sputum from different
types of patients had different microbiota profiles, which could
be used as special diagnostic markers and therapeutic targets for
the prevention of COPD and lung cancer.

However, there were no significant differences in the relative
abundances of Streptococcus, Neisseria, Veillonella, and
Prevotella_7 among patients with lung adenocarcinoma,
FIGURE 1 | Veen diagram of the number of shared and unique operational taxonomic units (OTUs) among the CLA (surgical treatment), CLB (non-surgical
treatment), LC (lung cancer), and COPD (chronic obstructive pulmonary disease) groups.
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squamous cell carcinoma, and other subtypes of NSCLC
(Figure 6). The limited number of samples collected in the
study may have affected the accuracy and representation of the
outcome, and further studies need to be developed in the future.

Alterations in the Function of the Lung
Microbiome
As shown in Figure 7, the functions of the differently expressed
lung microbiome were analyzed using the PICRUSt2 algorithm,
and their biological annotations were referenced from the KEGG
database. Compared with those of the LC group, the rates of L-
glutamate and L-glutamine biosynthesis, superpathway of L-
threonine biosynthesis , superpathway of polyamine
biosynthesis, superpathway of S-adenosyl-L-methionine
biosynthesis, and of arginine, ornithine, and proline
interconversion significantly decreased in the CLB group (p <
0.05), but the rates of superpathway of fatty acid biosynthesis
initiation, superpathway of L-methionine biosynthesis, TCA
cycle, glycolysis, stearate biosynthesis, ppGpp biosynthesis, and
nitrate biosynthesis significantly increased in the CLB group (p <
0.05). This indicates that the abnormal alterations in glycolipid
metabolism, amino acid metabolism, and oxidative stress, which
are mediated by lung microbes, would contribute to
inflammation-driven lung cancer.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
DISCUSSION

On the surface, COPD and lung cancer are two distinct diseases.
COPD is characterized by chronic lung injury with two main
manifestations—airflow limitation and parenchymal destruction
—which are often accompanied by increased apoptosis,
autophagy, and senescence caused by smoking. In contrast,
lung cancer is characterized by abnormal DNA damage and
genomic instability, leading to tumor angiogenesis and immune
escape. However, a lot of studies now suggest that the
pathogenes i s be tween the two di seases has some
commonalities, tobacco smoke inhalation being the most
common trigger (Szalontai et al., 2021). In addition, immune
dysfunction, lung microbiota dysbiosis and inflammatory
infections, oxidative stress, and DNA damage play a role in the
development of COPD and lung cancer (Caramori et al., 2019;
Hou et al., 2019; Parris et al., 2019; Sears, 2019), all of which may
be potential drivers of the progression of COPD into lung cancer.

Clinical and animal studies have revealed tumor-associated
dysregulation of the local microbiome in the lung, which in turn
impacted cancer progression through systemic inflammatory
response (Weinberg et al., 2020; Zitvogel and Kroemer, 2021).
In addition, epidemiological evidence revealed that the repeated
use of antibiotics would induce an increased risk of lung cancer,
FIGURE 2 | Alpha diversities of the induced sputum samples from different groups. Different indices (Chao1, Observed_otus, Shannon, and Simpson) were used to
estimate the number of microbiota in samples. Data shown are the median ± quartile. Different letters indicate statistically significant differences. p < 0.05.
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https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


He et al. Dysbiosis, COPD and Lung Cancer
B

A

FIGURE 4 | Comparison of the phyla and genera of the microbiomes among the CLA (surgical treatment), CLB (non-surgical treatment), COPD (chronic obstructive
pulmonary disease), and lung cancer (LC) groups. (A) Comparison of the abundances of the bacterial phyla (left) and genera (right) of each group. (B) Sankey plots
of the relative abundances of the discriminatory bacterial phyla and genera among the groups.
FIGURE 3 | Bacterial diversity clustering by weighted UniFrac principal coordinate analysis (PCoA) of the lung microbiota.
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suggesting that abnormal pulmonary microbial communities
could play a part in the occurrence of lung cancer. However,
the association between pulmonary flora and lung cancer
remains unclear. As yet, systematic and large-scale clinical
observation of lung dysbiosis in patients with COPD and
NSCLC has been lacking. In this study, the microbial a-
diversity in the induced sputa of CLB patients was not
significantly higher than those in patients with COPD and
NSCLC (p > 0.05), but the diversity in CLA patients was
obviously decreased compared with that of the other three
groups, indicating that the microbial species were reduced after
surgical operation. Furthermore, Streptococcus, Neisseria,
Vei l lone l la , Prevote l la_7 , Act inomyces , Moraxe l la ,
Acinetobacter, Haemophilus, and Gemella were the dominant
bacteria in the induced sputa of all these patients, whose
populations varied with the disease type. Compared with those
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
in patients with COPD and LC, the relative abundances of
Streptococcus, Veillonella, Actinomyces, Corynebacterium_1,
Rothia, and Leptotrichia significantly decreased in the CLB
group, whereas the abundances of Neisseria, Haemophilus, and
Alloprevotella significantly increased. After tumor resection, the
levels of Haemophilus and Neisseria were drastically elevated in
the CLA group. Particularly, a high level of Acinetobacter was
only observed in the CLB group, indicating its specificity in the
progression of COPD-related lung cancer.

The lung microbiome regulates inflammatory factors in lung
tissue by producing oncogenic metabolites and toxins, which can
bind to Toll-like receptors on antigen-presenting cells such as
monocytes and dendritic cells, inducing chronic inflammation,
which in turn disrupts the cell cycle, leading to the upregulation
of oncogene signaling pathways and promoting lung
carcinogenesis (Nowrin et al., 2014; Mendez et al., 2019;
FIGURE 5 | Microbial community phenotypes in the induced sputa of patients with chronic obstructive pulmonary disease (COPD) and/or lung cancer. This
community function was predicted using the BugBase web server for quantifying the relative abundance of the microbiome in nine categories. Data shown are the
median ± quartile. Different letters indicate statistically significant differences. p < 0.05.
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Weinberg et al., 2020; Zitvogel and Kroemer, 2021). Through
analysis with the BugBase and PICRUSt2 algorithms, the
phenotypes and the functions of the mainly differentially
expressed microbiota among patients with different
pathological types of lung diseases were predicted, respectively.
The results demonstrated that the Gram-negative microbiota,
potential pathogenicity, and the stress tolerance of the
microbiota in the COPD-combined NSCLC patients
significantly increased compared to those in patients with
COPD or NSCLC only. Moreover, the microbial glycolipid
metabolism, amino acid metabolism, and oxidative stress of
such perturbed lung microbial community were also enhanced.
During inflammation and cancer, host immune cells or tumor
cells need energy to support their physiological function, leading
to increased anaerobic glycolysis and amino acid consumption
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
(Fahrmann et al., 2020; Schiliro and Firestein, 2021; Stepka et al.,
2021; Tomé, 2021), which was consistent with our findings on
the metabolic alteration of the lung microbiome. Thus, these
changes may be associated with specific metabolic characteristics
of COPD-related lung cancer.

Unlike in Western countries, most smokers in China are men
(Yang et al., 2020). Thus, it was difficult to collect samples from
the same number of male and female patients, resulting in an
imbalance in this study. Similarly, the chances of developing
cancer increase with age (Toumazis et al., 2020). Most patients
with NSCLC in this study were retired. Recently, sex and age
differences have been demonstrated to exert a direct influence on
oncological treatments, specifically immunotherapy, with
documented distinctions between men and women (Vavalà
et al., 2021). Consequently, to correctly assess cancer
FIGURE 6 | Relative abundances of the main microbiota in the induced sputa of patients with non-small cell lung cancer (NSCLC). AD, patients with lung
adenocarcinoma; SCC, patients with squamous cell carcinoma; Other, except AD and SCC, patients with other subtypes of NSCLC. Data shown are the median ±
quartile. Different letters indicate statistically significant differences. p < 0.05.
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outcomes, a multicenter study with greater population is
required in the future.

In conclusion, the microbial populations, phenotypes, and
functions of induced sputa exhibited intrinsic differences among
patients with COPD, NSCLC, and CN. Compared with patients
with COPD and NSCLC alone, the relative abundances of
Streptococcus, Veillonella, Moraxella, and Actinomyces in
patients with CN were significantly reduced, but those of
Neisseria and Acinetobacter were significantly elevated,
resulting in increased potential microbial pathogenicity and
energy metabolism. The results showed that COPD may affect
the populations of pulmonary microbiota in patients with lung
cancer, and drastic alterations in the phenotypes and functions of
induced sputa among the different pathological types of lung
cancer were also related to the presence of COPD.
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